
grid
evices, that
nused
tructed
sources
ces for
sources.

nctions
rlying

ded and

ternet
a user

remote
.
le by

et tools
face and
showed

s used
using a
arches
as an
ation-
ing Java
el for
sirable;
updated
ss step in

and

nce of
tor —
d to an
, of
ursor of
Mentat
racted as
e,
Grids: Harnessing Geographically-Separated Resources in a Multi-
Organisational Context

Anand Natrajan, Marty A. Humphrey, Andrew S. Grimshaw
Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

{anand, humphrey, grimshaw)@cs.virginia.edu

1 Introduction
Grids are becoming ubiquitous platforms for high-performance computing and distributed collaboration. A

benefits users by permitting them to access heterogeneous resources, such as machines, data, people and d
are distributed geographically and organisationally. It benefits organisations by permitting them to offer u
resources on existing hardware and thus reclaim otherwise lost costs. Although worldwide grids can be cons
today, issues regarding heterogeneity, security and failures must be resolved especially if the participating re
are controlled by different organisations. A grid infrastructure that harnesses the power of distributed resour
computing and collaboration must respect the autonomy of organisations to choose policies for using their re

Legion is a grid infrastructure that presents users a view of a grid as a single virtual machine [GRIM97]. This
view reduces the complexities a user encounters before running applications or collaborating on a grid. The fu
performed by Legion on a grid are similar to the functions performed by a traditional operating system on unde
hardware. The design principles of object-basedness and integration have enabled Legion to be exten
configured in a number of ways, while ensuring that the cognitive burden on the grid community is small.

1.1 Grid History
Grids are the next step in a logical progression beginning with the Internet and the World Wide Web. The in

enabled connecting previously-isolated islands of computing resources to one another. With internet tools,
could connect to a machine remotely, without being physically present at the machine. After connecting to a
machine, the user could utilise a small set of services, such as transferring data or issuing limited commands

The World Wide Web improved over the internet in two ways. First, it made the internet more accessib
making the tools more usable. Second, it enabled a richer form of sharing among users. Previous intern
transferred raw, uninterpreted data. However, a web browser interprets data, thus giving users a better inter
enabling more abstract collaboration, such as sharing a picture rather than transferring kilobytes. The web
that for computing infrastructure to be considered useful, it must enable collaboration.

A grid extends the notions of collaboration while preserving the traditional role of computers as resource
for computing. In essence, computing is collaboration, where a resource provider and a consumer collaborate
job or task as a unit of collaboration. A large number of applications are starved for computation resources (se
for extra-terrestrial intelligence, studies of protein folding, genomics, stock market models, etc.), where
overwhelming majority of computers are often idle. This disconnect can be bridged by permitting comput
intensive applications to be run on otherwise idle resources, no matter where the resources are located. Runn
applets on the web is a form of computing-as-collaboration; however, it is still not a grid because the mod
running applets merely extends the basic web model. The sophisticated collaboration enabled by a grid is de
scientific users expect to share more than images, financial users expect to share more than periodically-
tables, and all users expect to control who accesses whatever they choose to share. Since a grid is a first-cla
the evolution of computational infrastructures, a design from first principles is indicated strongly to satisfy
anticipate current and future demands.

1.2 Legion History
The Legion project evolved from the experience gained from an earlier project, Mentat, and the guida

multiple professors of Computer Science at the University of Virginia. The domain expertise of each contribu
distributed systems, networks, architecture, security, programming languages and information retrieval — le
integrated infrastructure for managing grids [GRIM94]. This design process is a reflection, on a much smaller scale
the design process that resulted in the sophisticated operating systems available today. Mentat, the prec
Legion, was a data-parallel language that added a small number of keywords to the vocabulary of C++.
programs were parsed by a compiler which determined data dependencies, placed data accordingly, and ext
much parallelism as possible from the program [GRIM96]. Exploiting fine-grained parallelism is expensive; therefor
the designers of Mentat focussed on exploiting coarser-grained parallelism for grids.
1



e of the
ever,
model,
efence
ucture
almost
run
er fora.
ts to
needs

p at the
ade
esearch

id,
unication,
ided for

ide-area
ed in the
ss and

ithin a
hird, it
s is an
design.
t have
ides a

ts in the
mes),
aming

ortant;
a name
amental

nsparent
arent as

asks the
equest,

eduler,
ace for
d with
also

object is
s on it,
can be
Legion was created from a fresh code base in 1993-4, thus closely preceding or concurring with the releas
World Wide Web. In many respects, the World Wide Web is based on principles similar to those in Legion. How
the web’s strength is sharing, not high-performance computation, and even its tremendously-popular sharing
is not as rich as that of Legion. Legion has been funded since inception with grants from the Department of D
and the National Science Foundation under the National Partnership Alliance for Computational Infrastr
(NPACI). Since inception, Legion has been used to manage a US-wide (and occasionally worldwide) grid
continuously. This grid, callednpacinet(originally vanet), has been used to demonstrate grid technologies,
scientific applications and conduct numerous demonstrations, especially live ones at SuperComputing and oth

In 2000-1, a private company called Avaki Corp. (formerly Applied Metacomputing, Inc.) purchased righ
Legion. The goal of the corporation is to commercialise the technology by addressing the immediate and future
of organisations intending to be donors and consumers of grid resources. Independently, the research grou
University of Virginia continues to managenpacinetfor academic and research purposes. Although Legion has m
significant strides in addressing many of the complex problems inherent in harnessing distributed resources, r
issues still exist, notably in security, fault-tolerance and interoperability with other grid infrastructures.

2 Legion: Philosophy and Architecture
Legion is a grid operating system [GRIM98]. Several of the features provided by Legion for managing a gr

such as a single namespace, a file system, security, process creation and management, interprocess comm
input-output, resource management and accounting, are exactly what traditional operating systems have prov
a single machine. In addition, Legion provides numerous other features, such as complexity management, w
access, heterogeneity management, multi-language support and legacy application support, which are requir
context of a grid system. The single virtual machine view of the grid provided by Legion enables users to acce
use a grid without necessarily facing the complexity of the components of the grid.

2.1 Object-basedness
In Legion, most important components of a grid are first-class objects [LEWIS96]. Object-based design offers

three advantages. First, it leads to a modular design wherein the complexity of a component is managed w
single object. Second, it enables extending functionality by designing specialised versions of basic objects. T
enables selecting an intuitive boundary around an object for enforcing security. Although object-basednes
essential feature in the design of Legion, grid users do not have to conform to object-based or object-oriented
Legion supports legacy applications without requiring any change to source or object code. Applications do no
to be “Legion-aware”, i.e., they need not access Legion objects. For Legion-aware applications, Legion prov
C++, C, Java and Fortran interface.

2.2 Naming & Transparency
Naming services and the transparency usually gained from a good naming service are important concep

design of large systems. A traditional OS offers multiple naming domains — for file system components (filena
for processes (process IDs), for users (user IDs), etc. Likewise, a network system also offers multiple n
domains — for machines (DNS names), for individual connections (port numbers), etc. Clearly, naming is imp
useful services and components cannot be identified without naming them. Transparency is also important;
must mask irrelevant details about the named service or component. Naming and transparency are fund
concepts in Computer Science — so fundamental that they can be taken for granted easily.

A number of transparencies can be associated with a name. For example, a Unix filename is access-tra
because it masks the storage medium of the file which may be on a disk or tape. The name is migration-transp
well because it masks changes in the inode set for a file. A DNS name is location-transparent because it m
physical location of a machine. The URL name for a web site may mask multiple machines serving the same r
an example of replication (or perhaps even concurrency) transparency.

Every object in Legion, be it a machine, a user, a file, a subdirectory, an application, a running job or a sch
has a name. Legion unifies the multiple namespaces of traditional systems by providing a single namesp
behaviourally-diverse and geographically-distributed components. Every Legion object has an ID associate
it — its LOID. The LOID of an object is a sequence of bits that identifies the object uniquely in a given grid (and
across different grids) without forcing subsequent accesses to violate transparency. Once the name of an
known, it can be queried in different ways, such as about its physical location, its current status, the permission
associated metadata and the kind of service it provides (its interface). Once an object’s interface is known, it
2



ataflow,
ts.

rs and
ructing
be used
heduler
r as they
rvice.

l lists
amed
s the
ith the
method

object.
other

users.
jects for
g the

sts and

jobs by
ct is a
and

satisfy
objects.
at host.
unts. A

ssed by
n one

riety of
l tools.

oose the
merous,
of jobs
ally.

wide
st be
ity from
-meal
users

a few
requested to perform a desired service, typically by means of an asynchronous remote procedure call. As in d
a procedure call can receive parameters from multiple objects and forward its return values to yet other objec

2.3 Service — Policyvs. Mechanism
An important philosophical tenet in Legion is that mechanisms can be mandated but not policies. Use

administrators of a grid must be free to configure a grid and its components in any suitable manner by const
policies over mechanisms. For example, Legion provides mechanisms for constructing schedulers which can
to assign machines for jobs. However, Legion neither mandates any scheduling policy, nor requires a single sc
for a grid. Users and administrators may construct as many different schedulers and instances of any schedule
wish. In general, Legion permits users to make trade-offs between multiple types, levels and costs for any se

2.4 Security
Security in Legion is based on a public key infrastructure (PKI) for authentication and access contro

(ACLs) for authorisation. Legion requires no central certificate authority to determine the public key of a n
object because the object’s LOID contains its public key. The ACL associated with any object encode
permissions for that object. When any method of a Legion object is invoked, the protocol stack associated w
object ensures that the security layer is invoked to check permissions before the request is forwarded to the
itself. The security layer is also responsible for decrypting messages encrypted with the public key of the
Although in the current implementation the security layer is based on PKI and ACLs, it can be retargetted to
authentication mechanisms, such as Kerberos, and other authorisation mechanisms [FERR99].

2.5 Extensibility
A grid infrastructure must be flexible enough to satisfy current as well as anticipated demands of grid

Legion was designed to extensible for that very reason. Specialised objects can be constructed from basic ob
special functionality. New objects can be constructed and deployed in an existing grid, thus extendin
functionality of the grid. Three examples of extensibility are: queue hosts, process control daemon (PCD) ho
two-dimensional (2D) files.

Ordinary Unix hosts are represented by a Unix host object in Legion. On such hosts, the host object starts
fork -exec . However, a queue host object starts jobs by submitting jobs to a queue. The queue host obje
straightforward extension of the Unix host object with the specialisation for job submission, monitoring
termination. Differences between different queuing systems are encoded in a few scripts.

On ordinary hosts or queues, jobs are started under the ID of the local Legion user. However, in order to
stricter demands of security and accounting, a special host, called PCD host was derived from existing host
The PCD object ensures that a Legion user can start a job on a host only if she has an account on th
Alternatively, a relaxed form of the PCD host can enable users to run jobs by mapping them to generic acco
daemon associated with such hosts is the only instance of Legion requiring root privileges at a site.

2D files are useful if the data accessed happens to be a two-dimensional matrix. A 2D file can be acce
rows or columns with arbitrary stripes. 2D files are especially convenient if the entire matrix is too large to fit o
disk; sub-matrices can be stored at different locations and accessed transparently as if they were collocated.

2.6 Interfaces
Grid interfaces determine how users perceive and use the resources on a grid. Legion supports a va

interfaces such as command-line tools, programmatic interfaces and access through familiar and traditiona
Each of these interfaces has its own strengths and limitations, but the diversity available enables users to ch
interfaces that they can use best. As grids become more common, we expect interfaces to become more nu
more sophisticated and less obtrusive. In particular, interfaces for managing and monitoring large numbers
must become more sophisticated so that users can view the progress of bulk runs broadly as well as specific

2.7 Integration
A grid is a complex construction because of the diversity of the machines comprising the grid, as well the

variety of security policies, failures and usage policies associated with them. Much of this complexity mu
masked from a user for reasons of relevance and convenience. Legion is designed in order to mask complex
the user. One of the ways in which Legion masks complexity is by providing an integrated system. A piece
approach to providing a grid infrastructure can increase the cognitive burden of grid administrators and
significantly. In contrast, with Legion’s integrated approach, administrators can set up a minimal grid within
3



ands.

e grid.
xts,
es have
mber of
than the

n can be

egion
eter-

und-robin
nfigured.

d for
e grid
ommon
quired.

tioned
ity of
tures,
minutes by issuing four commands. Adding hosts to a grid involves repeatedly invoking three or four comm
Other examples of integration are Legion’s distributed file system and high performance tools.

Legion provides a global, distributed file system for every grid it manages. This file system, a.k.a.,context space,
is similar to a Unix/Windows file system, except that its components are distributed across the machines in th
Directories in context space are calledcontexts. A contexts can contain any Legion object, such as other conte
files, machines, users, console objects and applications. Since users logged on to a grid from different machin
the same view of context space, Legion enables collaboration. Moreover, since any Legion object can be a me
context space, and since arbitrary objects can be created in Legion, context space enables richer collaboration
internet or the web. Since fine-grained permissions can be set for any object in context space, the collaboratio
as restrictive as the owner of the object desires. Context space can be accessedvia (i) command-line interfaces
(analogues to Unix tools, e.g.,legion_ls , legion_cat , legion_cp , etc.), (ii) programmatic interfaces
(analogues to Unix calls, e.g.,BasicFile_open , BasicFile_read , etc.), (iii) NFS interfaces (Legion’s NFS
daemonlnfsd ) and (iv) Samba, FTP and Web interfaces [WHITE00].

The primary use for a grid presently and in the near future is for high-performance computation (HPC). L
provides a suite of HPC tools for running legacy applications, MPI applications, PVM applications and param
space studies. Legion also provides three schedulers: a default scheduler based on random placement, a ro
scheduler and a performance-oriented scheduler. Multiple instances of any scheduler can be created and co
Moreover, schedulers with novel algorithms may be created and used at any time in the lifetime of the grid.

3 Future Directions
Grids are likely to become commonplace in the near future. Initially, HPC applications will drive the deman

grids, especially in academic and industrial environments. However, as the potential for collaboration on th
becomes more prominent, we expect grids to be deployed on a wider scale. In particular, we expect it to be c
for multiple organisations to participate in a single grid, or to coalesce and separate their individual grids as re
We expect several grid infrastructures to co-exist with Legion, for example, Globus [FOST99], Condor [LITZ88],
Nimrod [ABR95], NetSolve, etc.

Future trends in Legion involve continuation of the research program and commercialisation. As men
earlier, Avaki Corporation is commercialising Legion (known as Avaki in that sector). The project at the Univers
Virginia will continue to explore research issues with grids, such as interoperability with other grid infrastruc
better interfaces for grid administration and diverse security models.

4 References
ABR95 Abramson, D.,et al., Nimrod: A Tool for Performing Parameterised Simulations using Distributed Workstations, Proc.

of the 4th IEEE Intl. Symp. on High Performance Distributed Computing, August 1995.
FERR99 Ferrari, A. J., Knabe, F., Humphrey, M. A., Chapin, S. J., Grimshaw, A. S.,A Flexible Security System for

Metacomputing Environments, High Performance Computing and Networking Europe, 1999.
FOST99 Foster, I., Kesselman, C.,The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999.
GRIM94 Grimshaw, A. S., Wulf, W. A., French, J. C., Weaver, A. C., Reynolds, P. F. Jr.,Legion: The Next Logical Step Toward

a Nationwide Virtual Computer, Tech. Rep. CS-94-21, Dept. of Computer Science, Univ. of Virginia, 1994.
GRIM96 Grimshaw, A. S., Ferrari, A.. J., West, E,Mentat, Parallel Programming Using C++, The MIT Press.
GRIM97 Grimshaw, A. S., Wulf, W. A.,The Legion Vision of a Worldwide Virtual Computer, Comm. of the ACM, Vol. 40,

No. 1, January 1997.
GRIM98 Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K.,Metasystems, Comm. of the ACM, Vol. 41, No. 11,

November 1998.
LEWIS96 Lewis, M. J., Grimshaw, A. S.,The Core Legion Object Model, Proc. of the 5th Intl. Symp. on High Performance

Distributed Computing, August 1996.
LITZ88 Litzkow, M, Livny, M., Muttka, M.,Condor — A Hunter of Idle Workstations, Proc. of the 8th Intl. Conf. of Distributed

Computing Systems, June 1988.
WHITE00 White, B. S., Grimshaw, A. S., Nguyen-Tuong, A.,Grid-Based File Access: The Legion I/O Model, Proc. of the 9th

Intl. Symp. on High Performance Distributed Computing, August 2000.
4


	Grids: Harnessing Geographically-Separated Resources in a Multi- Organisational Context
	1 Introduction
	1.1 Grid History
	1.2 Legion History

	2 Legion: Philosophy and Architecture
	2.1 Object-basedness
	2.2 Naming & Transparency
	2.3 Service — Policy vs. Mechanism
	2.4 Security
	2.5 Extensibility
	2.6 Interfaces
	2.7 Integration

	3 Future Directions
	4 References
	Abr95
	Ferr99
	Fost99
	Grim94
	Grim96
	Grim97
	Grim98
	Lewis96
	Litz88
	White00



