
1

of
al
re
s
g

rs,
and
m
r to
n.
st
ow

rd
rol,
nd
Studying Protein Folding on the Grid: Experiences Using CHARMM on NPACI
Resources under Legion

Abstract
One benefit of a computational grid is the ability to run
high-performance applications over distributed resources
simply and securely. We demonstrated this benefit with an
experiment in which we studied the protein-folding process
with the CHARMM molecular simulation package over a
grid managed by Legion, a grid operating system. High-
performance applications can take advantage of grid
resources if the grid operating system provides both low-
level functionality as well as high-level services. We
describe the nature of services provided by Legion for
high-performance applications. Our experiences indicate
that human factors continue to play a crucial role in the
configuration of grid resources, underlying resources can
be problematic, grid services must tolerate underlying
problems or inform the user, and high-level services must
continue to evolve to meet user requirements. Our
experiment not only helped a scientist perform an
important study, but also showed the viability of an
integrated approach such as Legion’s for managing a grid.

1. Introduction

As available computing power increases because
faster processors and faster networking, computation
scientists are attempting to solve problems that we
considered infeasible until recently. Computational grid
are becoming more pervasive platforms for runnin
distributed jobs to solve such problems. Acomputational
grid or a grid is a collection of distributed resources
connected by a network. In such an environment, use
such as scientists, can access resources transparently
securely. When a user submits jobs in a grid, the syste
runs them on distributed resources and enables the use
access their results during execution and on completio
Developers of grid infrastructures such as Legion [4] mu
conduct and present detailed case studies showing h
users access grids. We present one such case study.

Legion is a grid operating system. It provides standa
operating system services — process creation and cont
interprocess communication, file system, security a

Anand Natrajan
Department of Computer Science

University of Virginia
anand@virginia.edu

Nancy Wilkins-Diehr
San Diego Supercomputing Center

University of California at San Diego
wilkinsn@sdsc.edu

Anthony D. Fox
Department of Computer Science

University of Virginia
adf5j@virginia.edu

Michael Crowley
Department of Molecular Biology

The Scripps Research Institute
crowley@scripps.edu

Marty A. Humphrey
Department of Computer Science

University of Virginia
humphrey@cs.virginia.edu

Andrew S. Grimshaw
Department of Computer Science

University of Virginia
grimshaw@virginia.edu

Charles L. Brooks III
Department of Molecular Biology

The Scripps Research Institute
brooks@scripps.edu

2

e
n
ned
s.

the
o

it
n,
ve
e
n
ur
k,
e

d
o
e

he
he
o
g
is

be
o

e
d
al
.

id
ms
y
0

ot
to
he
f
e
re
es

-
f
ate
ng
g

resource management — on a grid. In other words, Legion
abstracts the distributed, heterogeneous and potentially
faulty resources of a grid by presenting users with the
illusion of a single virtual machine [5]. In order to achieve
this goal, Legion manages complexity in a number of
dimensions. For example, it masks the complexity
involved in running on machines with different operating
systems and architectures, managed by different software
systems, owned by different organisations and located at
multiple sites. In addition, Legion provides a user with
high-level services in the form of tools for specifying what
an application requires and accessing available resources.

In our experiment, a computational scientist accessed
resources from NSF’s National Partnership for Advanced
Computational Infrastructure (NPACI) using the grid
infrastructure provided by Legion. The application used
was CHARMM (Chemistry at HARvard Molecular
Mechanics) [3] [9], a popular general simulation package
used by molecular biologists to study protein and nucleic
acid structure and function. One large problem for which
CHARMM is used is the study of the nature of the protein
folding process. The scientist desired to study the energy
and entropy of many folded and unfolded states of a
certain protein, Protein L, to gather information about its
behaviour during its folding process and to generate a
protein-folding landscape. This study required multiple
CHARMM jobs to be run with different initial parameters.

There were two clear goals for this experiment:
1. Enhance the productivity of the user by solving a

large and computationally challenging problem.By
accessing distributed grid resources, the user condensed
the time required for performing his computations from a
month (if he used the resources available at his
organisation) to less than two days.

2. Demonstrate a match between mechanisms expected
by the user and those provided by the grid infrastructure.
The user had to learn five commands or fewer in order to
perform his computations on a variety of resources.
In the process of meeting these goals, we made a number
of observations that affect grid infrastructure developers as
well as grid users. In this paper, we present those
observations in the context of the experiment.

Our primary observation was that grid infrastructures
must provide high-level services in addition to low-level
functionality. Providing low-level functionality alone is
not enough; without high-level services built on top of the
underlying infrastructure, a user’s productivity can fall
tremendously. The novelty of this experiment is not the
solving of a large problem (the experiment continues to
run at the time of writing), but the ease with which the user
accessed grid resources and the low cognitive burden
imposed on him by the grid infrastructure, Legion. In this
paper, we describe how the user interacted with a grid

using Legion services, what problems arose with th
resources that were part of the grid and how Legio
addressed those problems, and what lessons we lear
regarding new functionality that can be provided to user

In §2, we present CHARMM in some detail. The
purpose of the discussion is not so much to describe
(fascinating) scientific problem being solved, but t
describe the characteristics of the application that make
desirable for running on a grid. In §3, we describe Legio
especially in terms of the features that make it attracti
for running high-performance applications. In §4, w
show how the user interacted with Legion in order to ru
his jobs on the grid. In §5, we present the results of o
experiment. Also, we list the successes of our wor
explain problems encountered and identify futur
directions. We conclude in §6.

2. CHARMM

The protein folding process is not well understood an
the state-of-the-art methods of studying it are to
computationally intensive to be undertaken often. On
method is to calculate the free energy surface of t
folding process. The calculation is designed to reveal t
process by which a small protein (Protein L) folds up int
its normal, three-dimensional configuration. The foldin
process occurs in nature every time a protein molecule
manufactured within a cell. The biophysics of folding
must be understood in detail before the information can
used in developing ways of interacting with proteins t
cure diseases such as Alzheimer’s or cystic fibrosis.

The CHARMM molecular simulation package uses th
CHARMM force field to model the energetics, forces an
dynamics of biological molecules using the classic
method of integrating Newton’s equations of motion
Typical systems studied involve protein or nucleic ac
molecules of several hundred to several thousand ato
and a bath of solvent, usually water, consisting of man
thousands of molecules, for a total of 20000 to 15000
atoms. All chemical bonds and all interactions that do n
involve bonds (for example, electrostatics) are used
model the system. These interactions number in t
millions to billions. For a typical simulation, hundreds o
thousands to millions of timesteps of integration ar
required and, at each timestep, all interactions a
determined. In a parallel run, all forces and all coordinat
must be shared among all processors.

CHARMM is computation- as well as communication
intensive. In a single CHARMM job, hundreds o
processes may perform computations and communic
with one other. The processes communicate usi
Message Passing Interface (MPI), a standard for writin

3

s
e
n’s

es
nt
s

g
g

e
es,
ed
.

on
r
r

er
b
IX
a

tus

e
ol
do
ly
t

ls.
ng
eck
t
s.
e
en
er

ry
is
le
.

1.
s
ld
parallel programs [6] [10]. The parallel efficiency of the
computation depends on the number and speed of the
processors, and the speed and latency of the interconnect.
Since processor speed has increased but interconnect
speed has lagged on current-generation high-performance
computers, CHARMM’s performance degrades rapidly
after 32 processors on almost all architectures except the
T3E, on which it scales well to 128 processors. Therefore,
we chose to run with 16 processors on most architectures,
getting better than 95% parallel efficiency throughout the
experiment on all high-performance architectures. For a
16-processor run, all processors communicate about 1
Mbyte of data at every timestep in a couple of all-to-all
communications, and another 4 Mbytes in each-to-each
communications. For a typical 16-processor run on a
375MHz Power3, approximately 3 timesteps occur per
second. Each job requires a number of input files, some of
which are a few Mbytes large, and generates a number of
output files, some of which are hundreds of Mbytes large.
Thus, a single job requires powerful computation
resources, fast network capabilities and large amounts of
disk space. In our experiment, the user required multiple
(up to 400) CHARMM jobs to be run.

We decided to run the CHARMM jobs on a
computational grid because the total amount of computing
resources required made it unattractive to run at a single
site. Typically though not necessarily, supercomputing
centres such as the San Diego Supercomputing Center
(SDSC) use queuing systems to control powerful
computation resources connected by fast networks. Since
such resources are exactly what CHARMM jobs require,
our experiment was conducted on queuing systems.
Nothing in CHARMM requires a queuing system; our
choice of resources was governed by the coincidence that
the kinds of resources that CHARMM requires are usually
controlled by queues.

3. Legion

The Legion project is an architecture for designing and
building system services that present users the illusion of a
single virtual machine [5]. This virtual machine provides
secure shared objects and shared name spaces. Whereas a
conventional operating system provides an abstraction of a
single computer, Legion aggregates a large number of
diverse computers running different operating systems into
a single abstraction. As part of this abstraction, Legion
provides mechanisms to couple diverse applications and
diverse resources, thus simplifying the task of writing
applications in heterogeneous distributed systems. This
abstraction supports the performance demands of
scientific applications, such as CHARMM. CHARMM

runs as a legacy MPI application on queuing system
accessed by Legion. In the following subsections, w
discuss some features of queuing systems and Legio
support for legacy applications.

The grid chosen for running CHARMM wasnpacinet,
a nation-wide grid consisting of heterogeneous resourc
present at multiple sites and administered by differe
organisations. The majority of the organisation
contributing resources tonpacinet are part of NSF’s
National Partnership for Advanced Computin
Infrastructure (NPACI) thrust. Legion has been managin
this grid continuously for several months during which w
have demonstrated Legion features numerous tim
conducted tutorials on multiple occasions and support
various academic users running a variety of applications

3.1. Queuing Systems

Queuing systems have been used to schedule jobs
many clusters of nodes [2] [7] [11] [12]. When a use
submits a job, the queue provides a ticket or job ID o
token, which can be used to monitor the job at any lat
time. The ticket becomes invalid shortly after the jo
completes. Most queuing systems comply with a POS
interface requiring three standard tools for running jobs:
submit tool (PBS qsub , LSF bsub , LoadLeveler
llsubmit), a status tool (PBSqstat , LSF bjobs ,
LoadLevelerllstatus) and a cancel tool (PBSqdel ,
LSF bkill , LoadLevelerllcancel). In addition, some
queues provide other tools to check on the aggregate sta
of the queuing system, e.g., LSFbqueues and
LoadLeveler llq . A queuing system’s status tool may
report that a job is queued, running or terminated. If th
execution of a job is deemed undesirable, the cancel to
can be used to terminate the job. Most queuing systems
not provide tools to access intermediate files or supp
additional inputs. A user desiring such functionality mus
employ shared file systems or other file transfer too
Queuing systems do not provide any support for checki
aggregate progress of large sets of jobs. Users must ch
on the progress of each job individually or construc
interfaces to monitor the progress of the entire set of job

Part of the abstraction Legion provides is to hide th
differences among queuing systems as well as betwe
queuing and non-queuing systems. A user running ov
Legion does not have to know the particulars of eve
system on which a job could run. To appreciate why th
abstraction is important, consider running a simp
application, such as “Hello, world”, on different systems
We could run on a Unix or Windows system by writing a
shell script or batch file such as the one in Figure
However, if we wanted to run on a cluster of node
controlled by Portable Batch System (PBS), we wou

4

ot
to

nt

d.
tted
h

a
h
or
o
for
ne
e
,
y

es
as
ng
n,
t

M
s
ix
d.

med
d
e
d
n
ur

n
s

for
y

h
).
”

have to modify the application to construct a submission
script as in Figure 2. If we decided to run on nodes
controlled by Maui/LoadLeveler, we would have to
construct a submission script as in Figure 3. Not only are

different queuing systems dissimilar, but the same queuing
system installed at different sites may be dissimilar in
terms of configuration parameters. Moreover, the tools for
running special applications, e.g., MPI programs, may be
different (mpirun versuspamversuspoe). The different
submission scripts required to run on different systems
restrict a user in two significant ways:

1. The user is forced to learn the particulars of each
queuing system, thus increasing his cognitive burden and
increasing the time before he can start becoming
productive on these systems.

2. When running large numbers of jobs, the user must
construct submission scripts for running on each queuing
system. The very act of creating a submission scripta
priori forces the user to construct a static schedule for
running his jobs. Consequently, he cannot take advantage
of dynamic load changes on resources to schedule jobs.

Legion hides differences among queuing systems
regarding their submit, status and cancel tools as well as
their submission scripts. Also, Legion hides differences
regarding the manner in which MPI jobs are run.
Moreover, Legion provides tools and mechanisms for
accessing intermediate files and viewing the aggregate

status of large numbers of jobs. Finally, Legion does n
require the user to log on to the various queuing systems
initiate jobs. Single sign-on is one of the most convenie
features of a grid operating system.

3.2. Legacy Applications

Legion supports running legacy applications on a gri
Legacy applications are those that have not been targe
specifically to a grid or Legion. Legion supports suc
applications “as is”, i.e., the user neither has to change
single line of code nor re-link the object code to run suc
an application. All Legion requires are the executables f
the application for various architectures. A user wh
chooses this form of support understands the trade-offs
the convenience of not changing the application at all. O
trade-off is that Legion can control very few aspects of th
execution of the job after it is initiated. For example
Legion cannot provide restart support for a legac
application if the application itself does not write
checkpointing data. However, Legion can and do
provide support for starting the job, checking its status
reported by the underlying operating system or queui
system and terminating the job if necessary. In additio
Legion provides the ability to send in or get ou
intermediate files while the job is running.

4. Running CHARMM on NPACI Resources

The steps the user had to undertake to run CHARM
over Legion are illustrated in Figure 4. All of these step
were performed after the user logged on (in the Un
sense) to a machine on which Legion had been installe
The shaded boxes represent the steps the user perfor
without Legion’s help. Of these, two, “Creating Jobs” an
“Analysing Results”, are specific to the application. Th
third, “Creating Executables”, could have been performe
with Legion’s help. The user had to learn one new Legio
command for each of the unshaded boxes. Learning fo
commands is a small price to pay for the ability to ru
multiple parallel jobs on distributed heterogeneou
resources in a secure and fault-tolerant manner.

4.1. Creating Executables

In this step, the user created the executables
CHARMM. Recall that the user chose Legion’s legac
MPI support for CHARMM. If he desired, he could have
usedlegion_make , a tool to compile the source code
on machines or architectures of his choosing (in whic
case, he would have done so after “Logging on to Grid”
The resulting executables would still be “legacy code

echo ’Hello, world’

Figure 1. Simple application

#!/bin/ksh
#PBS -A anand
#PBS -c n
#PBS -m n
#PBS -N LegionObject
#PBS -r n
#PBS -l nodes=1:ppn=1:walltime=00:10:00
#PBS -p 1
#PBS -o test.o
#PBS -e test.e

echo ’Hello, world’

Figure 2. Simple application modified for PBS
#!/bin/ksh
@ environment = COPY_ALL;MP_EUILIB=us
@ account_no = met200
@ class = express
@ node = 1,1
@ tasks_per_node = 1
@ wall_clock_limit = 00:10:00
@ input = /dev/null
@ output = test.o
@ error = test.e
@ initialdir = /home/uxlegion

echo ’Hello, world’

Figure 3. Simple application modified for Maui

5

he
ion
he
nd
of
tc.
ns.
n

ay
re

s
n.

r
e
to
n

s
a

w
d
he
e

and

e
e

ges
on
ll.
for

d
f
ut
er
he

I
the
the

eir
site
er
because Legion would not require changing the source
code or linking the object code against Legion libraries.
Currently, legion_make works for applications with
relatively simple and standard make rules, i.e., it works for
applications that use standard compilers and have
straightforward local dependencies. Since CHARMM is
not such an application, the user decided to compile for
different architectures without Legion’s help.

4.2. Creating Jobs

This step involved creating a set of input files for each
job. Clearly, this step is application-specific and requires
no help from Legion.

4.3. Logging on to Grid

In order to log on to thenpacinetgrid, the user ran the
commandlegion_login , which required him to enter
his Legion ID and password. Once the user logged in,
Legion did not require him to log on to any other machine.

4.4. Registering Executables

Registering executables is the process by which Legion
can run a Unix or Windows executable. After an
executable is registered with
legion_register_program , Legion has the
information necessary for selecting the appropriate
executable to run on any particular machine. Multiple
executables of different architectures may be registered
with the same Legion object. The benefit is that a user can
request Legion to “run” the object without having to
manage which executable should copied and run on which
machine. For example, Legion will ensure that only a
Solaris executable is copied and run on a Solaris machine.

4.5. Running Jobs

After registering the executables for every architecture
of interest, the user requested Legion to “run” the object

with the commandlegion_run . This command has a
number of parameters and options (details are in t
Legion man pages accompanying the standard distribut
[1]). Parameters for this command include the name of t
object and parameters for the job, the names of input a
output files for the job, and options such as number
nodes desired, tasks per node desired, duration, e
Reasonable defaults are chosen for unspecified optio
The user may specify a particular machine on which to ru
or let Legion choose the machine. Likewise, the user m
choose to run on any machine of a particular architectu
or let Legion make that decision.

The CHARMM user specified the input and output file
for each job and the machines on which he desired to ru
In addition, he specified the name of a “probe file” fo
monitoring the job (see §4.6). The user ran th
legion_run command as many times as he wanted
initiate jobs. Although he chose different machines o
which to run different jobs (effectively self-scheduling hi
application dynamically), at no point did he have to write
single submit script, log on to any other machine*, copy
executables and input/output files, or learn a ne
command for running jobs. The user could have initiate
as many jobs as he desired concurrently; in practice,
initiated a few tens of jobs concurrently because i) th
nature of the jobs imposed sequential dependencies,
ii) initiating multiple jobs is pointless when the next job is
certain to be queued behind previous ones.

4.6. Monitoring Jobs

The user monitored each job in two ways. First, h
started a console object for the Unix shell from which h
initiated his jobs with one command,legion_tty . After
the console object was started, output and error messa
printed by the user’s jobs or the queuing systems
remote machines became visible on the user’s she
Second, the user requested Legion to save a probe
every job. Using the probe and a tool calle
legion_probe_run , the user determined the status o
each and every job as well as sent in and got o
intermediate files at his leisure. If at any time the us
determined that a job was not progressing satisfactorily,
terminated it, corrected any problems and restarted it.

Figure 4. Steps for CHARMM over Legion

Creating Executables

Creating Jobs Registering Executables

Running Jobs

Monitoring Jobs

Analysing Results

Logging on to Grid

* In fact, in the current configuration of Legion on the NPAC
machines, the user was not even required to own accounts on
machines. Legion ran his jobs as a generic user on those machines. In
future, the NPACI resources may insist that the user can run on th
machines only if he has an account on them as well. Since respecting
autonomy is a critical part of the Legion philosophy, support the latt
mode of operation is under progress.

6

es
it
s
of
st

ful
e

ts

he

re
ll
he

ot
on
.

le
es

ils
he

,

s
e
rk
4.7. Analysing Results

The final step involved analysing the results from each
job. A basic analysis step involved determining whether
each job actually ran to completion. The user made this
determination by checking whether a certain output file
contained specific lines in it. A large part of the
subsequent analysis involved retrieving archived files and
processing them by running CHARMM again. The
subsequent steps were specific to the application and are
outside the scope of this discussion.

5. Results

The experiment was conducted successfully over a
period of two days. The user logged in to one machine at
the University of Virginia on which Legion was installed*.
From a single shell on that machine, he initiated as many
jobs as he could, subject to the limitations discussed
earlier. Some of the jobs failed, but a large number ran to
completion successfully. Consequently, although the user
did not manage to complete all of the jobs he desired
initially, a significant fraction of the jobs were completed.
The experiment showed the viability of running large,
high-performance applications on a computational grid. In
the following sections, we discuss how well Legion met
the goals mentioned in §1.

5.1. Increasing User Productivity

A success of this experiment was that the grid was used
to generate results for an actual scientific study. At the
time of writing, around 88 of the desired 400 jobs had
been completed. We demonstrated that Legion can be used
to harness a vast amount of processing power harnessed
for scientific users. In the final tally, 1020 processors of
different architectures and speeds were utilised for this
experiment. The breakdown of these processors is:

• 512 375MHz IBM Blue Horizon Power3s at San
Diego Supercomputing Center (SDSC)

• 128 440MHz HP PA-8500 at California Institute of
Technology (CalTech)

• 24 375MHz IBM SP3 Power3s at University of
Michigan (UMich)

• 32 160MHz IBM Azure Power2s at University of
Texas (UTexas)

• 32 533MHz DEC Alpha EV56s at University of
Virginia (UVa)

• 260 300MHz-nodes Cray T3E at SDSC

• 32 400MHz Sun HPC 10000s at SDSC
In the future, we intend adding the following resources:

• 88 300MHz Cray T3Es at UTexas
• 32 400MHz dual-CPU Intel Pentium IIs at UVa

We estimate that if the user had used the resourc
available at his organisation alone (128 SGI Origins),
would have taken one month to complete what wa
complete in less than two days on the grid. The number
jobs run on each resource is shown in Figure 5. The va
majority of the jobs ran on the Blue Horizon at SDSC
because that machine was by far the most power
machine in the mix of available machines. Some of th
machines did not contribute significantly to the resul
because of run-time problems (see §5.3).

5.2. Simplifying Grid Access

Legion’s ease of use could be measured in what t
user had to do as well as what he didnot have to do to run
his jobs. As described in §4, the user had to learn a me
four or five commands to run on the grid. The sma
number of commands is comparable to the number t
user would have to learn foreachqueuing system had he
not chosen Legion. During the experiment, the user did n
have to log on to any of the queuing systems. He logged
to one machine at UVa on which Legion was installed
From a single shell on that machine, he initiated multip
jobs. Legion made the heterogeneous NPACI resourc
available to the user without his having to know the deta
of how to run on each resource. The heterogeneity of t
resources extended in a number of dimensions:

• 6 organisations (UVa, TSRI, SDSC, UTexas, UMich
CalTech)

• 6 queue types (Maui, LoadLeveler, LSF, PBS, NQS)
• Up to 10 queuing systems
• Up to 6 architectures (IBM AIX, HP HPUX, Sun

Solaris, DEC Linux, Intel Linux, Cray Unicos)

5.3. Identifying and Eliminating Problems

A number of run-time problems caused fewer total job
to complete. Minor organisational problems aside, th
problems we encountered fell into two categories: netwo

* Legion was not installed on the user’s machines at The Scripps
Research Institute (TSRI) because of site-specific firewall restrictions.

Figure 5. Breakup of CHARMM jobs completed

7

l

is
is

ed
ly
so
n

ad
or

e
t.
t
g-
on
re
o
d.
at
ies
m
ta.
e
rs
M
by
a at
te
ers

of

,

y
to

t
e
d
.

w-
slowdowns and site failures. The Legion run-time system
suffered no problems during the experiment, although a
number of potential extensions were identified (see §5.4).
Also, although the CHARMM user used the grid heavily,
the remaining users on the same grid were unaware of the
experiment. While the experiment progressed, other
Legion users continued to run their usual jobs on the grid.

Network Slowdown. During the experiment, we
experienced slowdowns in the network connections
between UVa and SDSC. From around noon through about
3PM US EST, medium-sized to large packets were
transmitted from one site to the other with great difficulty.
Preliminary investigation showed that packets of size
equal to or greater than 8800 bytes were lost entirely.
Packets in the size range 8000-8800 bytes suffered over
90% loss rates. The loss rates for packets of size less than
8000 bytes were lower but still significant. The implication
for Legion was that some messages between objects had to
be retransmitted a number of times to ensure that they
were received correctly. Consequently, for the CHARMM
user, monitoring jobs became a slow process. At one point,
inquiring about the status of a job took nearly a minute to
complete. Ordinarily, this process is almost instantaneous.
Since the user could not monitor jobs quickly enough to
start new ones, throughput was reduced.

Site Failures.Some of the NPACI sites experienced
unforeseen failures. For example, at UMich, Legion
encountered NFS failures. Since the ability to access
permanent storage is important to Legion as well as
CHARMM, the NFS failures reduced the throughput of
CHARMM jobs. On the Blue Horizon machine at SDSC,
the queuing system, Maui/LoadLeveler, had to be restarted
a number of times because it became overloaded. During
the time the queuing system was down, currently-running
jobs continued to run. However, the queuing system could
not inform anyone about the status about those jobs. Since
“no information” is similar to what the queuing system
reports when a job has been complete for a while, Legion
assumed the jobs were complete and informed the
CHARMM user accordingly. This erroneous reporting led
the user to believe that it was safe to access the output files
from the job. However, on analysis of these jobs, the user
discovered that the output files were only partially
complete. At UMich, the purge policy in place removed
CHARMM files as well as persistent state required by
Legion objects. Without their persistent state, Legion
objects can behave erroneously. Likewise, without the
appropriate input files CHARMM cannot run as intended.

5.4. Extending Legion

The experiences of the CHARMM user enabled us to
identify potential extensions to Legion. These extensions

would enhance Legion’s usability by building on low-leve
functionality already present.

Graceful Error Handling.Legion has been designed to
mask many kinds of failures from end-users. While th
strategy usually benefits the user, sometimes it
important for the grid infrastructurenot to mask failures
from the user. For example, the network failures discuss
earlier were masked from the user who saw on
gracefully-degraded performance. However, Legion al
masked most site failures from the user, which ofte
conveyed the mistaken impression that Legion itself h
failed. Consequently, we are reviewing all aspects of err
handling and propagation in Legion.

Support for Archiving.Although Legion permits users
to specify input and output files at any time during th
execution of a job, archival support is almost non-existen
In particular, there is no way for a user to specify tha
some files are meant to be stored on some kind of lon
term storage after the job is complete. Instead, the Legi
file solutions are that after a job is complete, the files a
either copied out to the user’s local directories, or t
Legion’s own distributed shared file system, or delete
None of these solutions is satisfactory for jobs th
generate large amounts of data. The user’s local director
or the individual components of the distributed file syste
may not have space to store large amounts of da
Moreover, the user may not want to copy files out th
moment the job is done. Instead, scientific use
generating large amounts of data, such as the CHARM
user, are likely to want to archive the data generated
their jobs on some long-term storage and access the dat
their leisure. Since Legion developers did not anticipa
such a need, currently, archiving has to be done by us
themselves as part of their jobs.

Support for Parameter-Space Studies.We are making it
possible for users to run parameter-space studies
parallel codes with a single command. The CHARMM
user had to issue a freshlegion_run command for
every job. Legion provides another tool
legion_run_multi , which enables multiple jobs to be
started with one command. This tool works well if ever
job is a sequential program; we are looking to extend it
parallel programs.

Web Interfaces.We are developing a web portal tha
scientists can use to run CHARMM jobs. Currently, w
have a Legion web interface for the entire grid. We inten
adding a CHARMM-specific component to this interface

5.5. Observations

1. High-Level Services:The CHARMM experiment
reassured us that a grid infrastructure must provide lo
level functionalityandhigh-level services. We consider it

8

a

nd
l
d

nd
ir

.,
e
,

.,

e

.

s

d

a significant advantage that using Legion, the user
accessed heterogeneous resources controlled by multiple
organisations with four or five commands and achieved
order-of-magnitude speedup as compared to running at
just one site.

2. Human Factors: The humans involved in the
experiment were critical to the experiment’s success.
Three people were involved intimately with the continuous
progress of the runs: the user, a Legion liaison and an
NPACI liaison. The Legion liaison was present in case
problems arose with Legion itself during the execution.
Since Legion itself suffered no run-time problems, this
person used Legion tools to identify site-specific problems
as they arose. The NPACI liaison coordinated on-site
efforts to keep the experiment running. Finally,
administrators at individual sites ensured that problems
were resolved as soon as possible by correcting
misconfigurations, restarting services, increasing quotas,
etc. Although this collaboration was rewarding, in the
future the involvement of all parties except the user must
be eliminated.

3. Site Services:The number of site failures that were
identified was astonishingly high. Normally, users never
expect services such as queues and operating systems to
fail. Likewise, users rarely consider network failures when
running their applications. However, running large
numbers of high-performance jobs can stress-test every
component of a grid. We discovered previously-ignored
limits on the number of jobs queues can manage, queue-
imposed job duration limits, credential expirations with
file systems, purge policies, process table limits, quota
exhaustions and numerous other problems, each of which
could make a site unusable for continued running.

6. Conclusion

We demonstrated that Legion is a suitable environment
for running large, high-performance jobs, such as
CHARMM, on a grid. Legion provides a suite of tools for
a grid that are similar to what traditional operating systems
provide for a single system. Using these tools, users can
start, monitor and terminate jobs on remote machines in a
straightforward manner. The CHARMM runs on
heterogeneous machines controlled by different
organisations showed that Legion is able to mask
unwanted detail from the end-user, thus permitting him to
focus on completing his work. Although we encountered a
number of problems during the run, it is encouraging to
note that none of the problems are unsolvable; solutions
for each of them are forthcoming from the lessons we have

learnt. These solutions can only improve and simplify
user’s access to a computational grid.

ACKNOWLEDGEMENT

We thank Dave Carver at UTexas; Sharon Brunett a
Mark Bartlett at CalTech; Victor Hazlewood, Larry Diege
and Kenneth Yoshimoto at SDSC; Tom Hacker and Ro
Mach at UMich; and Katherine Holcomb and Norm
Beekwilder at UVa for providing the CHARMM user with
accounts, providing Legion accounts and allocations, a
resolving problems if and when they arose at the
respective sites.

7. References

[1] —, “The Legion Manuals (v1.7)”, University of Virginia,
October 2000.

[2] Bayucan, A., Henderson, R. L., Lesiak, C., Mann, N., Proett, T
Tweten, D., “Portable Batch System: External Referenc
Specification”, Tech. Rep., MRJ Technology Solutions
November 1999.

[3] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J
Swaminathan, S., Karplus, M., “CHARMM: A Program for
Macromolecular Energy, Minimization, and Dynamics
Calculations”,J. Comp. Chem., vol. 4, 1983.

[4] Grimshaw, A. S., Wulf, W. A., “The Legion Vision of a
Worldwide Virtual Computer”,Comm. of the ACM, vol. 40,
no. 1, January 1997.

[5] Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K.,
“Metasystems”, Comm. of the ACM, vol. 41, no. 11,
November 1998.

[6] Hempel, R., Walker, D. W., “The Emergence of the MPI
Message Passing Standard for Parallel Computing”,Comp.
Stds. and Interfaces, vol. 7, 1999.

[7] International Business Machines Corporation, “IBM
LoadLeveler: User’s Guide”, September 1993.

[8] Kingsbury, B. A., “The Network Queueing System (NQS)”,
Tech. Rep., Sterling Software, 1992.

[9] MacKerell, A. D.. Jr., Brooks, B. R., Brooks, C. L. III, Nilsson, L.,
Roux, B., Won, Y., Karplus, M., “CHARMM: The Energy
Function and Its Parameterization with an Overview of th
Program”,The Encycl. of Comp.Chem., vol. 1, 1998.

[10] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. W., Dongarra, J,
MPI: The Complete Reference, MIT Press, 1998.

[11] Zhou, S., “LSF: Load Sharing in Large-scale Heterogeneou
Distributed Systems”,Proc. of Workshop on Cluster Computing,
December 1992.

[12] Zhou, S., Wang, J., Zheng, X., Delisle, P., “Utopia: A Load
Sharing Facility for Large, Heterogeneous Distribute
Computer Systems”,Software Practice and Experience, Vol.
23, No. 2, 1993.

	Studying Protein Folding on the Grid: Experiences Using CHARMM on NPACI Resources under Legion
	Abstract
	One benefit of a computational grid is the ability to run high-performance applications over dist...
	1. Introduction
	2. CHARMM
	3. Legion
	3.1. Queuing Systems
	Figure 1. Simple application
	Figure 2. Simple application modified for PBS
	Figure 3. Simple application modified for Maui

	3.2. Legacy Applications

	4. Running CHARMM on NPACI Resources
	Figure 4. Steps for CHARMM over Legion
	4.1. Creating Executables
	4.2. Creating Jobs
	4.3. Logging on to Grid
	4.4. Registering Executables
	4.5. Running Jobs
	4.6. Monitoring Jobs
	4.7. Analysing Results

	5. Results
	5.1. Increasing User Productivity
	Figure 5. Breakup of CHARMM jobs completed

	5.2. Simplifying Grid Access
	5.3. Identifying and Eliminating Problems
	5.4. Extending Legion
	5.5. Observations

	6. Conclusion
	Acknowledgement
	7. References
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]
	[12]

