
9

8 Conc lusion
UNIFY is a new scheme for maintaining

consistency between aggregated and disaggregated
levels. It does away with explicit switching between
aggregated and disaggregated states, and instead,
maintains all state information for all levels. Units can
comply with interactions at different levels. Perceivers
are responsible for demanding information they need.

We solve the temporal consistency problem by
requiring atomic entity interactions. We resolve chain
disaggregations because disaggregation is non-existent.
We alleviate network flooding by causing fewer entities
to be created and making message aggregation simpler.
Also, we provide the mechanisms for aggregations of
dissimilar entities and dynamic aggregations.

UNIFY requires more memory and CPU cycles, but
reduces network traffic. It is not clear how computation
of complex Lanchester equations will match speeds at
which virtual entities perform interactions, and we
recommend research in this area. Existing simulations
may not be able to supportUNIFY, but this may be an
advantageous way to design new aggregate-level
simulations. We intend implementingUNIFY to give a
proof-of-concept.

9 Ackno wledgments
We thank Professor Paul Reynolds in the

Department of Computer Science at the University of
Virginia for conducting a Distributed Simulations
course in Fall 1994. We are grateful to him for his
suggestions, guidance and encouragement. We thank the
participants of our many discussions in class — Chenxi
Wang, Sudhir Srinivasan, Bronis de Supinski, Adam
Ferrari and Andrea Salas. We also thank Sally McKee
for proofreading.

10 References
[Allen92] Allen, P. D., Combining Deterministic and
Stochastic Elements in Variable Resolution Models,
Proceedings of Conference on Variable-Resolution
Modeling, Washington, DC, May 1992.

[Clark94] Clark, K. J. and Brewer, D.,Bridging the Gap
Between Aggregate Level and Object Level Exercises,
Proceedings of the 4th Conference on Computer
Generated Forces & Behavioral Representation,
Orlando, Florida.

[Davis92] Davis, P. K., An Introduction to Variable-
Resolution Modeling and Cross-Resolution Model
Connection, Proceedings of Conference on Variable-
Resolution Modeling, Washington, DC, May 1992.

[Davis93] Davis, P. K. and Hillestad, R. J.,Families of
Models that Cross Levels of Resolution: Issues for
Design, Calibration and Management, Proceedings of
the 1993 Winter Simulation Conference.

[DIS93] DIS Steering Committee,The DIS Vision, A
Map to the Future of Distributed Simulation, Comment
Draft, October 1993.

[DoD94] Under Secretary of Defense (Acquisition and
Technology),Modeling and Simulation (M&S) Master
Plan, Dept. of Defense, September 30, 1994.

[France93] Franceschini, R. W., Intelligent Placement of
Disaggregated Entities, Institute for Simulation and
Training, 12424 Research Parkway, Suite 300, Orlando
FL 32826.

[Hill92] Hillestad, R. J. and Juncosa, M. J.,Cutting
Some Trees to See the Forest: On Aggregation and
Disaggregation in Combat Models, Proceedings of
Conference on Variable-Resolution Modeling,
Washington, DC, May 1992.

[Horr92] Horrigan, T. J.,The “Configuration Problem”
and Challenges for Aggregation, Proceedings of
Conference on Variable-Resolution Modeling,
Washington, DC, May 1992.

[Karr83] Karr, A. F., Lanchester Attrition Processes and
Theater-Level Combat Models, Mathematics of
Conflict, Elsevier Science Publishers B.V. (North-
Holland), 1983, ISBN: 0 444 86678 7.

[Karr94] Karr, C. R. and Root, E.,Integrating Aggregate
and Vehicle Level Simulations, Proceedings of the 4th
Conference on Computer Generated Forces &
Behavioral Representation, Orlando, Florida.

[Robkin92] Robkin, M., A proposal to Modify the
Distributed Interactive Simulation Aggregate PDU,
Hughes Training, Inc., February 28, 1992.

[Sher92] Sherman, R. and Butler, B., Segmenting the
Battlefield, Loral WDL, June 9, 1992.

[Smith94] Smith, R., Mystech Associates,Invited
speaker to the Department of Computer Science,
University of Virginia, December 1, 1994.

[Stein94] Steinman, J. S. (Jet Propulsion Laboratory,
California Institute of Technology) and Wieland, F.
(Naval Research Laboratory),Parallel Proximity
Detection and the Distribution List Algorithm.

[Weat93] Weatherly, R. M., Wilson, A. L. and Griffin, S.
P., ALSP - Theory, Experience and Future Directions,
Proceedings of the 1993 Winter Simulation Conference.

8

6.2.1 Lanc hester equations
Lanchester equations are differential equations that

calculate attrition between aggregate entities [Karr83].
They are easily computed in their simplest form, but in
order to model the capabilities of the aggregated entities
better, a number of factors are added to the equations,
which make them more time-consuming to compute. It
is then possible to create scenarios where the aggregate
units might have an inconsistent view of each other.
Consider platoons A1 and A2, and an aircraft fighter T.
A1 and A2 interact at the platoon level, but T interacts
with A1 at the tank level. A1 may communicate its
current strength to A2, which computes attrition on A1

using Lanchester equations. In the meantime, T may
inflict significant damage on A1. T may have much
simpler interactions with A1 (e.g., “blow up a tank”),
and these may occur much faster than A2’s interactions
with A1. By the time A2 finishes its equations, the results
will be quite meaningless for A1 because the
computations were performed with data that is now
stale.

This problem may be generalized by restating it as
one occurring when simulations at different levels
proceed at time steps that are orders of magnitude
different. We feel it would be beneficial for future
research to focus on finding cheaper alternatives to
Lanchester equations, and work towards making multi-
level simulations interact in more compatible time steps.

6.2.2 Legac y sim ulations
Over the years, substantial investment has been

made in producing simulation programs that are,
unfortunately, incompatible with each other. ALSP
[Weat93] presents a framework for linking unlike
simulations. But a large number of simulations were
intended to be stand-alone and continue to be so.
Increasingly, the view is that different simulations
should be able to work together [DIS93]. There have
been two initiatives towards this goal. One has been to
make existing simulations — legacy simulations —
work together. The second has been to devise standards
for all future simulations, wherein interoperability is a
requirement and not an afterthought [DoD94]. Existing
aggregate-level simulations might be changed elegantly
to supportUNIFY, but we see our approach largely as
supporting the second initiative.

7 Cost of UNIFY

We now address the cost of implementingUNIFY
in terms of network, memory and CPU requirements. A
detailed analysis will be presented in a future
publication.

7.1 Network cost

UNIFY alleviates the network flooding problem by
reducing the number of messages. This is due to the
reduced number of active entities, i.e., entities that send
and receive messages, the possibility of aggregating
messages and by doing away with complex aggregation/
disaggregation protocols.

The worst case is if the underlying network is a
broadcast network and an aggregated unit conducts
interactions such that it sends messages about its
aggregated attributes andall its constituent entities. In
other schemes [Karr94], the unit would disaggregate,
and all the DEs would send messages. InUNIFY, there
would be messages for each entity and one more for the
aggregated attributes. We reason that this is a
pathological case. The worst case can be ameliorated by
message aggregation, and the “overhead” of the
aggregate attributes is small compared to the usual
number of entities that are aggregated. In addition,
interactions between sub-entities within the same unit
would not generate network messages in our scheme,
whereas they might in other schemes.

7.2 Memor y requirements

UNIFY requires memory for the aggregate level
attributesand each of the sub-entities. Other schemes
require memory for only one level of aggregation at any
given time. Ifni is the number ofi-level entities peri+1-
level entity, the memory requirements for a memory-
efficient traditional scheme andUNIFY would be

 and respectively, where l is

the number of levels of aggregation. The constants for
UNIFY are expected to be large since we need to store
more data per entity in order to maintain consistency.
We estimate thatUNIFY’s memory usage would be 2 to
5 times that of the most memory-efficient traditional
scheme. Expending memory to achieve consistency and
efficiency is acceptable.

7.3 Local CPU requirements

CPU requirements are also higher inUNIFY. In
addition to all simulation activities, the CPU expends
cycles maintaining consistency between levels. This
involves ensuring that when a message arrives at one
level, the attributes at that level are changed and
compatible changes, if necessary, are made at other
levels. With CPU speeds increasing, this will not be a
significant bottleneck. Even withUNIFY implemented,
the network will remain the bottleneck for a long time.

O ni
i 1=

l

∏

 O ni

i j=

l

∏
j 1=

l

∑

7

state information for these tanks in a single message to
T. This causes fewer long messages to be sent rather
than many short messages, thus increasing throughput.

Note thatUNIFY permits aggregation of dissimilar
entities. Either during the course of the battle or prior to
the battle, certain dissimilar entities could be logically
grouped. This merely entails the creation of the new AE
and making the required DEs its fields. As required by
the scenario, the DEs may now be dissociated from their
previous AEs or may be a part of them.

UNIFY allows the perceiver to decide how it
perceives entities because this mimics real-life
situations, where the perceiver has the best knowledge
of its own sensory capabilities. Also, the perceiver takes
the responsibility for increased network traffic,
computation and display processing required if it
requests the perceived entity be presented at a finer level
of detail. Lastly, this approach is conceptually scalable:
the perceived unit requires no knowledge about the
perceiver. It must only deal with requests about varying
levels of aggregation — levels that the unit initially
advertised to the rest of the simulation. Thus, new types
of units could be added to the simulation at a later date,
with minimal effect on the existing types.

6 Pros and cons

6.1 Advantages

In addition to solving or reducing the problems
presented earlier, UNIFY offers the additional
advantages outlined below. The effect of these
advantages may not be readily apparent in battlefield
simulations, but we believe that there exist other
simulations for which these may find application.

6.1.1 Configuration Pr oblem
The configuration problem is presented in [Horr92].

Aggregation causes some information, such as
configuration, to be partly or completely lost. A purely
mathematical approach towards modeling units does not
take the limits imposed by configuration into account.
By retaining all information inUNIFY, we ensure that
the configuration problem can be tackled. The
configuration of the unit’s sub-units can be stored as part
of the representation, or can be re-created from the
attributes of the sub-units.

6.1.2 Dynamic a ggregation
UNIFY supports the concept of dynamic

aggregation. During the course of the simulation, certain
dissimilar entities may be grouped together in a logical
fashion. Current aggregation schemes do not handle this

possibility well. InUNIFY, this can be done by creating
a new unit and making the individual entities that are to
be aggregated part of this new unit. The individual
entities may or may not be dissociated from any other
unit that they were part of depending on the semantics
of the simulation. For example, if one were simulating a
machine assembly, one could either simulate each
component of the assembly or decide at run-time that
certain sub-assemblies may be simulated as an
aggregate. This could be done by making the sub-
assembly a unit and having the components that make it
up as data structures inside this unit.

UNIFY requires that the data structures and
mapping functions for the dynamically-aggregated unit
be in place before the simulation begins, but the
instances of these entities could be created only when
desired. This form of dynamic aggregation is not quite
as powerful as the ability to create new types of units
during run-time. While the latter can be implemented
using UNIFY, it is a harder problem because the
mapping functions between the attributes at different
levels would also have to be created dynamically.

6.1.3 Information degradation
One may want to model factors that might cause

information and/or requests between entities to be
somehow affected. SinceUNIFY allows a very flexible
coupling between units, incorporating information
degradation into a simulation is simplified. Each unit
would receive a message from a designated sender
(which may or may not be the originator of that
message), and then respond to that message.

6.1.4 Localiz ed operations
There is a hierarchy of networks — none (single

CPU), interconnection networks (multiprocessors/
multicomputers), LANs, WANs — over which a unit
may be simulated.UNIFY encourages simulating a unit
locally. For example, on a single CPU, consistency
across levels can simply be maintained by having the
CPU expend additional cycles. In case of non-local
units, the costs of maintaining consistency increases as
one moves up the network hierarchy. In schemes where
an AE disaggregates into many new DEs, consistency is
expensive since the DEs send messages to each other
across the network (at the highest level) to determine
“who can see whom” [Stein94]. With CPU speeds
increasing more rapidly than network transmission
speeds, a CPU-intensive approach is preferable to a
network bottleneck.

6.2 Disad vantages

We address some expected criticisms ofUNIFY.

6

4 Related Work
An approach to simulations involving aggregates is

Selective Viewing and is criticized in [Davis93]. Here,
the simulation is carried out at a higher resolution.
When information about a lower resolution is requested,
it is generated from the data at the higher resolution. A
problem with this approach is that often, the lower-
resolution information cannot be generated from the
higher-resolution information easily. Also, by
simulating at a higher resolution even when not
necessary, computing resources are wasted. A key
difference between Selective Viewing and UNIFY is
that information flow is one-way in the former (high-
resolution to low-resolution), but bidirectional in the
latter.

Davis’ work with Variable Resolution Modeling
(VRM) is particularly relevant here [Davis93].VRM deals
with making simulations work at different levels of
resolution. There are process hierarchies and these
processes may be modeled such that they can be
simulated at varying levels of resolution. The sub-
processes themselves, at any level, may possess sub-
subprocesses, or may be parametrized as constants read
from a database. Davis says:

The hierarchies treated here involve processes, not
objects or entities… While hierarchical
representation of objects is rather widely valid and
natural in combat modeling, straightforward
hierarchical modeling of processes is only
sometimes feasible. More generally, the relevant
processes have a complex relationship to each other,
with connections across branches of the hierarchical
tree and, in some cases, with iterations or cycles of
data flow.
Our approach is concerned with finding the

relationships between aggregate and corresponding
disaggregate attributes. Admittedly, the relationships
may not be simple accumulative or distributive
functions, but knowledge about the applications would
help find these relationships. It is difficult to put forth
general formulae to model these relationships, because
different applications require different models. Indeed,
at times these models are hard to find [Hill92].

While designing a simulation, not only are process
hierarchies important, as suggested by Davis, but so are
object hierarchies. We recognize thatVRM andUNIFY
deal with related issues, and hence are not entirely
independent. If a process is simulated at a low
resolution, it is likely that the objects in the simulation
will also be at a low resolution at that time. Likewise, if
a process is being simulated at a very high resolution,
the objects also are likely to be at a high resolution.

5 Solutions to the pr oblems outlined
UNIFY solves the temporal inconsistency problem.

Individual entities (here, tanks) have their own attributes
that may be computed independently or may be derived
from global attributes (here, platoon-level attributes).
For example, let us address the problem of the position
of the tanks.

Some number of tanks in platoon A1 engage a
single tank T (Fig. 3). These tanks change position as
necessary to enact that battle. After completing all
interactions with T, A1 behaves purely as a platoon
towards other units (since there are no tank-level entities
currently interacting with it). A1’s position is simulated
at an aggregate level, and the individual tanks’ positions
are ignored. If another tank entity T´ begins interacting
with A1, A1 interacts with T´ at the tank level. Let us
assume that T´ engages the same tanks as T did. If T´
comes on to the scene soon after T leaves, the previously
computed position attributes of A1’s tanks will be used
for T´ (with some perturbation if the platoon has
moved). But if T´ comes on to the scene much later, then
the global position, coupled with doctrine and terrain
would be used to position the individual tanks. This
makes sense because in a real battle, after reacting to
interactions with enemy tanks and completing those
interactions, the tanks in a platoon will tend to regroup
and preserve doctrinal formation. This is whatUNIFY
captures. Properly designed,UNIFY can be made to
mimic any real-life situation.

Chain disaggregation is a phenomenon in which
entities are forced to disaggregate along a chain because
the entities with which they are having interactions
disaggregate. This is not a problem inUNIFY because
there is no concept of aggregation or disaggregation.
Each unit decides the level of detail at which it wants to
perceive any other unit, and the perceived unit is able to
consistently present different views of itself to its
perceivers. UNIFY is not a partial disaggregation
scheme. In fact, it is not a disaggregation scheme at all
since there is no explicit aggregation or disaggregation
involved.

We alleviate the network flooding problem by
reducing the number of messages in the system.UNIFY
does not cause entities to unnecessarily disaggregate,
thereby reducing the number of entities in the
simulation. This means that there are fewer receivers
and senders of messages. By putting the burden of
specifying the required level of perception detail on the
perceiver, we force the perceiver to take responsibility
for the level of detail it wishes to see. Also, we can
reduce the load on the network by message aggregation.
When tank T interacts with platoon A1’s tanks, A1
knows which tanks are of interest to T and can pack the

5

Figure 3d - A1’s view of the entitiesFigure 3c - A2’s view of the entities

Figure 3a - Entities in a simulation Figure 3b - T’s view of the entities

T

T1 T4

T2 T3

A1

A2

T

T1 T4

T2 T3

A1

A2

T1 T4

T2 T3

A1

A2

T

T1 T4

T2 T3

A1

4

Platoon state

Tanks’ state

 tank 1 . . .
 tank 2 . . .

 tank 4 . . .

tank # attributes

Platoon unit

Platoon attributes

 tank 3 . . .

Figure 1 - Higher-Level Unit composed of Lower-level Entities

A2

T1 T2 T3 T4T

Consistency Enforcer

aggregated-level interactions

disaggregated-level interactions

Figure 2 - Enforcing consistency between 2 levels

A1

3

2.6 Perceiver pr oblem

Different entities might choose to view a particular
AE at different levels of aggregation. Most schemes
handle this case by having all the participating entities
disaggregate to the lowest common level. Instead, it
should be possible for a perceiver to specify at what
level of aggregation it wants to perceive entities. A
perceived entity should be designed such that it presents
a choice of views to the rest of the simulation. A
perceiver can specify a view, and the perceived unit,
which gets the request in unambiguous terms, can then
send the requested information. Note that it is the
responsibility of theperceiver to demand the kind of
information and the level of detail from the perceived.
Obviously, there would be a “base case” — the
lowermost level of units — agreed upon by the entire
simulation beforehand. This design is scalable, and
more closely resembles real-life interactions.

3 UNIFY

We believe that the dichotomy between aggregated
and disaggregated states is a false one. In the scheme we
propose, each unit either maintains state information at
all allowed levels of aggregation or must be able to
furnish it on demand. Simulation of the unit entails
handling incoming interactions about all levels. Each
unit is responsible for enforcing logical consistency
across aggregation levels. The effect of any incoming
interaction has to be reflected in the attributes of all the
levels of the unit.

For example, a platoon unit composed of four tanks
would contain information regarding the platoon as well
as the individual tanks (Fig. 1). Similarly, a battalion
unit would have information at the battalion level
regarding each of its platoons. In turn, each of the
platoons would contain information regarding the
individual tanks. Note that in this example we have
arbitrarily chosen a tree structure to model military
organization.

3.1 Functional description

The perceiver initiates interactions when another
unit is within its perception envelope [Sher92]. At this
point, the perceiver requests information from the
perceived unit at the level of aggregation it desires. This
allows units to be perceived differently by different
perceivers.

Let A1 and A2 be platoons of tanks and T be a
solitary tank. The interactions between A1 and A2 occur
at an aggregated level. For instance, battalion state
information such as velocity and strength may be
exchanged and acted upon. When T comes into contact

with A1 it requests entity-level information. A1 proceeds
to send information regarding the tanks of interest to T
(Fig. 2). Typically, this information would be culled
from data A1 maintains on each tank.

A2 receives information sent from A1’s “global”
fields — fields that are either common to all entities or
can be deduced from the individual attributes of the
units (Fig. 3). For example, if T is absent, the velocity of
the individual tanks in A1 would not be important, and a
global velocity vector in A1 could be sent to A2.
However, if T is present, then A1’s velocity vector could
be computed as a weighted average of the individual
velocities of its constituent tanks.

3.2 Maintaining consistenc y between le vels

Consistency must be maintained between levels of
aggregation. Interactions from T and A2 with A1 will
have to be serialized and operated on A1 atomically (Fig.
2). When A1 receives a message regarding an interaction
from any other unit, it must process that message fully
before beginning to process any other message that
might arrive. The atomic constraint is necessary because
interactions at any level may affect the other levels. If an
interaction is from T, then its effect on A1 should be
reflected in subsequent interactions between A1 and A2.
In this instance, information flows from the tank level to
the platoon level in A1. Likewise, if an interaction comes
from A2, then the state of each tank in A1 may have to be
updated. Atomicity of interactions, while strict, ensures
that all levels are consistent with each other. It is
worthwhile to note that we have reduced the problem of
maintaining consistency between aggregated and
disaggregated entities to the task of serializing and
atomically handling each request arriving to the unit.

There exists a two-way relationship between the
attributes at different levels. If there exists a function
mapping a set of disaggregated attributes to an
aggregated attribute, then there must exist at least one
inverse function which maps the aggregated
attribute to the disaggregated attributes. Lack of such an
inverse function may lead to temporal inconsistency
manifesting itself again. The “rules-of-thumb”
suggested in [Allen92] are useful guidelines in the
design of and .

There is a range of options for implementing a unit
— single-CPU to distributed-network implementations.
The latter introduces high network latencies while
trying to maintain consistency. The former may put an
unacceptable burden on the CPU. Modern parallel
computers, with their fast interconnection networks,
should provide an efficient compromise.

f

f
1–

f f
1–

2

recognized by the community. The next three are non-
traditional issues, which we envisage will be faced by
designers as the simulation world encompasses other
applications, such as environment modeling, socio-
economic modeling and control systems modeling.

2.1 Temporal inconsistenc y

Temporal inconsistency [Davis93] occurs when an
entity performs actions in an interval of time in a
simulation, which it could not have done in a real-life
situation. This may happen, for example, during a
disaggregation-aggregation-disaggregation sequence.
The information stored at an aggregated level is not
sufficient to provide temporal consistency at the
disaggregated level. In other words, in the first
transition, i.e., disaggregated to aggregated, some
information pertaining to the DEs may be lost, thus the
second transition may result in a disaggregated state that
is inconsistent with the first disaggregated state.

A set of DEs may reaggregate after the current set
of interactions that caused it to remain disaggregated are
completed. While reaggregating, certain information,
for example, the actual positions of the DEs, might be
lost. After reaggregation, it may so happen that within a
short time, a disaggregation has to be effected. On
disaggregating again, a standard algorithm or doctrine
[France93] [Clark94] would be applied to position the
entities. This might cause unrealistic discontinuities in
entity states, such as “jumps” in position.

2.2 Chain disa ggregation

In a two-level simulation, interactions between AEs
should naturally occur at an aggregated level and those
between DEs at a disaggregated level. However, many
options arise when AEs interact with DEs. A naïve
approach is to disaggregate an AE whenever it comes
into sensor proximity of a DE. This, however, could
cause chain disaggregation, wherein many AEs are
forced to disaggregate in a short period of time
[Smith94]. Consider a simple case where four AEs are
interacting in the following linear fashion (A ↔ B
indicates that entities A and B interact with each other),
i.e. AE1 ↔ AE2 ↔ AE3 ↔ AE4. AE1 comes into
contact with a DE, resulting in its disaggregation. This
forces AE2 to disaggregate, followed by AE3 and AE4.
The naïve approach causes unnecessary disaggregation,
and puts a burden on computing and network resources.

Another option is to disaggregate up to some
distance in the chain, but this is a rather inelegant
solution since the question of how to handle AE-DE
interactions is still left open. Yet another option is to
partially disaggregate the AE interacting with the DE,
but this can cause consistency problems.

2.3 Network flooding

Network resources may be strained by the acts of
aggregation and disaggregation, depending on the
scheme used. For example, a proposal in [Robkin92]
required on the order of 10 seconds to complete the
aggregation process. This was because of the
complexity of the algorithm in which each DE could
request to be reaggregated, and each could also refuse to
be reaggregated, thus stopping the entire process. This
decentralized control means that the network can be
flooded if every DE decides to reaggregate at the same
time.

Regardless of the disaggregation scheme used,
there exist cases where it is betternot to disaggregate.
We do not know of any scheme that handles the
following case [Smith94] well. Consider an airborne
reconnaissance over a section of the battlefield. The
aircraft is interested only in the positions of the
individual entities and does not affect them in any way.
Most schemes to date would require a disaggregation
sequence as the aircraft flies over an AE’s location,
because the positions of individual entities are not kept
at the aggregated level. Furthermore, once the aircraft is
out of range, the DEs would reaggregate. This scenario
is more catastrophic if the aircraft returns shortly after
every reaggregation!

2.4 Aggregation of dissimilar entities

There exist scenarios where it would make sense to
aggregate entities that might not normally be
aggregated. In climate-modeling, dust and water-vapor
may be modeled independently but when dealing with
large bodies of air, one may choose to aggregate these.
The view that AEs are collections of like DEs has come
predominantly out of battlefield simulations. As the field
diversifies, this view may prove restrictive. Aggregation
of dissimilar entities makes the configuration problem
[Horr92] more acute.

2.5 Dynamic a ggregation

Dynamic aggregation — where the entities that
may be aggregated are decided on-the-fly — might be a
requirement for certain kinds of applications. Dynamic
aggregation implies that the entities which could be
aggregated are not known beforehand. Instead, this
decision may be postponed until the simulation runs.
“What-if” scenarios are an application of this idea. In
the context of battlefield simulations themselves,
commanders may wish to make unorthodox force
groupings. We have not seen any current schemes that
support dynamic aggregation.

1

Abstract
The dichotomy between aggregated and disaggregated

states is a false one. It is possible for an aggregated entity to be
at many levels of aggregation by storing the relevant data of all
levels. In this paper, we propose a scheme,UNIFY, wherein
each unit either maintains state information at all allowed
levels of aggregation or furnishes it on demand. We present
problems with traditional approaches towards aggregation
such as temporal inconsistency, chain disaggregation and
network flooding. We also deal with issues that we envisage
will beset the simulation world such as aggregation of
dissimilar entities, dynamic aggregation and the perceiver
problem. We describe a framework with which these problems
could be solved or tackled better. We study the benefits and
disadvantages ofUNIFY and propose new directions for
research. Finally, we analyze the demands made by our
scheme on network, memory and CPU resources.

1 Intr oduction
Distributed simulations can be broadly classified as

either aggregate-level simulations (constructive) or
entity-level simulations (virtual). Simulated objects in
constructive simulations are said to beaggregated since
they contain information pertaining to a collection or
group of entities. On the other hand, simulated objects
in a virtual simulation are basic entities in the sense that
they tend not to be broken down further.

There are two schools of thought regarding
constructive simulations. The first is that aggregate-level
simulations are valid and useful. The second is that the
validity of constructive simulations cannot be proved.
Our paper is based on the belief that constructive
simulations are useful [Davis92], and when properly
designed, valid. We believe that consistency models for
aggregation and disaggregation, such as the one in
[Davis93] exist, and when they are found, our scheme
will be a strong alternative to the way aggregate
simulations are currently done.

In recent years, there has been a push to link
constructive and virtual simulations, especially
battlefield simulations. Examples of successful linkages
include theBBS to SIMNET, EAGLE to SIMNET, and

AWSIM to ModSaf efforts. The common approach for
handling interactions between these two worlds has
been to designate areas of the battlefield as “virtual
playboxes” in which all interactions are performed at
the entity level [Karr94]. When an aggregated entity
(AE) enters the playbox, it goes through a
disaggregation process whereby the AE is separated into
its constituent units. These units are said to be
disaggregated entities (DEs). Upon leaving the playbox,
these units may reaggregate.

The virtual playbox approach has several
shortcomings: (1) the playbox(es) must be chosena
priori , (2) their boundaries are static in many cases,
which means that virtual entities may encounter the
boundary of the box sooner than is desirable, and (3) by
definition, no aggregate-level simulations may occur
inside. However, this approach is simple, since
aggregation and disaggregation decisions are reduced to
determining when the boundary of the playbox is
crossed.

A more generic scheme, where aggregation
decisions are made dynamically, is clearly preferable.
The playbox approach hides some issues, which will
gain importance once alternative approaches are
examined: (1) temporal inconsistency, (2) chain
disaggregation and (3) network flooding. We propose a
scheme,UNIFY, which solves 1 and 2, and alleviates 3.

The remainder of the paper is organized as follows:
Section 2 focuses on several issues in designing multi-
level simulations. Section 3 describes our framework,
UNIFY, for designing multi-level simulations. Section 4
discusses other related work. Sections 5 and 6
demonstrate how UNIFY tackles the issues discussed
earlier, and point out the advantages and disadvantages
of our scheme. Section 7 addresses the cost ofUNIFY.
We present our conclusions in Section 8.

2 Issues in m ulti-le vel sim ulations
We highlight some of the issues faced by multi-

level simulations. The first three are traditional
problems in the sense that they have been well-

To disaggregate or not to disaggregate, that is not the question

Anand Natrajan
Anh Nguyen-Tuong

{anand,nguyen}@virginia.edu
Dept. of Computer Science,

University of Virginia

Published in ELECSIM 95

0

To disaggregate or not to disaggregate,
that is not the question

Anand Natrajan and Anh Nguyen-Tuong

Technical Report No. CS-95-18
March 23, 1995

Contact: anand@virginia.edu

Web: ftp://ftp.cs.virginia.edu/pub/techreports/CS-95-18.ps.Z

Published: ELECSIM 95

