
Support for Extensibility and Site Autonomy in the

Legion Grid System Object Model1

Michael J. Lewis†, Adam J. Ferrari* , Marty A. Humphrey*, John F. Karpovich*,

 Mark M. Morgan*, Anand Natrajan*, Anh Nguyen-Tuong*, Glenn S. Wasson* and

Andrew S. Grimshaw*

*{ ferrari | humphrey | jfk3w | mmm2a | anand | nguyen | wasson | grimshaw }@cs.virginia.edu
Department of Computer Science, University of Virginia

†mlewis@binghamton.edu
Department of Computer Science, SUNY - Binghamton

Keywords: Grid, distributed computing, wide-area, distributed objects,
middleware, site autonomy.

Abstract

Grid computing is the use of large collections of heterogeneous, distributed
resources (including machines, databases, devices, and users) to support large-
scale computations and wide-area data access. The Legion system is an
implementation of a software architecture for grid computing. The basic
philosophy underlying this architecture is the presentation of all grid resources as
components of a single, seamless, virtual machine.

Legion’s architecture was designed to address the challenges of using
and managing wide-area resources. Features of the architecture include: global,
shared namespaces; support for heterogeneity; security; wide-area data sharing;
wide-area parallel processing; application-adjustable fault-tolerance; efficient
scheduling and comprehensive resource management. We present the core design
of the Legion architecture, with focus on the critical issues of extensibility and site
autonomy. Grid systems software must be extensible because no static set of
system-level decisions can meet all of the diverse, often conflicting, requirements
of present and future user communities, nor take best advantage of unanticipated
future hardware advances. Grid systems software must also support complete site
autonomy, as resource owners will not turn control of their resources over to a
dictatorial system.

1. The Legion project is partially supported by NFS CDA-9724552, NSF Career Award ACI-0133838, NSF EIA-
9911099, DARPA contract #N66001-96-C-8527, DOE grant DE-FD02-96ER25290, DOE contract Sandia LD-
9391, Northrup-Grumman (for the DoD HPCMOD/PET program), DOE D459000-16-3C, and DARPA (GA)
SC H607305A

ns in
tems
ross
y. For
d-user
t the

gners
reover,
to new
anging
structed
ource
esource
urces,
sed to
aining
policy

on a
design
hat are
allel

ckles a
wide-
and

cies and
Legion
ement,
or the

ject
paper.
model
ry
per,
ction 3
he core
nd how
work

rative
s have
1. Introduction

Grid systems are becoming increasingly important for current state-of-the-art applicatio
domains from high-performance scientific computing to business. Many of today’s grid sys
[29][22][7] are just beginning to attack the challenges of truly wide scale deployment ac
large numbers of sites that are only loosely connected and have no central managing bod
such systems, grid software—middleware above the physical resources and below en
applications–is vital. Without grid systems software, constructing applications that exploi
full potential of these new grids will be difficult or impossible.

Critical requirements of grid systems include extensibility and site autonomy. The desi
of grid systems software cannot predict the varied demands of present and future uses. Mo
infrastructure changes are common, ranging from down-time, load changes and upgrades
generations, new configurations and new access policies. A grid system must adapt to ch
user demands and resource supplies, which requires that the grid systems software be con
with extensibility as a design goal. Furthermore, grid systems can not restrict the ability of res
owners to control their resources. Truly large-scale grid systems cannot be achieved unless r
owners are allowed to fully control their resources (e.g., to determine who can use their reso
how and when they can be used, and how much it will cost). Such autonomy can also be u
manage complexity in grid systems. Since local personnel are typically more adept maint
their resources than a grid-administrator, allowing them to dynamically alter resource access
provides for better resource availability.

Legion, an object-based grid system developed at the University of Virginia, is based
software architecture that addresses extensibility and site autonomy as first-class
requirements. Legion provides a single virtual machine view of heterogeneous resources t
part of a grid [15][16]. A Legion grid consists of workstations, vector supercomputers, par
supercomputers and specialized equipment connected by a variety of networks. Legion ta
wide range of distributed systems problems, including application-adjustable fault-tolerance,
area parallel processing, interoperability, scalability, security, efficient scheduling,
comprehensive resource management. An object-based approach supports the diverse poli
priorities of users, developers, and resource providers. Each grid resource is an object.
defines mechanisms for services such as object creation, naming, deletion, state manag
migration and method invocation but does not mandate the implementation of these services
policies for their use.

The primary contribution of this paper is to describe the properties of the Legion ob
model and architecture. Many important issues in Legion are beyond the scope of this
Specific areas of the Legion system have been described in depth, including the security
[5][8], scheduling [24], fault-tolerance [33][34], I/O systems [25][40], the run-time libra
architecture [9][38] and support for high-performance computing [14][30][31]. In this pa
Section 2 discusses the high-level Legion design, objectives, constraints, and philosophy. Se
presents the Legion object model and the concept of Legion classes. Section 4 introduces t
Legion system elements at a high level. Section 5 presents some basic Legion services a
they are achieved through the combined effort of system objects. We conclude with related
(Section 6) and a summary (Section 7).

2. Legion Objectives, Constraints and Philosophy

Given that computational grids are composed of resources that span multiple administ
domains, there exists a complex set of design principles for grid systems. These principle
Page 1

hich
s able
. An
ed to
onents

le of
alized
ystem
vide
to a

orage
t that

g of
, the
ple,

s.
ts
d in
using

an
still a
ame
in the

ion or
code
ly by
local

ed).
s,

y of
the

r all
select

ative
ls and

links,
dress

ell as
eeds.
d, can
been the foundation of the Legion architecture.
• Site autonomy: Legion is composed of resources owned by many organizations, w

properly insist on retaining control over their resources. For each resource the owner i
to limit or deny use by particular users, and specify when and how it can be used
important aspect of autonomy is implementation selection, i.e. control over the code us
implement system services. Sites are able to choose or create their own Legion comp
to implement arbitrary resource policies.

• Extensiblecore: Legion must suit the wide variety of current user demands and be capab
evolving to meet unanticipated future needs. Therefore, mechanism and policy are re
via replaceable and extensible components, including and especially our core s
components. This model facilitates development of improved implementations that pro
value-added services or site-specific policies, while enabling Legion to adapt over time
changing hardware and user environment. For example, integrating Legion with the St
Resource Broker [28] was a simple matter of extending the core system componen
handles data storage to use the SRB as a back-end repository.

• Scalablearchitecture: Since Legion was designed to build grid systems consistin
millions of hosts and objects, it has a scalable software architecture. In other words
system is fully distributed with no centralized structures or servers. This allows, for exam
new hosts to be added to Legion without expensive grid-wide communication operation

• Easy-to-use,seamlesscomputationalenvironment: Legion abstracts the complexity of i
hardware environment and simplifies the communication and synchronization involve
parallel processing. Machine boundaries, for example, are invisible to users when
Legion’s cross-platform MPI system.

• Single, persistent object space: Developing parallel and distributed systems in
environment without a single name space for accessing data and resources is
significant obstacle for users of many grid systems. Having a multitude of disjoint n
spaces greatly impedes developing applications that span sites. By contrast, all objects
Legion system can transparently access all other Legion objects without regard to locat
replication, but subject to security constraints. This is useful, for example, in creating
repositories where any host in the grid can execute an application stored there simp
knowing the name of that application (i.e., the application need not be stored on the
machine and the host need not know the physical location where the application is stor

• Security for usersand resourceowners: Security is a fundamental aspect of grid system
both to protect the integrity of user computations and to preserve the availabilit
resources. Legion was designed on the principle that security must be built firmly into
foundation of a grid computing system. Of course, no single security policy is suitable fo
users and so Legion provides mechanisms that allow users and resource owners to
policies that fit their security and performance needs and meet their local administr
requirements. For example, Legion supports authentication based on Legion credentia
Kerberos [20].

• Fault-tolerance: In a large-scale grid system, resource failure (hosts, communication
disks, etc.) is commonplace. Therefore, the Legion system itself was designed to ad
failures, through fault-tolerant components and dynamic system reconfiguration, as w
by providing mechanisms to support a wide range of user application fault-tolerance n
For example, important system components that were executing on hosts that have faile
be restarted by Legion on other, operable, hosts.
Page 2

uided

be
and

s.
ems,
otocols

s,
s.
to as
sign—
were
single
large
s and
on to
oth the
t.
cifies
refore
of the
select or

are
e and
s to a

h of
ts. For
of that
bjects
and

class
cribed
ions

and
of the
ts; this
xisting
ility of

an
The objectives listed above were framed by several important practical constraints that g
our design. Legion was designed knowing that we:
• Cannotchangehost operatingsystems. Organizations will not permit their machines to

used if their operating systems must be replaced. Our experience with both Legion
Mentat [17] before shows that grid systems can be built on top of host operating system

• Cannotchangenetworkinterface. Just as we must accommodate existing operating syst
the design of Legion assumes that we cannot change the network resources or the pr
in use.

• Cannotrequire Legion to run in privileged mode. To protect their objects and resource
Legion users and sites require Legion software to run with the lowest possible privilege

Our overall objective in the design of Legion was to create a grid system that was suitable
many users and for as many purposes as possible. One thing was clear: a rigid system de
one in which policies were limited, trade-off decisions were pre-selected, or all semantics
pre-determined and hard-coded—would not achieve this goal. Indeed, if Legion dictated a
grid-wide solution to almost any of the technical objectives, we would have precluded
classes of potential users and uses. Therefore, we designed Legion to allow user
programmers the greatest flexibility in their applications’ semantics, resisting the temptati
dictate solutions to many system functions. Users are able, whenever possible, to select b
kind and thelevel of functionality, and to make their own trade-offs between function and cos

This philosophy is manifested in the system architecture. The Legion object model spe
the functionality but not the implementation of the system's core objects; the core system the
consists of extensible, replaceable components. Legion provides default implementations
core objects, although users are not obligated to use them. Instead, we encourage users to
construct object implementations that meet their specific needs.

3. Legion Class/Object Model

Legion is object-based in that each of its components is an object. Legion objects
independent of one another, which means that they are disjoint in address-spac
communicate with one another via remote method invocation. Each Legion object belong
class and each class is itself a Legion object.

Much of the Legion object model’s power comes from the role of Legion classes; muc
what is usually considered system-level responsibility is delegated to user-level class objec
example, Legion classes are responsible for creating and locating their instances (objects
class) and for selecting appropriate security and object placement policies. The core Legion o
provide mechanisms that allow user-level classes to implement their chosen policies
algorithms. The philosophy of encapsulating system-level policy in extensible, replaceable
objects, supported by the set of primitive operations exported by the Legion core objects (des
in detail in Section 4), effectively eliminates the danger of imposing inappropriate policy decis
and provides a wide range of possibilities for the grid system developer.

Every Legion object is defined and managed by its class object. Class objects aremanagers
andpolicy makersand have system-level responsibility for creating new instances, activating
deactivating them, and providing bindings (object address data that is useful in the context
transport protocol) for client objects. Legion encourages users to define their own class objec
can be as simple as a single command that creates a new Legion object for a user’s e
application. These two features—class object management of their instances and the ab
applications programmers to construct new classes—provide flexibility in determining how
Page 3

kind

calls
terface

the

for that
.1);
eful

ources.
eation
ance(s)
tectures,

used
table.
sical
ral other
and

nd their

n the
h new

fines
, but

ces are
ntations
wish to
class

bject, a

ller
application behaves and further support the Legion philosophy of enabling flexibility in the
and level of functionality.

Each Legion class defines the interface for its instances. This consists of the method
that can be made on objects of that class. This interface includes the class-mandatory in

(Figure 1) and the class-specific functionality1. The class-mandatory interface encompasses
methods that determine various policies for the instances. This includescreateInstance() ,
which creates a new instance of the class and returns the new location independent name
instance (called a LOID or Legion Object Identifier - see section Section 5
createMultipleInstances() , which creates several instances of the class at once (us
for placing large numbers of parallel cohorts); andactivateInstance() , which migrates an
existing instance to a new location or restarts an instance that was deactivated to free res
Each of these three functions actually has several versions, allowing the caller to tailor the cr
and placement processes. For example, the caller can indicate the host on which the inst
should be placed, or specify the characteristics of acceptable hosts (processor speeds, archi
etc.). TheaddImplementation() and removeImplementation() functions configure
which implementations the class object will use for its instances (these functions are typically
by Legion-targeted compilers). An implementation is the Legion representation of an execu
ThegetBinding() functions support the translation of location-independent names to phy
addresses of instances using the binding process as described in Section 5.1. There are seve
functions (not shown in Figure 1) that allow clients to retrieve information about the location
characteristics of the class’ instances, such as the instances’ interface, their current host, a
current state (active or inert).

While classes allow users to specify policy and management information for objects i
Legion grid, it would be inconvenient for users to have to create a new class object for eac
type of Legion object they wished to build. In fact, while theinstancesof a class often perform very
different functions, class objects themselves perform similar functions. Therefore, Legion de
metaclass objects. Metaclass objects provide a mechanism for users to develop new objects
reuse existing class object functionality. Metaclass objects are class objects whose instan
themselves class objects. Just as a normal class object manages and maintains impleme
objects for its instances, so too does a metaclass object. When a user has a new object they
incorporate into the grid, they create a new instance of a metaclass object. This object is a
object that can then be used to manage the user’s new object. To use a metaclass o

1. Note that an object can disallow any function invocation request, typically based on the credentials of the ca
(see section 5.4). This is especially relevant to the system-level functions implemented in core objects[5].

class ClassObject {
LOID createInstance(< placement info>);
LOIDArray createMultipleInstances(int n, <placement info>);
int activateInstance(LOID instance, < placement

info>);
int deleteInstance(LOID instance);
int deactivateInstance(LOID instance);
int addImplementation(LOID implementation_object);
int removeImplementation(LOID implementation_object);
Binding getBinding(LOID instance);
Binding getBinding(Binding stale_binding);

FIGURE 1. A subset of the Legion class-mandatory interface
Page 4

nd
stion.
these
ice of
provide

ting a
ne of a
d be
pulating
ith a

y in a
grid

object
gement
many

nality
such as
of site
ion of

bjects
ortant
iding
d their

single
sts. A
on the
bject
n the
tion.
gion
ject
t site
object
s than
programmer simply callscreateInstance() on the appropriate metaclass object, a
configures the resulting class object with implementation objects for the application in que
The new class object then supports the creation, migration, activation, and location of
application objects in the manner defined by its metaclass object. Legion provides a cho
metaclass objects, the instances of which export the same class-mandatory interface, but
different functionality for that interface.

For example, some objects may be designed to service method invocations by crea
new instance to process each request. Other objects may instead redirect requests to o
number of existing “service” objects for processing. Each of these “service” policies coul
embedded in a metaclass. By creating a new instance of the appropriate metaclass, and po
it with implementations of a particular application, a developer can easily create an object w
particular service policy.

Class objects and metaclass objects help achieve extensibility and site autonom
Legion system. Legion does not mandate the kinds of objects that are permitted within a
system. Users are free to create objects of their choice and incorporate them into Legion’s
management framework. Moreover, users may also choose between several object mana
systems. Finally, once users have incorporated their objects into Legion, they may create as
instances of their objects as they desire. In this respect, Legion provides grid system functio
similar to more recent web service systems such as Enterprise Java Beans [36] and servers
JBOSS [23]. The policies that can be set on class objects often reflect the requirements
autonomy. For example, it is common to set policies on class objects that restrict the creat
their instances to a subset of the machines in the grid.

4. Core Object Types

A Legion grid consists of a set of interoperable objects managed by their classes. Some o
encapsulate the applications that users wish to run on the grid. Other objects provide imp
system-level functionality that eases the process of developing application objects by prov
abstractions of important elements in grid systems. We discuss these core object types an
role in a grid system below.

4.1 Host Objects

Legion host objects abstract processing resources in Legion. They may represent a
processor, a multiprocessor, a linux box, a Cray T3E, or even an aggregate of multiple ho
host object is a machine's representative to Legion: it is responsible for executing objects
machine, protecting objects from each other, deactivating objects, and reporting o
exceptions. A host object is also ultimately responsible for deciding which objects can run o
machine it represents. Thus, host objects are important points of security policy encapsula

Host objects are an important part of providing extensibility and site autonomy in Le
grids. In addition to implementing the host-mandatory interface (Figure 2), host ob
implementations can be built to adapt to different execution environments and suit differen
policies and underlying resource management interfaces. For example, the host
implementation for an interactive workstation uses different process creation mechanism
Page 5

pe of

d for

they
policies
nly a
ased on
code

ertain

very
ement
to
jects
many
th or
to map
bject

s and
cation
ct the
isting

the
f their

ations
essors,
m the
refore,
cts

s to a
storage
rage

cess to
Vault

a new
implementations for parallel computers managed by batch queuing systems. This ty

extensibility allows Legion host objects to adapt to emerging execution models being define
the Open Grid Services Architecture [10].

While host objects provide a uniform interface to different resource environments,
also provide a means for resource providers to enforce security and resource management
within a Legion grid. For example, a host object implementation can be customized to allow o
restricted set of users access to a resource. Alternatively, host objects can restrict access b
code characteristics (e.g. accepting only object implementations that contain proof-carrying
[32] demonstrating certain security properties, or rejecting implementations containing c
“restricted” system calls).

Consider two of our implementations for host objects. Our default host object is
simple—it implements a non-restrictive access policy and uses the Unix process manag
interface (i.e.fork() , exec() , kill()) for starting and stopping objects. Although simple
implement, this design has flaws. It is severely limited in terms of security—it executes all ob
under a single Unix user id. While useful for creating “generic” accounts that allow access to
users, this type of host allows objects from different Legion users to potentially interfere wi
examine one another’s state. An alternative implementation extends the default host object
Legion users to particular Unix user-ids when running different users' objects. This host o
provides better interobject isolation and attribution of resource usage to users.

We have implemented a spectrum of host objects, e.g. hosts for batch queuing system
hosts for Windows NT machines, that tradeoff risk, system security, performance, and appli
security. An important aspect of Legion site autonomy is the freedom of each site to sele
existing host object implementation that best suits their needs, extend one of the ex
implementations to suit local requirements, or to implement a new host object starting from
abstract interface. In selecting and configuring host objects, a site can control the use o
resources by Legion objects.

4.2 Vault Objects

Vault objects are responsible for managing other Legion objects’ persistent represent
(OPRs). Much in the same way that hosts manage active objects’ direct access to proc
vaults manage inert (deactivated) objects on persistent storage. In a typical Legion syste
number of objects may be orders of magnitude larger than the number of processors. The
while some Legion objects will beactiveon processors managed by host objects, most obje
will be inert, and have their relevant state stored in a vault object. A vault has direct acces
storage device (or devices) on which the OPRs it manages are stored. A vault’s managed
may include a portion of a Unix file system, a set of databases, or a hierarchical sto
management system. The vault supports the creation of OPRs for new objects, controls ac
existing OPRs, and supports the migration of OPRs from one storage device to another.
objects provide for extensibility by presenting an abstraction of a storage resource. When

class Host {
ObjectAddress startObject(LOID object, LOID impl,

OPRAddress opa);
void deactivateObject(LOID object);
ObjectAddress getObjectAddress(LOID object);

};

FIGURE 2. Basic Legion host object interface.
Page 6

nce this
cts.
ted, its
object,
istent
ault for
ure 3).
iven

t. The

y of
.,
The
ally,
.

rypted
lement
uotas,

like a
ar to

nitially

ay in
ample,
quires
elves
type of storage system needs to be added to the grid, a new vault object can be created. Si
new vault object will export the mandatory interface, it will be compatible with existing obje

Class objects manage the assignment of vaults to instances: when an object is crea
vault is chosen by the object’s class. The selected vault creates a new empty OPR for the
and supplies the object with its the “address” of its OPR (called the OPA for Object Pers
representation Address). Similarly, when an object migrates, its class selects a new target v
its OPR. These vault activities are supported by the basic Legion vault abstract interface (Fig
The createOPR() method constructs a new empty OPR, associates this OPR with the g
LOID, and returns the address of the new OPR to be used by the newly created objec

getOPRAddress() method is used to determine the location of the OPR associated with an
its managed objects. ThegiveOPR() and getOPR() methods transfer a linearized (i.e
transmissible) OPR to and from vaults, respectively, facilitating object migration.
deleteOPR() method is used to terminate a vault’s management of an OPR. Fin
markActive() andmarkInactive() notify the vault when an object is active or inactive
This knowledge allows the vault to store the OPRs of inactive objects in compressed or enc
forms. Since vault objects control access to local storage resources, they can be used to imp
site-specific policy with respect to those resources. For example, restricting usage to certain q
users, or objects, etc., further enables site autonomy.

4.3 Implementation Objects

Implementation objects encapsulate executables. The executable itself is treated much
Unix file (i.e., as an array of bytes) so the implementation object interface naturally is simil
a Unix file interface:read() , write() , andsizeOf() (Figure 4). Implementation objects

are also write-once, read-many objects—no updates are permitted after the executable is i
stored. Therefore, there is no danger of replicated executables becoming inconsistent.

Implementation objects typically contain executable code for a single platform, but m
general contain any information necessary to instantiate an object on a particular host. For ex
implementations might contain Java byte code, Perl scripts, or high-level source code that re
compilation by a host. Like all other Legion objects, implementation objects describe thems

class Vault {
OPRAddress createOPR(LOID object);
OPRAddress getOPRAddress(LOID object);
LinearOPR getOPR(LOID object);
void giveOPR(LOID object, LinearOPR OPR);
void deleteOPR(LOID object);
void markActive(LOID object);
void markInactive(LOID object);

};

FIGURE 3. The Legion vault object interface.

class ImplementationObject {
ByteArray read(size_t startByte, size_t szToRead);
size_t write(size_t startByte, ByteArray data);
size_t sizeOf();

};

FIGURE 4. The Legion implementation object interface
Page 7

ution
ss. For
imum
intain a
their
object

and the
cular
n turn,
ltiple
n for

ns”,
bject,
tation
n any
ce for

ns for
single
ect’s
voke

ther
copy.

mance,
ing a

lem.
est, a
new

tation

on’s
ents, in

the
to

bject
by maintaining a set of attributes. In their attributes implementation objects specify their exec
requirements and characteristics which may then be exploited during the scheduling proce
example, an implementation object may record the type of executable it contains, its min
target machine requirements, performance characteristics of the code, etc. Class objects ma
complete list of (possibly very different) acceptable implementation objects appropriate for
instances. When the class (or its scheduling agent) selects a host and implementation for
activation, it selects them based on the attributes of the host, the instance to be activated,
implementation object. One particularly useful aspect of this is that versions of a parti
program, compiled on a variety of platforms, can be managed by a single class object. This, i
allows the user to execute their object on a variety of platforms without having to manage mu
binaries by hand, instead allowing Legion to automatically select the correct implementatio
that platform.

The implementation objects provide extensibility by encapsulating “legacy applicatio
i.e., applications which are not Legion-aware. By making arbitrary user code into a Legion o
Legion can distribute and manage that application across the grid! Collections of implemen
objects and their associated class object allow Legion users to run applications written i
programming language, using any programming paradigm, on any computational resour
which the user has an executable.

4.4 Implementation Caches

Implementation caches avoid storage and communication costs by storing implementatio
later reuse. The interface to the implementation cache object is depicted in Figure 5—a
method is provided to return the path of a local file containing a given implementation obj
data. Host objects, rather than downloading implementations themselves, in

getImplementation() on their local implementation cache object. The cache object ei
finds it already has a cached copy of the implementation or it downloads and caches a new
In either case, the cache object returns the executable’s path to the host. In terms of perfor
using a cached binary results in object activation being almost as inexpensive as runn
program from a local file system.

Our implementation model makes the invalidation of cached binaries a trivial prob
Since class objects specify the LOID of the implementation to use on each activation requ
class need only change its list of binaries to replace the old implementation LOID with the
one. The new version will be specified with future activation requests, and the old implemen
will simply no longer be used, will time-out and can be discarded from caches.

4.5 Binding Agents

Binding agents are objects which facilitate the translation of names (LOIDs) from Legi
global, grid-wide namespace to actual addresses usable by transport protocols. Binding ag
part, implement location-transparency in grid computing. This problem is addressed in
OGSA in the GSH-to-GSR mapping [10]. A binding agent is essentially a cache of LOID
object address (OA) mappings that is shared by all of its clients. Although every Legion o

class ImplementationCache {
pathName getImplementation(LOID impl);

};

FIGURE 5. The Legion implementation cache interface
Page 8

y the
rnal
ction

ked

s a
t) and

ngs

call

nding
binding.
jects,
prove
lients.
late a
ings

cisions
grid

include
ch is

t the

ss by
has a cache of bindings for other Legion objects, the binding agent abstracts awa
mechanism for determining a callee object’s actual address if it is not in the caller’s inte
cache. While details of the Legion’s naming and binding mechanisms are provided in se
Section 5.1, Figure 6 shows the interface for binding agents. ThegetBinding(LOID)
function returns a binding for a specified LOID, andgetClassBinding(LOID) returns a
binding for the class object of the object with a given LOID; both are intended to be invo
directly by a client object that is in search of a binding. ThegetBinding(Binding) and
getClassBinding(Binding) methods support the rebinding mechanism, which allow
client to pass in a stale binding (i.e. one for an object that has migrated or become iner
directs the binding agent to get a new binding. TheaddBinding(Binding) and
removeBinding(LOID) functions allow a binding agent to act as a database of bindi
under the control of external objects. A class can useremoveBinding(LOID) to remove an
instance's binding when that instance becomes inert or gets deleted, and can
addBinding(Binding) upon creation, activation, or migration of an instance.

Binding agents are not, strictly speaking, necessary for the correct execution of the bi
process, since client objects can make the same sequence of method calls to determine a
However, in order to make the binding mechanism scalable to a very large number of ob
binding agents are necessary to distribute the binding load and avoid hot-spots. To im
scalability, binding agents can be configured to cooperate with one another to serve their c
For instance, they can be organized hierarchically, like DNS name servers, or can emu
software combining tree [39], thereby off loading some of the responsibility for providing bind
away from classes.

5. Key Legion Mechanisms

We have seen how users can create objects that make site or resource specific policy de
using Legion’s classes. The interaction of groups of Legion objects that make up a Legion
implement various Legion mechanisms that other objects can use. These mechanisms
mechanisms for global naming/binding, scheduling, fault tolerance and security. Ea
described briefly below and its impact on extensibility and autonomy is discussed.

5.1 Naming and Binding

Legion objects are identified through a three-level naming hierarchy, depicted in Figure 7. A
highest level, objects are identified by user-defined text strings calledcontext names. These user-
level context names are mapped by a directory service calledcontext spaceto unique location-
independent system-level names calledLegion object identifiers(LOIDs). For direct object-to-
object communication, LOIDs must be bound to low-levelobject addresses(OAs) that are
meaningful within the context of the transport protocol used for communication. The proce
which LOIDs are mapped to object addresses is called the Legionbinding process(see Figure 7).

class BindingAgent {
Binding getBinding(LOID object);
Binding getBinding(Binding stale_binding);
Binding getClassBinding(LOID object);
Binding getClassBinding(Binding stale_binding);

int addBinding(Binding new_binding);
int removeBinding(LOID object);

};

FIGURE 6. The Legion binding agent interface
Page 9

t on
o those

The
data
s are
ding

on
n
its
jects.
y for
is left
ontain
able

f host
ation
tem-

nt
A
field is
rrent
it IP
s that
[18].

hich
m and
ing

egion
ss is
Legion’s global namespace provides for autonomy both within sites by not fixing the hos
which an object resides. In fact, objects can be migrated between sites and references t
objects will be transparently redirected by the Legion binding process.

LOIDs: Every Legion object is assigned a unique and immutable LOID upon creation.
LOID identifies an object to various services e.g., method invocation. The basic LOID
structure consists of a sequence of variable-length binary string fields. Four of these field
reserved by the system. The first three play a key role in the LOID-to-object address bin
mechanism: Field 0 is thedomain identifier, used in the dynamic connection of separate Legi
systems; Field 1 is theclass identifier, a bit string uniquely identifying the object’s class withi
its domain; Field 2 is aninstance numberthat distinguishes the object from other instances of
class. LOIDs with an instance number field of length zero are defined to refer to class ob
Field 3 is reserved for security purposes. Specifically, this field usually contains a public ke
encrypted communication with the named object (see section 5.4). The format of the LOID
unspecified beyond these four reserved fields. New LOID types can be constructed to c
additional security information, location hints, and other information in the additional avail
fields.

ObjectAddresses: Legion uses standard network protocols and communication facilities o
operating systems to support interobject communication. To perform such communic
Legion converts location-independent LOIDs into location-dependent communication sys
level OAs through the Legion binding process. An OA consists of a list ofobject address
elementsand anaddress semanticfield, which describes how to use the list. An OA eleme
contains two parts, a 32-bitaddress typefield indicating the type of address contained in the O
and the address itself, whose size and format depend on the type. The address semantic
intended to express various forms of multicast and replicated communication. Our cu
implementation defines one OA type, consisting of a single OA element containing a 32-b
address, 16-bit port number, and 32-bit unique id (to distinguish between multiple session
reuse a single IP/port pair). This OA is used by our UDP-based data delivery layer
Alternatively, OAs could describe ports as defined in the OGSA [10].

Bindings: Associations between LOIDs and OAs are calledbindings, and are implemented as
three-tuples. A binding consists of a LOID, an OA, and a field that specifies the time at w
the binding becomes invalid (including never). Bindings can be passed around the syste
cached within objects. The binding mechanism itself is best illustrated with the follow
example. Image one Legion object (the Caller) wishes to invoke a method of another L
object (the Callee). The Caller must bind Callee’s LOID to Callee’s current OA. This proce

FIGURE 7. The three-level Legion naming hierarchy.
Context names are convenient user-defined textual
identifiers. These map to Legion object identifiers
(LOIDs): system-wide unique, location-transparent

context
LOID OAname Binding

Process
Context
Space

1.01.66000000.21000000.000001fc0cf5465691d88fbf0417ed590ce2a7ff4db9fd92cb
595471c3eaaf53e1b9b805226292bf88a6d7d50ffbb676acef0fe53433410ab064714c0fc a
f6eff3161cd

LOID Type Legion
Domain

Class ID Instance Number Public Key

FIGURE 8. Example of a LOID
Page 10

may

locality
tained
ed. If
t
equest
cts are

g an
g

from
inding
class-
chain
lass-of

. For
., by

A to
he for
g is
rameter
ding

for that
depicted in Figure 9.
If Caller and Callee have communicated prior to the current method invocation, Caller

already have a binding for Callee stored in its localbinding cache(maintained within Caller’s
address space) (Figure 9a). Binding caches allow objects to take advantage of the temporal
often observed across method invocations. An object’s binding cache is automatically main
by the binding process. If Caller has a cached binding for Callee, the binding process is finish
a cache miss occurs, Caller contacts itsbinding agent(Figure 9b). If the binding agent does no
have the requested binding, it can consult an alternative external source. It can forward the r
to another binding agent or it can consult Callee’s class object, CalleeClass, since class obje
responsible for knowing the current binding of all of their instances (Figure 9d). Determinin
object’s class is called theclass-of mechanismand operates in a similar manner to the bindin
system, mapping objects to their classes (with the final class-map held by LegionClass).

Once the binding agent obtains CalleeClass’s LOID, it can request Callee’s binding
CalleeClass. However, the binding agent may need to begin another execution of the b
mechanism to determine CalleeClass’s OA. This request might in turn require executing the
of mechanism to find CalleeClass’s class, CalleeMetaclass. There can be an arbitrarily long
of metaclasses, in which case the binding process is repeated recursively. Since the c
hierarchy is rooted at LegionClass, the mechanism is guaranteed to terminate.

Bindings can become stale as the objects to which they refer deactivate or migrate
example, if Caller has a binding for Callee, Caller may find that this binding is stale (e.g
repeated failed attempts to communicate), in which case Caller invokes there-binding mechanism.
The re-binding mechanism mirrors the regular binding mechanism, but it uses the stale O
ensure that the same binding is not returned. Caller begins by checking its binding cac
Callee’s LOID: if the only binding in the cache is the one containing the stale OA, that bindin
removed from the cache, and the binding agent is consulted. The stale OA is passed as a pa
to the binding agent, indicating that Caller was unable to use that binding. As in the bin
process, CalleeClass may be consulted as the final authority for locating its instances.

5.2 Scheduling

When a new instance is created, the class object must select an appropriate processor

Callee

CalleeMetaclass
(Callee’s metaclass)

f

e

b

d

FIGURE 9. Potential steps in the Legion
binding and class-of mechanisms—Caller must
bind the LOID of Callee to an OA for low-level
communication. Caller may already have a
cached binding for Callee (a), or may need to
consult a binding agent (b). The binding agent
may have a cached binding for Callee (c), or
may need to consult Callee’s class,
CalleeClass, for the binding (d). In order to
communicate with CalleeClass, the binding
agent needs a binding for CalleeClass. If the
binding agent does not have CalleeClass’s
binding, it may need to consult CalleeClass’s
metaclass (e). If the binding agent does not
know the binding for this metaclass, the process
repeats itself. The recursion is guaranteed to
terminate at the root of the binding tree,
LegionClass (f). Eventually, the binding agent
returns Callee’s binding (g) and Caller can send
messages directly to Callee (h).

Caller’s
Binding Agent

Caller

a hBinding Cache

Binding Cachec

LegionClass

CalleeClass
(Callee’s class)

g

Page 11

t and
c. To
m can
ving a

tion
tes an

to an
in the
bject is
mpts to
ifferent
ct can

ance()
ves the
ative
priate
ith one
r fault
ce() as
object
ding()
being

heir
nded to
uently,
t. We
-time
into it
has

sible in
aking

duling

wing
nd to
rance
es.

re thus
gion
instance. In general, this decision involves the available implementations for that objec
dynamic system information such as CPU load, available memory, network bandwidth, et
assist in determining an appropriate placement, the Legion object placement mechanis
invoke scheduler objects. The integrated approach of the Legion architecture facilitates ha
scheduler invoked forevery object placement (user computation, data object, etc.)

A Scheduler queries a Collection object which contains static and dynamic informa
about grid resources. Using this information and its scheduling policy, the Scheduler crea
ordered series of mappings of objects to potential resources. These mappings are given
Enactor object which communicates with Host and Vault objects to reserve the resources
mapping. If reservations are successfully made on the resources in a mapping, the class o
directed to place its new instance on the selected resources. Otherwise, the Enactor atte
reserve the resources for the next mapping (see [4] for more details). There can be many d
scheduler objects implementing different scheduling algorithms and each scheduler obje
serve different classes (though they can be replicated to prevent contention).

5.3 Fault Tolerance

As described in Section 3, the straightforward implementation of a class object’s createInst
function selects a host and vault pair for the object’s associated process and OPR. This lea
object potentially vulnerable to a particular host or disk failure. Legion provides an altern
class object that places copies of the OPR in multiple locations, any one of which is appro
for activating the object. Further, a class that creates process replicants that coordinate w
another to represent a single object is easily realized within the model. This preference fo
tolerance is hidden behind the class mandatory interface; users simply call createInstan
they would on any other class object. Since the binding process is controlled by the class
as well, bindings for different processes can be handed out in response to multiple getBin
calls to the class. This can help make “multi-process objects” more scalable, in addition to
more fault-tolerant.

Another way that Legion enables fault tolerance is by allowing objects to write t
persistent state to their OPRs as frequently as they determine appropriate. OPRs are inte
contain a snapshot of an object’s persistent state information. If this snapshot is updated freq
then upon failure of a process and reactivation of the associated object, less work will be los
have designed a simple set of functions, compiled into all Legion objects via the Legion run
library, that allow programmers to access directly an object’s associated OPR and write data
from within user-level code. This allows, for example, restarting objects that the system
determined to be down (by timeouts on messages for example). If an object’s state is acces
the OPR, the object’s class can spawn a new instance with the same OPR data, effectively m
this new instance equal to the old instance. This object restart may also involve a new sche
decision since objects to not have to be restarted on the same host where they were last.

In both examples above, the Legion model provides an appropriate hook for allo
programmers to achieve more fault tolerant applications, without requiring that they do so a
thereby pay the associated performance cost of fault tolerance. The kind and level of fault tole
can be determined on an application by application basis, without altering core object interfac

5.4 Security

Legion programs and objects run on top of host operating systems, in user space. They a
subject to the policies and administrative control of the local OS. Not surprisingly, the Le
Page 12

end to
ity of
stem
y be

ion to
ot be
some
curity
e host
l, and

as
e 8).
y, via
an be
rity
lobal

tion
tion
To

hained
cate
r.
to be

ces on
f the
learly
of the

ser or
rol back
e-grain
raft
nt all
quest.
object
ripple

an be
l to gain
es that

reas
objects running on a particular host must trust that host. This trust does not necessarily ext
objects running elsewhere, however. A critical aspect of Legion security is that the secur
the overall Legion system cannot rely on every host being trustworthy. A large Legion sy
will span multiple trust domains, and even within one trust domain, some of the hosts ma
compromised or may even be malicious. For example, two organizations might use Leg
share certain resources in specifically constrained ways. Such sharing would clearly n
acceptable if one organization could subvert the other’s objects through its ownership of
part of a Legion system. The purpose of this section is to provide a discussion of Legion se
mechanisms that is independent of the underlying security mechanisms and policies of th
systems. Three concepts are described: identity and authentication, access contro
communication between objects.

Identify and Authentication: Identity is fundamental to higher-level security services such
access control. The security field of the LOID is largely used for this purpose (see Figur
Fundamentally, if each object has its own public-private key pair, each object has the abilit
public-key authentications mechanisms (e.g., RSA), to prove its own identity. Public keys c
self-signed or can be signed via Certificate Authorities (CAs). The LOID and its secu
implications have recently been the foundation of a grid computing naming scheme in the G
Grid Forum (GGF) called SGNP [2].

The X.509 certificate pairs a public key with a person’s name, organization, identifica
of the public key algorithm, and other information. A certificate may be signed by a certifica
authority (CA) that vouches for the association of the key with the identifying information.
cover the case where a recipient doesn’t recognize the CA, the CA’s own certificate can be c
onto the certificate, allowing the CA’s CA to be the basis of authority. The user’s X.509 certifi
is propagated with requests and method calls made directly or indirectly on behalf of the use

In Grid computing, the user typically accesses resources indirectly, and objects need
able to perform actions on his behalf. One way to allow intermediate objects to request servi
behalf of an originating object is to give the intermediate objects a copy of the private key o
originating object, thus providing necessary authentication information. This approach is c
insecure, as intermediate objects could then maliciously originate operations on false behalf
originating object. An alternative approach is to have intermediate objects call back to the u
his trusted proxy when they receive access requests in the user’s name. This step puts cont
in the user’s hands. There are several drawbacks to this approach, though. First, the fin
control afforded by authorization callbacks may be mostly illusory. It can be very difficult to c
policies for a user proxy (or even the real user himself) that are much more than “gra
requests”---too much contextual and semantic information is generally missing from the re
Beyond this barrier, callbacks are expensive and do not scale well. In Legion, after all, every
represents a resource of some type, and a callback on every method call would c
performance.

The intermediate solution between these approaches is to issuecredentialsto objects. A
credential is a list of rights granted by the credential’s maker, presumably the user. They c
passed through call chains. When an object requests a resource, it presents the credentia
access. The resource checks the rights in the credential and who the maker is, and us
information in deciding to grant access.

There are two main types of credentials in Legion:delegated credentialsand bearer
credentials. A delegated credential specifies exactly who is granted the listed rights, whe
Page 13

ential
hts---
l also

licy.
d that

e
ts. If
caller

all
hich

allow

and
tial, the
the

l one

an
ethod
from

ay be

with the
pted,
Unless
ntains
sages
private
o use

ypt a
ed for
utation
od call
simple possession of a bearer credential grants the rights listed within it. A Legion cred
specifies the period the credential is valid, who is allowed to use the credential, and the rig
which methods may be called on which specific objects or class of objects. The credentia
includes the identity of its maker, who digitally signs the complete credential.

AccessControl: Each Legion object is responsible for enforcing its own access control po
The general model for access control is access is only available through method calls, an
each method call received at an object passes through aMayI layer before being serviced (se
figure 10). MayI decides whether to grant access according to whatever policy it implemen
access is denied, the object will respond with an appropriate security exception, which the
can handle any way it sees fit.

MayI can be implemented in multiple ways. The trivial MayI layer could just allow
access. Most objects, however, use the Legion-provided default MayI implementation, w
essentially defines, on a per-method basis, anallow list and adenylist. The entries in the lists are
the LOIDs of callers that are granted or denied the right to call the particular method. Default
and deny lists can be specified to cover methods that don’t have their own entries.

When a method call is received, the credentials it carries are checked by MayI
compared against the access control lists. For example, in the case of a delegated creden
caller must have included proof of his identity in the call so that MayI can confirm that
credential applies. Multiple credentials can be carried in a call; checking continues unti
provides access.

CommunicationbetweenLegion Objects: A method call from one Legion object to another c
consist of multiple Legion messages. Because Legion supports dataflow-based m
invocation, the various arguments of a method call may flow into the target as messages
several different objects. A message from one Legion object to another Legion object m
sent with no security, inprivate mode, or in protected mode. In both private and protected
modes, certain key elements of a message (e.g., any contained credentials) are encrypted
public key of the recipient Legion object. In private mode the body of the message is encry
whereas in protected mode only a digest is generated to provide an integrity guarantee.
private mode is already on, protected mode is selected automatically if a message co
credentials. The mode selected for use by an originating object is applied for all mes
indirectly generated as a result of the originating message. For example, a user can select
mode when calling an object. The calls that the object makes on behalf of the user will als
private mode, and so on down the line. Currently, encryption is based on RSA.

In addition to protecting credentials, both protected mode and private mode encr
computation tagcontained in every Legion message, a random number token that is generat
each method call. All the messages that make up a given method call contain the same comp
tag. The tag is used to assemble incoming messages from multiple objects into a single meth

B.foo()

No!

A

B

MayI? foo()
ok

FIGURE 10. Legion Implementation of Access Control
Page 14

g for
without
smitted

. Here,
uch as
and
rst-
dern
 [27].

ern
s, and
cess to

source
ped

tural
n top
n of

ices,
mber
on user
has a
mmon
ction
del for
es that
ication
s and
stem-
cesses
. We

esive,

any
top of
have

ntation
and to identify the return value for a call made earlier. If an attacker knows the computation ta
a method call, he can forge complete messages containing arguments or return values, even
holding any credentials. The computation tag is treated as a shared secret, and is never tran
in the clear unless “no security” mode is selected.

6. Related Work

Many recent grid computing projects address a portion of the issues addressed by Legion
the discussion is focused on systems that attempt to provide comprehensive solutions, s
Globus [11][12] and Globe [37]. However, it is worth noting that these projects, Legion,
other grid computing projects are all outgrowths of the significant existing work in fi
generation network parallel computing systems, such as PVM [13] and MPI [19], and in mo
transparent distributed computing systems, such as the Berkeley NOW project [1] and DCE

6.1 Globus

The Globus project [11][12], at Argonne National Laboratory and the University of South
California, and Legion share a common base of target environments, technical objective
target end users, as well as a number of similar design features. Both systems abstract ac
processing resources: Legion via the host object interface; Globus through the Globus Re
Allocation Manager (GRAM) interface [6]. Both systems also support applications develo
using a range of programming models, including popular packages such as MPI.

Despite these similarities, the systems differ significantly in their basic architec
techniques and design principles. Whereas Legion builds higher-level system functionality o
of a single unified object model, the Globus implementation is based on the combinatio
working components into a composite metacomputing toolkit.

The Globus approach of adding value to existing high-performance computing serv
enabling them to interoperate and work well in a wide-area distributed environment has a nu
of advantages. For example, this approach takes great advantage of code reuse, and builds
knowledge of familiar tools and work environments. However, this sum-of-services approach
number of drawbacks: as the number of services grows in such a system, the lack of a co
programming interface to Globus components and the lack of a unifying model of their intera
becomes a significant burden on end users. By providing a common object programming mo
all services, Legion enhances the ability of users and tool builders to employ the many servic
are needed to effectively use a grid computing environment: schedulers, I/O services, appl
components, and so on. Furthermore, by defining a common object model for all application
services, Legion allows a more direct combination of services. For example, traditionally sy
level agents such as schedulers can be migrated in Legion, just as normal application pro
are—both are normal Legion objects exporting the standard object-mandatory interface
believe in the long-term advantages of basing a grid computing system on a coh
comprehensive and extensible design.

6.2 Globe

The Globe [37] project, which is being developed at Vrije Universiteit, also shares m
common goals and attributes with Legion. Both are middleware metasystems that run on
existing host operating systems and networks, both support implementation flexibility, both
a single uniform object model and architecture, both use class objects to abstract impleme
details, and so on.
Page 15

to be
, and
ical
licting
art of
nds a

ed to
ns. As
sign
ately

bject
ture,
ject
n of
L to
piled
us to

ures.
ions,
tabase

two
here

RBA
server

ndous
nd the
needs
st be

psulate
-level

needs,
time
rd set
ensure

IBM,
SP2,
However, Globe's object model is different; a Globe object is passive and is assumed
physically distributed over potentially many resources in the system. A Legion object is active
although we don't preclude the possibility of it being physically distributed over multiple phys
resources, we expect that it will usually reside within a single address space. These conf
views of objects lead to different mechanisms for interobject communication; Globe loads p
the object (called a local object) into the address space of the caller whereas Legion se
message of a specified format from the caller to the callee.

Another important difference is Legion’s core object types. Our core objects are design
have interfaces that provide useful abstractions that enable a wide variety of implementatio
of the writing of this paper, we are not aware of similar efforts in Globe. We believe that the de
and development of the core object types define the architecture of a system, and ultim
determine its utility and success.

6.3 CORBA

The Common Object Request Broker Architecture (CORBA) standard developed by the O
Management Group (OMG) [35] shares a number of elements with the Legion architec
although it is not intended for grid computing. Similar to Legion’s idea of many possible ob
implementations that share a common interface, CORBA systems support the notio
describing the interfaces to active, distributed objects using an IDL, and then linking the ID
implementation code that might be written in any of a number of supported languages. Com
object implementations rely on the services of an Object Request Broker (ORB), analogo
the Legion run-time system, for performing remote method invocations.

Despite these similarities, the different goals of the two systems result in different feat
Whereas Legion is intended for executing high-performance, typically parallel applicat
CORBA is more commonly used for business applications, such as providing remote da
access from clients. This difference in intended usage manifests itself at all levels in the
systems—from basic object model up to the high-level services provided. For example, w
Legion provides macro-dataflow method execution model suitable for parallel programs, CO
provides a simpler remote-procedure call based method execution model suited to client-
style applications.

7. Summary

Grid systems are here and operating around the world. They are enabled by the treme
increase in the available network bandwidth, the large number of available resources a
continuing demand for resources by users. Constructing grid system software to meet the
of a diverse user and resource owner community is not easy; grid system software mu
extensible to meet unanticipated needs and it must provide complete site autonomy.

Legion meets these requirements by using replaceable system components that enca
both policy and mechanism, and by enabling classes and metaclasses with system
functionality. The result is a system that a user can shape to meet a particular application’s
controlling how the system is implemented with respect to that application, while at the same
ensuring that the resulting application can interact with other Legion applications via a standa
of basic protocols. At the same time, resource owners can protect their resources and can
that they are used in an appropriate manner.

Legion operates on a variety of platforms, ranging from workstations (e.g., Sun, SGI,
DEC) and PCs (Linux over Alpha or Intel, Windows NT) to supercomputers such as the IBM
Page 16

PBS

t-

Grid

le
olu-

nt in

ms.

ices

rity

ta-
-

pen
u-

ture,

rce

ir-
Cray T90, and SGI Origin 2000 and queuing systems such as LoadLeveler [21], LSF [41], and
[3]. More information about Legion is available at http://legion.virginia.edu.

References

[1] Anderson, T., Culler, D., Patterson, D., and the NOW team. 1995. A Case for NOW (Ne
works of Workstations).IEEE Micro, 15(1): 54-64.

[2] Apgar, J., Grimshaw, A., Harris, S., Humphrey, M., and Nguyen-Tuong, A. 2002. Secure
Naming Protocol (SGNP). Global Grid Forum draft, February 2002.

[3] Bayucan, A., Henderson, R., Lesiak, C., Mann, N., Proett, T., Tweten, D. 1999. “Portab
Batch System: External Reference Specification”. Technical Report, MRJ Technology S
tions.

[4] Chapin, S., Katramatos, D., Karpovich, J. and Grimshaw, A. 1999. “Resource Manageme
Legion”, Future Generation Computing Systems, vol. 15: 583-594.

[5] Chapin, S. Wang, C., Wulf, W. and Grimshaw, A. 1999. A Security Model for Metasyste
Future Generation Computing Systems.

[6] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C. 2001. Grid Information Serv
for Distributed Resource Sharing.Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10).

[7] European Union DataGrid Project,http://www.eu-datagrid.org

[8] Ferrari, A., Knabe, F., Humphrey, M., Chapin, S. and Grimshaw, A. 1999. A Flexible Secu
System for Metacomputing Environments,High Performance Computing and Networking
Europe.

[9] Ferrari, A., Lewis, M., Viles, C., Nguyen-Tuong, A., and Grimshaw, A. 1996. “Implemen
tion of the Legion library,” University of Virginia Computer Science Technical Report CS
96-16.

[10]Foster, I., Kesselman, C., Nick, J. and Tuecke, S. 2002. The Physiology of the Grid: An O
Grid Services Architecture for Distributed Systems Integration. Global Grid Forum Doc
ment.

[11]Foster, I. and Kesselman, C. 1999. The Grid: Blueprint for a New Computing Infrastruc
Morgan Kaufmann.

[12]Foster, I. and Kesselman, C., 1997. “Globus: A metacomputing infrastructure toolkit,”Inter-
national Journal of Supercomputer Applications, 11(2): 115-128.

[13] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. 1994.
“PVM: Parallel Virtual Machine”. MIT Press.

[14]Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M. 1999. Wide-Area Computing: Resou
Sharing on a Large Scale.IEEE Computer, 32(5).

[15]Grimshaw, A., Ferrari, A., Lindahl, G., and Holcomb, K. 1998. Metasystems.Communica-
tions of the ACM, 41(11).

[16]Grimshaw, A., Wulf, W., and the Legion team. 1997. The Legion vision of a worldwide v
tual computer.Communications of the ACM 40(1).
Page 17

IT

amic

l of
m

-

ted

-

aw-

g in

on

i-

h.D.

er-

 and
[17]Grimshaw, A., Ferrari, A., West, E. 1996. “Mentat, Parallel Programming Using C++”. M
Press.

[18]Grimshaw, A., Weissman, J., and Strayer, W. 1996. Portable Run-Time Support for Dyn
Object-Oriented Parallel Processing.ACM Transactions on Computer Systems 14(2).

[19]Gropp, W., Lusk, E., and Skjellum, A. 1994. “Using MPI: Portable Parallel Programming
with the Message-Passing Interface”, MIT Press.

[20]Humphrey, M., Knabe, F., Ferrari, A., and Grimshaw, A. 2000. Accountability and Contro
Process Creation in Metasystems.Proceedings of the 2000 Network and Distributed Syste
Security Symposium (NDSS2000).

[21]IBM Corporation. 1994. “IBM LoadLeveler: User’s Guide (SH26-7226-02),” IBM Publica
tion number ST00-9696.

[22]Information Power Grid,http://www.ipg.nasa.gov

[23]JBoss Group,http://www.jboss.org

[24]Karpovich, J. 1996. “Support for object placement in wide-area heterogeneous distribu
systems,” University of Virginia Computer Science Technical Report CS-96-03.

[25] Karpovich, J., Grimshaw, A., and French, J. 1994. Extensible File Systems (ELFS): An
Object-Oriented Approach to High Performance File I/O.9th Annual Conference on Object
Oriented Programming Systems, Languages and Applications (OOPSLA).

[26]Lewis, M., and Grimshaw, A. 1996. The Core Legion Object Model.Proceedings of the Fifth
IEEE Symposium on High Performance Distributed Computing, IEEE Computer Society
Press.

[27]Lockhart, Jr., H. 1994. “OSF DCE Guide to Developing Distributed Applications”, McGr
Hill, Inc. New York.

[28]Moore, R.,et. al.2000. Collection-Based Persistent Digital Archives,D-Lib Magazine6(3 &
4).

[29]National Partnership for Advanced Computing Infrastructure,http://www.npaci.edu

[30]Natrajan, A., Humphrey, M., and Grimshaw, A. 2001. Capacity and Capability Computin
Legion.Intl. Conf. on Computational Science.

[31] Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M., Fox, A., Grimshaw, A., and
Brooks, C. III. 2001. Studying Protein Folding on the Grid: Experiences using CHARMM
NPACI Resources under Legion.10th Intl. Symp. on High Perf. Dist. Computing.

[32]Necula, G. 1997. Proof-Carrying Code.Proceedings of the 24th ACM Symposium on Princ
ples of Programming Languages: 106-119.

[33]Nguyen-Tuong, A. 2000. Integrating Fault-tolerance Techniques in Grid Applications. P
Dissertation, Computer Science Department, University of Virginia.

[34]Nguyen-Tuong, A, Grimshaw, A., and Hyett, M. 1996. Exploiting Data-Flow for Fault-Tol
ance in a Wide-Area Parallel System.Proceedings of the 15th International Symposium on
Reliable and Distributed Systems: 1-11.

[35]Object Management Group. 1996. “The Common Object Request Broker: Architecture
Specification,” Revision 2.0, July 1995 (updated July 1996).
Page 18

000.
es-

be: a

exi-
el

le

gion
[36]Shannon, B., Hapner, M., Matena, V., Davidson, J., Pelegri-Llopart, E., and Cable, L. 2
Java 2 Platform, Enterprise Edition: Platform and Component Specification. Addison-W
ley.

[37]van Steen, M., Homburg, P., and Tanenbaum, A. 1997. “The architectural design of Glo
wide-area distributed system,” Internal report IR-422, Vrije Universiteit.

[38]Viles, C., Lewis, M., Ferrari, A., Nguyen-Tuong, A., and Grimshaw, A. 1997. Enabling fl
blity in the Legion run-time library.Proceedings of the International Conference on Parall
and Distributed Processing Techniques and Applications (PDPTA’97): 265-274.

[39]Yew, P., Tzeng, N., and Lawrie, D. 1987. Distributing Hot-Spot Addressing in Large-Sca
Multiprocessors.IEEE Transactions on Computers, C-36(4).

[40]White, B., Grimshaw, A., and Nguyen-Tuong, A. 2000. Grid-Based File Access: The Le
I/O Model.High Performance Distributed Computing 9.

[41] Zhou, S. 1992. LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems.Work-
shop on Cluster Computing.
Page 19

	Support for Extensibility and Site Autonomy in the
	Legion Grid System Object Model
	Michael J. Lewis†, Adam J. Ferrari*, Marty A. Humphrey*, John F. Karpovich*,
	Mark M. Morgan*, Anand Natrajan*, Anh Nguyen-Tuong*, Glenn S. Wasson* and
	Andrew S. Grimshaw*
	*{ ferrari | humphrey | jfk3w | mmm2a | anand | nguyen | wasson | grimshaw }@cs.virginia.edu Depa...
	†mlewis@binghamton.edu
	Department of Computer Science, SUNY - Binghamton
	Abstract
	1. Introduction
	2. Legion Objectives, Constraints and Philosophy
	3. Legion Class/Object Model
	FIGURE 1. A subset of the Legion class-mandatory interface

	4. Core Object Types
	4.1 Host Objects
	FIGURE 2. Basic Legion host object interface.

	4.2 Vault Objects
	FIGURE 3. The Legion vault object interface.

	4.3 Implementation Objects
	FIGURE 4. The Legion implementation object interface

	4.4 Implementation Caches
	FIGURE 5. The Legion implementation cache interface

	4.5 Binding Agents
	FIGURE 6. The Legion binding agent interface

	5. Key Legion Mechanisms
	5.1 Naming and Binding
	FIGURE 7. The three-level Legion naming hierarchy. Context names are convenient user-defined text...
	FIGURE 8. Example of a LOID
	FIGURE 9. Potential steps in the Legion binding and class-of mechanisms—Caller must bind the LOID...

	5.2 Scheduling
	5.3 Fault Tolerance
	5.4 Security
	FIGURE 10. Legion Implementation of Access Control

	6. Related Work
	6.1 Globus
	6.2 Globe
	6.3 CORBA

	7. Summary
	References
	[1] Anderson, T., Culler, D., Patterson, D., and the NOW team. 1995. A Case for NOW (Networks of ...
	[2] Apgar, J., Grimshaw, A., Harris, S., Humphrey, M., and Nguyen-Tuong, A. 2002. Secure Grid Nam...
	[3] Bayucan, A., Henderson, R., Lesiak, C., Mann, N., Proett, T., Tweten, D. 1999. “Portable Batc...
	[4] Chapin, S., Katramatos, D., Karpovich, J. and Grimshaw, A. 1999. “Resource Management in Legi...
	[5] Chapin, S. Wang, C., Wulf, W. and Grimshaw, A. 1999. A Security Model for Metasystems. Future...
	[6] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C. 2001. Grid Information Services...
	[7] European Union DataGrid Project, http://www.eu-datagrid.org
	[8] Ferrari, A., Knabe, F., Humphrey, M., Chapin, S. and Grimshaw, A. 1999. A Flexible Security S...
	[9] Ferrari, A., Lewis, M., Viles, C., Nguyen-Tuong, A., and Grimshaw, A. 1996. “Implementation o...
	[10] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. 2002. The Physiology of the Grid: An Open...
	[11] Foster, I. and Kesselman, C. 1999. The Grid: Blueprint for a New Computing Infrastructure, M...
	[12] Foster, I. and Kesselman, C., 1997. “Globus: A metacomputing infrastructure toolkit,” Intern...
	[13] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. 1994. “PVM: ...
	[14] Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M. 1999. Wide-Area Computing: Resource Shari...
	[15] Grimshaw, A., Ferrari, A., Lindahl, G., and Holcomb, K. 1998. Metasystems. Communications of...
	[16] Grimshaw, A., Wulf, W., and the Legion team. 1997. The Legion vision of a worldwide virtual ...
	[17] Grimshaw, A., Ferrari, A., West, E. 1996. “Mentat, Parallel Programming Using C++”. MIT Press.
	[18] Grimshaw, A., Weissman, J., and Strayer, W. 1996. Portable Run-Time Support for Dynamic Obje...
	[19] Gropp, W., Lusk, E., and Skjellum, A. 1994. “Using MPI: Portable Parallel Programming with t...
	[20] Humphrey, M., Knabe, F., Ferrari, A., and Grimshaw, A. 2000. Accountability and Control of P...
	[21] IBM Corporation. 1994. “IBM LoadLeveler: User’s Guide (SH26-7226-02),” IBM Publication numbe...
	[22] Information Power Grid, http://www.ipg.nasa.gov
	[23] JBoss Group, http://www.jboss.org
	[24] Karpovich, J. 1996. “Support for object placement in wide-area heterogeneous distributed sys...
	[25] Karpovich, J., Grimshaw, A., and French, J. 1994. Extensible File Systems (ELFS): An Object-...
	[26] Lewis, M., and Grimshaw, A. 1996. The Core Legion Object Model. Proceedings of the Fifth IEE...
	[27] Lockhart, Jr., H. 1994. “OSF DCE Guide to Developing Distributed Applications”, McGraw- Hill...
	[28] Moore, R., et. al. 2000. Collection-Based Persistent Digital Archives, D-Lib Magazine 6(3 & 4).
	[29] National Partnership for Advanced Computing Infrastructure, http://www.npaci.edu
	[30] Natrajan, A., Humphrey, M., and Grimshaw, A. 2001. Capacity and Capability Computing in Legi...
	[31] Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M., Fox, A., Grimshaw, A., and Brook...
	[32] Necula, G. 1997. Proof-Carrying Code. Proceedings of the 24th ACM Symposium on Principles of...
	[33] Nguyen-Tuong, A. 2000. Integrating Fault-tolerance Techniques in Grid Applications. Ph.D. Di...
	[34] Nguyen-Tuong, A, Grimshaw, A., and Hyett, M. 1996. Exploiting Data-Flow for Fault-Tolerance ...
	[35] Object Management Group. 1996. “The Common Object Request Broker: Architecture and Specifica...
	[36] Shannon, B., Hapner, M., Matena, V., Davidson, J., Pelegri-Llopart, E., and Cable, L. 2000. ...
	[37] van Steen, M., Homburg, P., and Tanenbaum, A. 1997. “The architectural design of Globe: a wi...
	[38] Viles, C., Lewis, M., Ferrari, A., Nguyen-Tuong, A., and Grimshaw, A. 1997. Enabling flexibl...
	[39] Yew, P., Tzeng, N., and Lawrie, D. 1987. Distributing Hot-Spot Addressing in Large-Scale Mul...
	[40] White, B., Grimshaw, A., and Nguyen-Tuong, A. 2000. Grid-Based File Access: The Legion I/O M...
	[41] Zhou, S. 1992. LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems. Workshop ...

