
1

haw

r
on
he
d
oy
sers
e
or
n-

g a

s
r’s
ver,

g
ter
y
g
id
es,

1.
of

the
e
of
als.
III,

as

n
ire
is
.

n
nt
re
r’s

ch
a

es,
iew
l

The Legion Grid Portal
Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey, Michael Herrick, Brian P. Clarke, Andrew S. Grims

Abstract —The Legion Grid Portal is an interface to a grid
system. Users interact with the portal, and hence a grid through
an intuitive interface from which they can view files, submit and
monitor runs, and view accounting information. The architecture
of the portal is designed to accommodate multiple diverse grid
infrastructures, legacy systems and application-specific interfaces.
The current implementation of the Legion Grid Portal is with
familiar web technologies over the Legion grid infrastructure.
The portal can be extended in a number of directions —
additional support for grid administrators, greater number of
application-specific interfaces, interoperability between grid
infrastructures, and interfaces for programming support. The
portal has been in operation since February 2000 onnpacinet, a
worldwide grid managed by Legion on NPACI resources.

I. OVERVIEW

he Legion Grid Portal is a grid computing environment
project designed to make grids accessible to usersvia

easy-to-use interfaces. The portal uses standard, off-the-shelf
software in conjunction with existing grid infrastructures to
facilitate access to a grid. In its current implementation, the
portal employs Legion [13] as the underlying grid
infrastructure by using Legion’s command-line tools. In other
words, when a user interacts with the browser, the appropriate
tool with the appropriate parameters is invoked at the back-end.
The portal can support the full suite of Legion command-line
tools; in practice, it supports a rich subset of the existing tools.
Particularly, it supports initiating and monitoring runs of grid
applications and accessing the Legion distributed file system.
Services such as security, scheduling, data transfer, etc. are
supported implicitly. The portal is in operation and is servicing
the needs of users ofnpacinet, Legion’s worldwide grid.

The Legion Grid Portal provides an architecture fo
integrating a number of existing technologies under a comm
interface. Although the portal currently uses Legion as t
underlying grid infrastructure, it can employ Globus [11] an
other grid systems as well. In addition, the portal can empl
legacy systems, such as databases, in order to provide u
with greater functionality. In this paper, we discuss how th
portal uses an off-the-shelf, commodity database f
accounting. Moreover, the portal can support applicatio
specific interfaces, calledspecific portals. We describe how
users can access a molecular modelling package usin
specific portal.

An important benefit of the Legion Grid Portal is that it doe
not require downloading any of the Legion software on a use
machine. Since the portal operates entirely on the web ser
the client machine requires merely a browser installed on it.

Future work in the Legion Grid Portal involves constructin
an increasing number of specific portals, providing grea
support for grid administrators, exploring interoperabilit
between grid infrastructures, providing a programmin
interface to grids, and providing increasing support to gr
users in the form of superschedulers, information servic
interfaces for parameter-space studies, etc.

II. A RCHITECTURE

The architecture of the Legion Grid Portal is shown in Fig.
The architecture is layered, with the highest layer consisting
the user and portal interfaces, the middle layer consisting of
portal implementation along with state information, and th
lowest layer consisting of the underlying system in terms
grid infrastructures, legacy systems as well as specific port
The component identifiers, C1-C6 are explained in Section
where we explain how we implemented the shaded boxes
well as discuss the relationships between the components.

II.A Grid Software/Services on which the Portal depends

Currently, the Legion Grid Portal depends on the Legio
infrastructure for managing a grid. Legion presents an ent
grid as a single virtual machine to users [12]. As part of th
philosophy, Legion provides a truly distributed file system
This file system is similar to a Unix or Windows file system i
terms of command-line or programmatic access, but differe
from them in terms of the manner in which its components a
located, migrated, replicated and retrieved. Moreover, a use
view of a distributed file system is the same no matter whi
machine he uses to log on to a grid. The contents of
distributed file system areobjects, a term used to describe any
first-class entity in Legion, such as files, directories, machin
disks, users, consoles, programs, etc. The single-machine v
of the grid is particularly attractive to the Legion Grid Porta

Manuscript received June 30, 2001. This work supported in part by DARPA
(Navy) contract #N66001-96-C-8527, DOE contract DE-FD02-96ER25290,
DOE contract Sandia LD-9391, DOE contract D459000-16-3C, DARPA
contract SC H607305A, Logicon (for the DoD HPCMOD/PET program
through the NAVO MSRC) contract DAHC 94-96-C-0008, National Science
Foundation Next Generation Software grant EIA-9974968, National Science
Foundation NPACI grant ASC-96-10920, and a grant from NASA-IPG.

Anand Natrajan is with the Dept. of Computer Science at the University of
Virginia, Charlottesville, VA 22904-4740, USA (e-mail: anand@virginia.edu).

Anh Nguyen-Tuong is with the Avaki Corporation, Charlottesville, VA
22902, USA (e-mail: anh@avaki.com).

Marty A. Humphrey is with the Dept. of Computer Science at the University
of Virginia, Charlottesville, VA 22904-4740, USA (e-mail:
humphrey@cs.virginia.edu).

Michael Herrick is with the Avaki Corporation, Charlottesville, VA 22902,
USA (e-mail: mherrick@avaki.com).

Brian P. Clarke is with the Dept. of Computer Science at the University of
Virginia, Charlottesville, VA 22904-4740, USA (e-mail:
clarke_bp@virginia.edu).

Andrew S. Grimshaw is with the Dept. of Computer Science at the
University of Virginia, Charlottesville, VA 22904-4740, USA (e-mail:
grimshaw@virginia.edu).

T

2

he

d to
he
he
its

ext
er
by
g

ral

ks
tal
he
etc.
id
t

it
. As
will
to

y
re

d
he
he
d
to
m
uld
r,

m
the
n
ors
ly,

y
ld
l
to
be
n,

e
or
ng
d.
the
because it enables presenting a complex environment in a
manner familiar to most users.

The portal accesses a grid through Legion’s command-line
tools. Most of these tools are analogues of Unix tools, but
targetted towards the distributed file system of the grid. For
example, a tool calledlegion_ls lists the files in a directory
of a distributed file system just asls lists the files in a
directory of a Unix file system. Likewise,legion_cat prints
the contents of a file in a distributed file system much ascat
prints the contents of a file in a Unix file system. For the sake
of differentiation, directories in a distributed file system are
called contextsand a distributed file system itself is called a
context space[15]. Some Legion tools have no Unix
analogues. For example, a tool calledlegion_get_acl
retrieves the permissions of an object. Likewise,
legion_list_attributes retrieves any metadata
associated with an object. Currently, Legion’s command-line
tools are essential for any and all functioning of the portal. A
full listing of all Legion commands along with their usage and
description is included in the Legion Manuals and man pages
that are part of each installation [8].

Most user interactions with the portal involve invoking a
command-line tool to perform the task requested by the user.
For example, when a user logs in to a gridvia the portal, she is
presented with the listing of the contents of her home directory
in the distributed file system for that grid. This listing is
procured by running the toollegion_ls on her home
context. The user could then click on the name of any file or

context in her home context. If she clicks on a context, t
portal performs alegion_ls on the new context. If she
clicks on a file, the portal performs alegion_cat on that
file. The results of either command are parsed and presente
her in an intuitive manner. For any member of a context, t
user may request other actions, for example, a listing of t
permissions, a listing of any metadata associated with it or
physical location. Moreover, the user can traverse cont
space similar to what she would do in say, Windows Explor
[18], with the caveat that her access to an object is restricted
her permissions for that object. In addition to traversin
context space, a user logged on to a gridvia the portal can
submit jobs as well. Jobs can be submitted through a gene
interface or through specific portals.

The Legion Grid Portal is a convenient interface that mas
the tremendous complexity of a grid from a lay user. The por
provides a simple and intuitive interface to a grid that lets t
user ignore details about syntax, parameters, permissions,
The portal is an attractive tool for introducing users to a gr
and giving them a broad overview of its scope withou
overwhelming them with too much detail. In its current form
is very useful to novice users but less so to advanced users
we develop more specialised portals, advanced users
benefit in terms of running applications as well being able
manage a grid better.

II.B Grid Software/Services the Portal could use

A large number of grid management tools provided b
Legion are not accessible from the portal. These tools a
invaluable to grid administrators for maintaining an
monitoring a grid. Although these tools are accessible from t
command line, they have not yet been incorporated into t
portal primarily because most of them require gri
administrator privileges. As such, they are not useful
ordinary users who should not be misguided into trying the
when they cannot use them. Therefore, an administrator wo
require different interfaces from ordinary users. Howeve
currently, administrators are not treated any differently fro
ordinary users in the portal. We are considering increasing
security provided to administrators logging in to a grid. I
addition to grid management tools, users and administrat
alike may benefit from logs about specific objects. Current
these logs are not visible from the portal.

A grid managed by Legion can be configured in man
different ways, often during run-time. Administrators shou
be able to exploit this flexibility without resorting to traditiona
interfaces like command-line tools. They should be able
conduct detailed investigations from the portal and should
able to locate any and all problems from the portal. In additio
creating new objects or services should be simple.

Legion provides other interfaces to a grid in addition to th
portal. For example, Legion provides a graphical interface f
sharing a Windows directory with other users securely, usi
grid-level permissions from the context space of a gri
Currently, such tools are stand-alone. Integrating them withFig. 1. Architecture of the Legion Grid Portal

3

we
se
d.

]
or
ith
er
rs
est,
ves
the

eb
is
job
s as
tten
s
re

s
he

n
re
lic

e
o
s to

s
s a
of
id
ny
rtal
oes
t in
nt
o

alf
ed
ree
portal would let users access context space using the tools most
convenient for their needs.

II.C Grid Software/Services the Portal requires but not
supported by the Grid

Although not envisioned for the near future, a large number
of services and software would be attractive if incorporated
into the Legion Grid Portal. For example, currently, users
cannot take advantage of system services such as Network
Weather Service (NWS) or protocols such as Lightweight
Directory Access Protocol (LDAP) [14]. Users are not
provided with high-level tools, for example, engines to search
documents in the distributed file system, or graphing tools for
viewing the entire file system at a glance.

II.D Software/Services the Portal uses/requires outside the
scope of the Grid

An important task for future work in the Legion Grid Portal
is developing specific portals. In particular, we would like to
incorporate tools and techniques for application users to view
the progress of their runs. For example, currently a user issuing
a run of a molecular modelling package such as Amber run can
observe the molecule under study periodically. In order to do
so, the portal retrieves intermediate files from the run (using a
Legion tool calledlegion_probe_run), processes them
and creates a protein database (PDB) file using a non-Legion
tool called ambpdb. This tool is specific to this kind of
application. As we develop more specific portals we expect to
use an increasing number of such application-specific tools in
order to let users view runs.

III. I MPLEMENTATION

The Legion Grid Portal consists of six main components, as
shown in Fig. 2. The central component both in the figure and
in the design is the General Portal Implementation (C2), which
is a Perl CGI script used to process most requests by users.
This script is accessed by Portal Interface (C4), which includes
the entry page for the portal, subsequent pages generated by
the portal and the user, who initiates all actions in the portal.
During normal execution, the portal generates caches and
session information that are used for authentication as well as
speedier execution. These caches and session files, as well as
images and logs accessed by the portal are the Session State
(C3). Currently, the Legacy System (C5) used in the portal is a
commodity database (see Section III.A) along with the scripts
necessary to access it. Specific Portals (C6) are used to run
specific applications from the portal; since the mechanisms for
running specific applications are similar to those for running
any application in Legion, this component includes tools,
software and scripts for running specific as well as general
applications from the portal. Both of these components, C5 and
C6 are intricate enough to merit description. The Grid
Infrastructure (C1) refers to the services and tools provided in
this case by Legion for managing a grid. The list of
components can be augmented in order to provide additional

functionality to a user. In the subsequent sub-sections,
discuss the existing components. The purpose of the
discussions is to present just the general techniques involve

III.A Commodity Technologies/Software used

The Legion Grid Portal uses Perl [4], PHP [5], MySQL [3
and the Common Gateway Interface (CGI) [7] mechanism f
invoking Legion commands. In CGI, the user is presented w
a form in which she can fill parameters. Alternatively, the us
may be presented with a link with the relevant paramete
enumerated. In either case, when the user submits the requ
a CGI program on the web server parses the request, retrie
the parameters and executes the appropriate commands. In
case of the Legion Grid Portal, the CGI program on the w
server is a Perl script. Part of the portal functionality
implemented in PHP, e.g., accessing accounting and
databases stored in MySQL tables. We show the PHP script
part of the component C5 because these scripts were wri
explicitly for the MySQL legacy system. Likewise, script
written for specific portals are shown in C6 because they we
written for specific visualisation tools. The entire portal i
implemented on a Unix operating system. Implementing t
portal on a Windows system is part of future work.

III.B Proprietary Technologies/Software developed that can
be shared with others

Source code for the Legion Grid Portal is available to Legio
users. The algorithms and techniques within the portal a
based on standard programming practices found in pub
documentation [10] [20].

III.C Implementation Details

In this section, we describe implementation details of th
Legion Grid Portal at an abstract level. Our intent is t
highlight some design decisions as well as present solution
problems that occurred during design.

III.C.1 Grid Infrastructure (C1). The underlying grid
infrastructure for the portal is Legion. Legion provide
programmatic as well as command-line interfaces to acces
grid. However, in the Legion Grid Portal, we take advantage
the command-line interfaces only. The underlying gr
infrastructure software for the portal can be changed to a
grid system as sophisticated as Legion. For example, the po
can be made to operate on top of Globus. Since Globus d
not have a distributed file system, some interfaces presen
the portal would have to be discarded. However, significa
subsets of the portal, e.g., C3-C6, would require little or n
modification.

III.C.2 General Portal Implementation (C2). The primary
rôle of component C2 is to issue Legion commands on beh
of the user. The portal is implemented as a Perl CGI script us
to process most of the user’s requests. This script has th
requirements. LetSERVERdenote the machine running the
web server,USERdenote the user ID owning the script on

4

Fig. 2. Details of Components of the Legion Grid Portal

5

ell

r a
nd a
the

file

d in
g
ng

she
in
s a

the
e
er
by

ion
r’s

the
a

and
s to
e
are
is
s is
t,

ls
pt.
ers
nt
ing
ith
a
he
is
e

he
e
nd
me

es
hus,
tes

g
al.
ts
SERVER, andNETdenote the name of the grid which the user
chooses to access.

1. The directory ofUSER, for example,/home/USER , must
be accessible fromSERVER.

2. The directory of the Legion tree, for example,/home/
NET, must be accessible fromSERVER.

3. Legion must be compiled for the architecture ofSERVER
and the gridNETmust be started.SERVERneed not be a
Legion host.

If #1 is violated, the user’s browser cannot locate the script. If
#2 or #3 is violated, every Legion command fails and the grid
is inaccessible. Assuming familiarity with Perl, CGI and basic
Legion commands, the major steps involved in the General
Portal Implementation are:

1. Parse the arguments.
2. Set up the Legion environment and global variables.
3. Get credentials and session id, perhaps by logging in.
4. Generate the context tree for browsing.
5. Select the appropriate handler for the command to run.
6. Check if all arguments are present for the command. If

not, generate the page to get the desired arguments and go
to step #9.

7. Run the command, displaying its status along the way.
8. Display the output and error of the command.
9. Show the generated page to the user.
Since the interfaces between the Legion Grid Portal

(specifically, C2) and Legion are command-line tools, the steps
above require little detailed knowledge about Legion.
Information about the command-line interfaces are available in
the Legion documentation [8]. Step #7 is performed by a
handler for the appropriate command. Ahandler is a module
written explicitly for checking the required parameters and
parsing the output and error states of a Legion command. The
handler for a command ensures that proper paramaters are
specified for every possible use of the command, and all output
and error states are captured and parsed appropriately. Most
handlers are simple; however, some of them can perform
substantially complex tasks. For example, the handler for
legion_cat creates a download window wherein the
contents of the selected Legion file are shown with the
appropriate MIME type. Likewise, the handler for
legion_run , which runs a legacy application, is expectedly
complex. Techniques for constructing handlers for additional
Legion commands are explained in the documentation for the
Legion Grid Portal. Most handlers eventually invoke a Legion
command in a standard manner. This manner involves logging
at the start of the command, periodically during the execution
of the command, and at the termination of the command.
Commands terminate normally, or because a user-specified
timeout expired. After the command terminates, the handler
parses the output and error of the command to display the
results on the next web page generated.

III.C.3 Session State (C3).The session state component
consists of the various files, caches and session information

associated with a particular session initiated by a user as w
as general logs maintained by the portal.

The session information particular to the current session fo
user includes an environment cache, a credentials cache a
session ID. These files are necessary in order to set up
environment for a user. If a user doesnot use the portal (thus
interacting with Legionvia its command-line interface) her
Legion environment can be set up by sourcing a setup
called setup.sh or setup.csh provided with all Legion
installations, and then usinglegion_login to generate the
user’s credentials. The user’s credentials are generally store
a well-known file protected by the underlying operatin
system’s mechanisms. The user’s environment is valid as lo
as she continues to use the same terminal from which
logged in. However, in the portal, because of the manner
which CGI scripts are executed, each time the user execute
new command, she gets a new terminal. Since requiring
user to log in for every command would be inconvenient, in th
portal we manage the environment explicitly. When the us
logs in from the portal, we source the setup script provided
Legion and log the user into the grid (usinglegion_login
to generate the user’s credentials from her authenticat
object). After a successful login, we cache copies of the use
environment variables as well as her credentials (similar to
MyProxy mechanism in Globus [17]). When the user issues
command, we re-set the environment from the cached copy
re-create the credentials by copying the cached credential
the appropriate well-known file. The effect is similar to th
user’s having logged in anew except that the user is unaw
that it happened and no additional Legion command
executed. This management of the Legion user’s credential
a security risk only if the Unix user running the CGI scrip
namely,USER or nobody , cannot be trusted.

Access to any Legion functionality, including the credentia
file is controlled by a session ID generated by the CGI scri
The session ID is a large numeric sequence of random numb
that is extremely hard to forge. For example, in the curre
implementation, the session ID is constructed by concatenat
three random floating-point numbers between 0 and 1000 w
12-digit (decimal) precision. The resulting session ID is
sequence of 39-45 decimal digits with three periods. T
probability of an intruder reconstructing a session ID
extremely low, 10−45 to be precise. When the user logs in, sh
is provided with a session ID that is valid as long as s
continues to interact with the portal. All requests from th
browser are encrypted. The session ID is saved in a file a
propagated between consecutive requests from the sa
browser. If at any time, the session ID from the browser do
not match the saved session ID, the session is terminated. T
a user’s session can be compromised only if he communica
his session ID to an intruderand keeps the session valid by
interacting with the portal.

The portal maintains a single log that contains timin
information about every command issued through the port
When a Legion command is invoked from the CGI script, i

6

or
its
re
sed
e
and
status is logged periodically as well as when the command
starts and ends. The statuses of commands are shown in a
status window that a user may choose to view or ignore. By
default, the status window is displayed to the user to give him
feedback about the execution of the command.

Additionally, a user may choose to view the output and err
of every command in separate windows. The portal perm
viewing these windows in which the output and error a
presented directly from the Legion command, i.e., unproces
in any manner. The main window continues to show th
processed results of the same commands. The outputs

Fig. 3. Entry Page

7

the
be
In

e
s a
. 4
rom
or
e

are
or,

s
is
f
el

or
r’s
s
r’s
tus

ds
y

7).
ror
put
he
e
to

y
rtal
h a

l as
ain
cts
errors of most commands issued in a session are stored in
separate files. If a user chooses to view the output and error
windows for his session and uses a browser’s navigation
buttons to view previous and next pages, the saved output and
error files are retrieved and presented correctly. Moreover, if a
user re-issues a previous command, the output and error of that
command may be retrieved from the saved files, which thus
constitute a cache. Retrieving output and error from caches
avoids invoking Legion commands, which can be slow. Since
the passage of time as well as a user’s actions may invalidate a
cache, we invalidate caches aggressively. Caches can be
invalidated explicitly by the user, from within the CGI script
and periodically by an external session timeout mechanism.

Cached files can be removed periodically by using the Unix
crontab tool after a session timeout. Acrontab line
similar to the one below is used to check session files every
hour and remove those that have not been accessed recently.

0 * * * * browser_timeout
In this manner, the cached output and error of previous
commands can be purged. The purging may remove cached
credentials and session IDs as well, thus ensuring that users
who forget to log out from the portal are not compromised after
a timeout has elapsed. Files associated with runs initiated by
users are not purged unless a user explicitly requests to do so.
Thus, users may initiate runs and logout or timeout, but
continue their runs uninterrupted. The results of the runs can be
accessed by logging in again.

Purging caches requires Unix permissions to delete the
associated files. Therefore, we recommend running the CGI
script with cgiwrap [16]. If the script is run without
cgiwrap , it runs as some special user, usuallynobody .
Consequently, only the usernobody is permitted to remove
the cached files. However, on most web server installations,
nobody ’s permissions are restricted to prevent running many
Unix commands or even logging in. If the script is run with
cgiwrap , a non-privileged user, e.g.,USER, could log in and
clean up caches and session state on errors or timeouts.
cgiwrap operation can be selected or ignored by changing
the entry page alone for the portal.

III.C.4 Portal Interface (C4). The entry page as well as the
user pages generated by the portal constitute its interface. The
generated pages contain enough information to invoke the
portal subsequently. The portal state of a user’s session is
passed between consecutive CGI invocations by normal CGI
mechanisms. These mechanisms involve either setting hidden
widgets in forms or explicitly enumerating the state in links.
Alternatively, session cookies can be employed if they are
supported by the browser [6]. The CGI script uses seven
elements to reconstruct the session state for a user. These
elements are: the Legion user name, the Legion grid name, the
command to be executed (defaults tolegion_ls), the
current working context, the session ID, the timeout selected

by the user and the verbosity level for the portal.
The entry page (Fig. 3) requests the Legion user name,

Legion password, the Legion grid name, the command to
executed, the timeout and the verbosity level from the user.
turn, it invokes the CGI script (C2), which computes th
current context to be the user’s home context and generate
session ID. From this point on, every generated page (Fig
onwards) contains the above-mentioned seven elements f
which the user’s Legion environment can be reconstructed. F
any subsequent invocation of the CGI script, if either th
Legion user name, the Legion grid name or the session ID
absent or incorrect, the Legion Grid Portal reports an err
terminates the session, and requests the user to re-login.

After a user logs in, the main window of his browser display
pages generated by the portal (Fig. 4). In addition to th
window, the portal may open up to five windows on behalf o
the user. First, a control window is always opened with a pan
of buttons and links that are used frequently (Fig. 5). F
example, the control window has links for browsing the use
home context, running an application and copying file
between the grid file system provided by Legion and the use
file system provided by the operating system. Second, a sta
window is opened by default to show the logs of comman
(see Section III.C.3 and Fig. 6). Third, an output window ma
be opened to show the raw output of commands (Fig.
Fourth, an error window may be opened to show the raw er
of commands (Fig. 8). Opening and closing the status, out
and error windows can be accomplished by setting t
verbosity level of the portal. Fifth, a download window may b
opened with the appropriate mime type if the user decides
view the contents of a file.

III.C.5 Legacy Systems (C5).Currently, accounting and job
monitoring in the Legion Grid Portal are accomplished b
taking advantage of a commodity database system. The po
provides the interfaces to access this legacy system throug
PHP [5] script that accesses a MySQL [3] database as wel
Legion. The PHP script executes Legion commands to obt
resource consumption data about a user’s Legion obje

Fig. 5. Control Panel

8

f
lies
ed
e

n be
nd
be
us

A

(Fig. 9). The resources contributed by the user towards a grid
can also be obtained.

Whenever a user requests accounting information, the portal
seamlessly transfers control from C2 to C5. All session
information is transferred by CGI mechanisms to the PHP
script which manages the information in the same manner as
the Perl script in C2. Subsequently, when the user returns to
non-accounting actions, control is transferred seamlessly from
C5 to C2. The user is not necessarily aware that different CGI
scripts are used to process different requests because the
session state required by the portal is small and can be
transferred easily. Our success in adding accounting

functionality to the Legion Grid Portal by way of transfer o
control between these scripts is encouraging because it imp
that we can continue to increase the functionality provid
through the portal in this manner. Moreover, the sam
mechanisms used to transfer control between C2 and C5 ca
used to transfer control between the Legion Grid Portal a
other grid portals such as GridPort [1]. Thus, the portal can
extended to provide desirable interoperability between vario
grid infrastructures such as Legion and Globus.

III.C.6 Specific Portals (C6).A significant task enabled by
the Legion Grid Portal is starting up runs on behalf of a user.

Fig. 4. User Page generated after login

9

til
he

he
for
all
command like legion_run is much more complex than
ordinary Legion commands. Moreover, since runs may execute

for a long time, the user’s browser cannot be made to wait un
the command is complete. This asynchronicity makes t
handlers for executing runs complex.

Before starting a run, the grid portal assembles t
arguments, parameters and input files for the run. A handler
a run command provides means for the user to input

Fig. 6. Status Window

Fig. 9. Accounting Information

Fig. 7. Output Window

10

n.

tatus
ser
).
n

aces
es
m

hich
er
arguments. Therefore, it generates buttons, boxes and widgets
for arguments for the run itself and arguments to the Legion
run command (Fig. 10). Necessary arguments are checked for
existence and sanity. Reasonable defaults are chosen for the
remaining arguments. If the run requires Unix/Windows input
files, the browser can send their contents in a multipart form
(such input files cannot exceed around 5MB in size; this
limitation is imposed by the HTTP protocol for multipart
forms). These files are saved on the web server in a sub-
directory specially created for that run.

The run script invokes Legion commands to initiate the ru
Along with initiating the run, the script records information
about the run in the database in C5. A user can access the s
of her runs from the page generated by the portal for the u
immediately after the run begins. (Fig. 11, Fig. 12, Fig. 13
Additionally, a user browsing her accounting information ca
access the status of her runs from the database using interf
provided in C5 (Fig. 14). The user can monitor these pag
periodically to view the results of the run as it progresses. Fro
these page, the user can record the remote machine on w
the run executes, the working directory of the run and any oth

Fig. 10. Initiating a Run

11

e
ter

re
e
re
,

n.
d
g-
in
c
sic
information Legion provides about the run. In addition, he can
transfer intermediate files from the remote machine to the
server (and thence to his own machine) as well as transfer files
from his own machine to the remote machine (via the web
server). Transferring intermediate files out from the run is
useful for viewing the run periodically as well as
checkpointing. Transferring files in to the run is useful for
computational steering.

The run script can be used to initiate runs of well-known
applications, i.e., applications for which the binaries are
registered under well-known and widely-accessible runnable
classes [15]. For example, we have developed a portal for a
molecular modelling package called Amber and an

astronomical modelling package called Hawley-Hydro. Th
portals have application-specific widgets that let users en
input files intuitively (Fig. 11, Fig. 12). However, from the
Legion Grid Portal’s perspective, these applications a
identical to any other application. In other words, th
mechanisms to initiate an Amber or Hawley-Hydro run a
identical to those for any other run. After the run is initiated
the portal provides an additional viewing capability for the ru
This additional view for Amber requires a plug-in calle
Chime [2] to be installed on the user’s browser. With this plu
in, the user can view the progress of the run graphically
addition to the usual view provided by Legion. Since specifi
portals are merely more convenient interfaces to the ba

Fig. 11. Specific Portal for Amber

12

er
ity
s
n
ion.
irs.
he
the
functionality of initiating a run, creating new portals is simple.
For example, a specific portal for CHARMM [9] should take
only a few hours to construct once the particulars of the
application are available.

IV. SUPPORTEDGRID SERVICES

The Legion Grid Portal supports a significant subset of the
capabilities and features of a grid system using Legion; the
remaining can be added with a small amount of effort.

IV.A Security

Security in the Legion Grid Portal is addressed in a numb
of ways. The portal takes advantage of the secur
infrastructure provided by Legion. In Legion, typically user
log on to a grid using a login-password combination. Legio
generates credentials for the user to be used for that sess
Currently, the credentials are based on public-private key pa
The method for generating the credentials is irrelevant to t
portal. However, the portal manages a persistent copy of
credentials on behalf of the user.

Fig. 12. Specific Portal for Hawley-Hydro

13

ry
and
ion
tly.

a
.3).
e.
ver,
e
ed.
es
t or

er

d
lly

e
re

ted
er
When a user logs on to a grid from the command-line,
Legion queries his login ID and password. If the pair is valid,
Legion generates a file which stores the user’s credentials. The
file is named based on the process ID of the user’s terminal; if
the user opens another terminal, the credentials file is not valid
for the new terminal. However, in the portal, subsequent
commands are executed in different shells. Since we cannot the

expect the user to supply an ID and password for eve
command, and since we prefer not to store the user name
password either on a disk on the web server or in the sess
state of the browser, we manage the credentials explici
Access to the managed credentials are moderated with
session ID generated for every session (see Section III.C
The session ID is hard, if not impossible, to duplicat
Consequently, a user can access only his credentials. Moreo
if the user is inactive for some time (currently, two hours), th
session ID and the saved credentials file are both invalidat
This invalidation requires the user to log in again, but ensur
that the user’s credentials are erased if he forgets to log ou
his browser terminates unexpectedly.

A potential security risk in the portal occurs when the us
logs in for the first time. At this time, thelegion_login
command is invoked with the user’s Legion login ID an
password. A Unix user on the web server could potentia
view the password in clear-text by executing aps command
exactly during thelegion_login command. Currently, we
avoid this problem by restricting the people permitted to b
Unix users on the web server. Another solution which we a
considering is to modify thelegion_login command to
take not the clear-text password but the name of an encryp
file as a password parameter. With this solution, an intrud

Fig. 8. Error Window

Fig. 13. Specific Portal for Rendering

14

,
ts.

res
ied
sue
on.
ugh
a
r

t
to

e
ct,
a

ly,
on
may be able to see the name of the file but may not be able to
access the file in any manner. However, neither solution is
secure enough if the superuser or web server user herself is the
intruder. Since every command issued via the portal executes
under the Unix ID of the web server user, this user can access
any information pertaining to any Legion user. Likewise, the
superuser on the web server can access any information
pertaining to any user. We believe that insecure as this situation
is, it may be unavoidable. On large installations it is common
for privileged users such as the superuser to be able to access
any information pertaining to any user. A responsible choice of
privileged users and judicious encrypting of critical data may
be the only reasonable solutions.

IV.B Information Services

The portal permits accessing all information services that can
be accessed by a command-line user. For example, a portal
user can browse context space (Fig. 15), view the metadata for
any object for which he has permissions to do so (Fig. 16), or

view all of the hosts in a grid (Fig. 17, Fig. 18). In Legion
collection objects are repositories of metadata of other objec
For example, a certain frequently-used collection object sto
metadata about every host in the grid. This collection is quer
during the scheduling process. A command-line user may is
one command to procure the data stored by any collecti
Currently, a portal user cannot issue such a command altho
adding such a functionality to the portal is trivial. However,
portal user can access a collection’s data implicitly, fo
example, during the scheduling process.

IV.C Scheduling

Legion supports explicit and implicit scheduling. In explici
scheduling, a user specifies the host on which she wishes
run. In implicit scheduling, the grid infrastructure selects th
host on which the user runs. In Legion, creating any obje
whether it be a file or an instance of a program, involves
scheduling process. Typically, users schedule implicit
especially during the creates of non-programs. The Legi

Fig. 14. Status of a Parameter-Space Study

15

for
m
s
e

le
ss

of
of
d,

fies
Grid Portal supports only implicit creates for non-programs,
although adding explicit creates is a trivial task. The portal
supports both implicit and explicit creates for programs.
Therefore, users can choose exactly the resources on which
they would like to run their applications. We are investigating
mechanisms and interfaces for letting users select sets of hosts
for large runs, such as parameter-space studies. Also, we are
investigating constructing superschedulers that let users select
from a wide variety of resources.

IV.D Data Transfer

The Legion Grid Portal supports automatic data transfer
applications insofar as it is not limited by the CGI mechanis
itself. In Legion, the commands for running application
provide switches by which input and output files can b
specified either from the local file system or from the grid fi
system provided by Legion. Moreover, applications may acce
the grid file system directly, thus obviating the need for any
these switches. The portal supports all of these modes
operation. However, if the input/output switches are specifie
certain CGI restrictions become apparent. If the user speci

Fig. 15. Browsing Contexts

16

he

r
ng
e
h
d.
nd
to
ve
that the input and/or output files are to be accessed from the
grid file system, then the portal has no restrictions. If the user
specifies that the input files be accessed from the local file
system, CGI provides a way to upload the files to the web
server from where they can be supplied to the appropriate
Legion command. However, CGI imposes a limit on the size of
the uploaded file, currently of the order of a few Mbytes. If the
user specifies that the output files be stored to the local file
system, then there is no mechanism within CGI to store the
files automatically because the user must authorise the storage.
Therefore, the solution in the portal is to store the file on the

web server and provide a mechanism to download it to t
user’s local file system.

IV.E Additional Grid Services

The Legion Grid Portal provides excellent facilities fo
monitoring jobs, viewing jobs as they progress, transferri
intermediate files and viewing accounting information. Th
Legion tools for running applications provide means by whic
the status of a currently-executing job can be viewe
Moreover, the tools provide mechanisms for sending a
retrieving intermediate files. The portal enables users
perform these tasks. For some applications, we ha

Fig. 16. Metadata for a Host Object

17

g
d
e
of

ing
le.
w

o
ls
constructed specific portals which have all of the functionality
associated with running any application using Legion in
addition to specific interfaces for visualising the progress of a
job. For example, using the Amber portal users can view the
progress of an Amber job graphically. After they submit a job
through the Legion Grid Portal, a new window appears in
which the intermediate state of the molecule being studied is
displayed. The portal displays this view by accessing
intermediate files generated by the application periodically and
converting them into a protein database file using commodity
tools. The protein database file can be viewed graphically using

the Chime viewer. Likewise, the portal also permits viewin
Hawley-Hydro jobs by accessing intermediate files an
converting them into GIF images. Finally, in the case of som
parameter-space studies, the portal provides a means
viewing the status of each job in an abbreviated manner, giv
the user an aggregate view of the application as a who
Integrated with the job views are accounting views that sho
the resource donation and consumption by every grid user.

IV.F New Grid Interfaces arising from the Portal

The original design goal of the Legion Grid Portal was t
present an intuitive front-end to the command-line too

Fig. 17. Viewing Hosts in a Grid

18

fic
of

he

n

al,
a

se
l
n

y
n is

er-
uire
of
to

files
s is
es
r
d

ts
lt

e
nd
s

s
ly
m

available to a Legion user. However, as the design of the portal
progressed, we discovered that we had to change some design
details in Legion. In particular, some of the changes were:

• The error modes of many tools were solidified and
standardised. Previously, standards for writing command-line
tools were lax; tools reported different error codes for the same
error, had different conventions for reporting outputs, had
different levels of versbosity, etc. Although standardisation of
tools is not yet complete, we are taking steps in that direction.
In particular, we have realised that Legion tools must be as
robust and standard as the Unix suite of tools, if not more so.

• Non-blocking modes of running applications was
developed. Previously, Legion users used to initiate runs in
“blocking” mode, i.e., the tool initiating the run would wait
until the run completed. Such a mode is highly undesirable in a
portal because most browsers will terminate a connection after
a period of inactivity. Since we cannot expect runs to
periodically output text for a browser, and we cannot expect
browsers to sustain connections notwithstanding, we developed
tools for running applications in “non-blocking” or
asynchronous mode. In this mode, the user (or the portal on
behalf of the user) initiates the run and collects a token or ticket
that identifies the job from Legion.

• Probing/monitoring runs was developed (with suggestions
from existing users). After we developed non-blocking runs,
the natural design progression was to enable probing or
monitoring runs. Using the token or ticket generated by
Legion, we were able to develop tools that report on the
progress of the run. Typically, these reports include
information about the machine on which the run is executing,
the working directory of the run, the names and sizes of the
files generated, etc. The ability to probe runs has proven to be

extremely helpful to Legion users. In the case of speci
portals, the ability to probe runs has enabled the use
visualisation tools that use intermediate files to display t
progress of runs.

• A proxy tool was designed to make command-line tools ru
faster by pre-initiallising the Legion library. In Legion, every
command-line tool initiallises a Legion library. When
executing multiple tools frequently, as in the case of the port
repeated initiallisations of the Legion library can represent
large overhead. We developed a proxy tool which can initialli
the Legion library once for an entire session. Multiple too
invocations result in connections to the proxy which ca
perform the functions of many tools quickly. Preliminar
investigations have shown that the speedup in tool executio
around 33%-50%.

• We are re-thinking mechanisms to run general paramet
space studies. By definition, parameter-space studies req
large sets of parameter values. Typically, each set
parameters is supplied in one or more files. A user desiring
conduct a parameter-space study must construct the sets of
for each run in the parameter space. Constructing those file
an application-specific task. However, submitting those fil
for initiating a large number of runs can be complex. Fo
command-line users, Legion provides a tool calle
legion_run_multi , that enables them to specify the se
of files. For portal users, specifying sets of files can be difficu
— specifying each file singly is tedious, specifying multipl
files with wildcards is not possible because the web server a
client have different filesystems, and specifying all the file
within one single archive is difficult because of file size limit
inherent in CGI transactions. Although it seems like the on
option is for users to use Legion’s distributed file syste

Fig. 18. Worldwide Grid managed by Legion

19

e
be
e

the
b
d
al
and

.,

e

(which could be accessible from both the server and the client),
we are exploring methods by which the user can use her Unix/
Windows file system as well.

V. PROJECTSTATUS AND FUTURE PLANS

The Legion Grid Portal has been operational since February
2000. Over time, it has acquired an increasing number of
features and undergone several changes in its look-and-feel.
The portal has been made more robust and more intuitive to the
user. The entire design of the portal has been motivated by the
desire to present users with an interface to a grid that is not
more complicated than a few mouse clicks and occasional
typing. Informal studies have shown that users can grasp
important grid concepts much more quickly through the portal
than with other interfaces. Consequently, we are increasing the
usage of the Legion Grid Portal in tutorials.

The tasks that remain for the Legion Grid Portal fall into the
following categories:

1. Increasing access to Legion functionality for lay users.
Currently, the portal enables users to access only a small
albeit critical subset of Legion. We expect that as the
portal matures, more and more Legion commands will
become accessible from the portal. Moreover, interesting
new compositions of Legion tools will become
commonplace in the portal.

2. Increasing the number of specific portals. Currently, we
have portals for three applications — Amber, Hawley-
Hydro and RenderGrid. Such portals are well-suited for
introducing high-performance users to grids. The
availability of tools for monitoring specific applications
would accelerate the development of specific portals in the
Legion Grid Portal.

3. Increasing the number of tools for administrative users.
Currently, the administrator of a grid is treated as just
another user on the portal. The tools available to such a
user are identical to the tools available to any user. We
expect to add tools that only administrative users can
employ. Also, we expect to make log files available to such
users. Such an approach will make the management of a
grid intuitive and simple to administrators.

4. Providing a programming interface for grids. Legion
provides an abstract programming model based on
dataflow graphs. This model is attractive to developers of
grid services. We expect to provide such developers with
tools to construct their services over Legion.

5. Exploring grid interoperability. The portal has the
potential to unify high-level functionality provided by

different grid infrastructures. We expect to study how th
relative strengths of different approaches to grid can
utilised within the common interface provided by th
Legion Grid Portal.

ACKNOWLEDGEMENT

We thank Mark Morgan at Avaki Corporation for his
suggestions on the design and implementation of parts of
Legion Grid Portal, Katherine Holcomb for setting up the we
server for the Legion project at the University of Virginia an
“Referee 1” for comments that helped us clarify sever
concepts in this paper as well as correct several errors
inaccuracies.

REFERENCES

[1] —, “GridPort”, gridport.npaci.edu .
[2] —, “MDL Information Systems, Inc.”,www.mdli.com .
[3] —, “MySQL”, www.mysql.com .
[4] —, “Perl Mongers”,www.perl.org .
[5] —, “PHP”, www.php.net .
[6] —, “Server-Side JavaScript Guide”,developer.netscape.com .
[7] —, “The Common Gateway Interface”,hoohoo.ncsa.uiuc.edu/

cgi .
[8] —, “The Legion Manuals (v1.7)”, University of Virginia, October 2000.
[9] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J

Swaminathan, S., Karplus, M., “CHARMM: A Program for
Macromolecular Energy, Minimization, and Dynamics Calculations”,J.
Comp. Chem., vol. 4, 1983.

[10] Christiansen, T., Torkington, N.,Perl Cookbook, O’Reilly & Associates,
ISBN: 1-56592-243-3, 1998.

[11] Foster, I., Kesselman, C.,The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

[12] Grimshaw, A. S., Wulf, W. A., “The Legion Vision of a Worldwide
Virtual Computer”,Comm. of the ACM, vol. 40, no. 1, January 1997.

[13] Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K.,
“Metasystems”,Comm. of the ACM, vol. 41, no. 11, November 1998.

[14] Howes, T., Smith, M., LDAP: Programming Directory-Enabled
Applications with Lightweight Directory Access Protocol, Macmillan
Technical Publishing, ISBN: 1-57870-000-0, 1997.

[15] Natrajan, A., Humphrey, M. A., Grimshaw, A. S., “Capacity and
Capability Computing in Legion”,2001 International Conference on
Computational Science, May 2001.

[16] Neulinger, N., “CGIWrap: User CGI Access”,
cgiwrap.unixtools.org .

[17] Novotny, J., Tuecke, S., Welch, V., “Initial Experiences with an Onlin
Certificate Repository for the Grid: MyProxy”,High Performance
Distributed Computing 10, August 2001.

[18] Richter, J., “Custom Performance Monitoring for your Windows NT
Applications”,Microsoft Systems Journal, August 1998.

[19] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. W., Dongarra, J.,MPI:
The Complete Reference, MIT Press, 1998.

[20] Wall, L., Christiansen, T., Schwartz, R. L.,Programming Perl, O’Reilly
& Associates, ISBN: 1-56592-149-6, 1996.

	The Legion Grid Portal
	I. Overview
	II. Architecture
	Fig. 1. Architecture of the Legion Grid Portal
	II.A Grid Software/Services on which the Portal depends
	II.B Grid Software/Services the Portal could use
	II.C Grid Software/Services the Portal requires but not supported by the Grid
	II.D Software/Services the Portal uses/requires outside the scope of the Grid

	III. Implementation
	Fig. 2. Details of Components of the Legion Grid Portal
	III.A Commodity Technologies/Software used
	III.B Proprietary Technologies/Software developed that can be shared with others
	III.C Implementation Details
	III.C.1 Grid Infrastructure (C1). The underlying grid infrastructure for the portal is Legion. Le...
	III.C.2 General Portal Implementation (C2). The primary rôle of component C2 is to issue Legion c...
	III.C.3 Session State (C3). The session state component consists of the various files, caches and...
	Fig. 3. Entry Page

	III.C.4 Portal Interface (C4). The entry page as well as the user pages generated by the portal c...
	Fig. 4. User Page generated after login
	Fig. 5. Control Panel
	Fig. 6. Status Window
	Fig. 7. Output Window
	Fig. 8. Error Window

	III.C.5 Legacy Systems (C5). Currently, accounting and job monitoring in the Legion Grid Portal a...
	Fig. 9. Accounting Information

	III.C.6 Specific Portals (C6). A significant task enabled by the Legion Grid Portal is starting u...
	Fig. 10. Initiating a Run
	Fig. 11. Specific Portal for Amber
	Fig. 12. Specific Portal for Hawley-Hydro
	Fig. 13. Specific Portal for Rendering
	Fig. 14. Status of a Parameter-Space Study

	IV. Supported Grid Services
	IV.A Security
	IV.B Information Services
	Fig. 15. Browsing Contexts
	Fig. 16. Metadata for a Host Object
	Fig. 17. Viewing Hosts in a Grid
	Fig. 18. Worldwide Grid managed by Legion

	IV.C Scheduling
	IV.D Data Transfer
	IV.E Additional Grid Services
	IV.F New Grid Interfaces arising from the Portal

	V. Project Status and Future Plans
	Acknowledgement
	References
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]

