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Abstract
Serialization, the traditional method of resolving

concurrent interactions, is often inappropriate; when
interactions are dependent on each other, other policies for
resolving them may be more suitable. We use semantic
information to help categorize common interactions
encountered in the modeling and simulation domain. This
categorization enables us to suggest reasonable policies
for resolving the effects of concurrent interactions.

1. Introduction
One of the most significant challenges facing the

simulation community is Multi-Representation Modeling
(MRM) — the joint execution of multiple models of the
same object or process [8]. The crux of the challenge is
resolving concurrent interactions on the representations in
the different models [17]. Many systems either serialize
concurrent interactions or avoid them by restricting the
interactions that can co-occur. However, serialization and
avoidance are insufficient for resolving the effects of
concurrent interactions in the general case. Other solutions,
such as accumulating, delaying or ignoring some or all
interactions may be more suitable. We describe a new
approach that categorizes interactions by augmenting them
with a small amount of semantic information in order to
resolve them more appropriately.

For effective MRM, the effects of dependent concurrent
interactions must be resolved meaningfully. Often,
concurrent interactions may have dependent effects, for
example, precluding or enhancing the effects of one
another. Traditionally, the effects of concurrent interactions
have been resolved by serialization, in which the
interactions are ordered arbitrarily. However, serialization
is often inappropriate because it isolates interactions whose
effects must be applied concurrently. Other policies, such
as combining or ignoring some or all interactions, do not
isolate concurrent interactions and may be more suitable
for resolving any dependent effects.

We present a taxonomy of interactions and show how to
classify interactions. We assume that MRM designers can
understand the semantics of interactions in their
application well enough to classify them and formulate

policies for resolving them. We present example policie
for resolving concurrent interactions. Our taxonom
enables a designer to choose appropriate policies
resolving concurrent interactions.

2. Interactions
An interactionbetween entities is a communication tha

causes a change in their behavior. Entities in a mod
communicate with one another or influence one another
interacting. An entity changes the behavior of anoth
entity by means of an interaction. Interactions ar
fundamental to a useful model because they connect it
its environment. We regard a communication between a
two entities as well as changes an entity makes to its o
state in our definition of interactions.

When the changes caused by an interaction are app
to attributes in entity representations, the interaction tak
effect. A senderis an entity that initiates an interaction
while a receiver is an entity to which an interaction is
directed. Theeffects of an interaction are the change
caused by the interaction to the sender and receiver.

Interactions may beconcurrent, i.e., they may occur
during the same time-step. Simultaneous interactions, i
interactions occurring at the same time, are concurre
interactions, although the converse is not necessarily tr
In a modeling context, we cannot distinguish simultaneo
interactions from merely concurrent interactions.

Concurrent interactions may be dependent. Adependent
interaction is one whose effects are predicated on th
occurrence of another interaction. Anindependent
interaction is not dependent on any other interaction. Fo
example, two interactions may be related by cause a
effect, i.e., one interaction causes the other. The form
interaction is independent of the latter, but the latter
dependent on the former. Concurrent interactions may
dependent solely on account of their concurrence, i.e.,
the interactions were not concurrent, they would b
independent.

A system that permits concurrent interactions requires
policy to resolve any dependencies among interactions a
a mechanism to implement the policy. The traditiona
policy for resolving the effects of concurrent interactions
serialization.
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3. Serialization
Serialization, the traditional policy for resolving

concurrent interactions, involves applying their effects in
sequential order, i.e., one after another. In serialization,
concurrence is resolved by ordering or interleaving
concurrent transactions appropriately. Serialization
preservesisolation, which is one of the ACID properties
for database transactions [10].

Serialization has been chosen as a policy for resolving
interactions in database systems because it satisfies clients’
expectations of isolation yet permits concurrent
transactions [16] [5]. Isolation assumes that client
interactions are not predicated on one another, i.e., they are
independent of one another. Serialization isolates client
interactions.

Some researchers have proposed policies that relax or
extend serialization yet maintain isolation [6] [3]. Some of
these policies require semantic analysis in order to increase
concurrence [9] [20] [2]. In general, serialization is
considered correct but too strict, and alternative criteria
relax or extend serialization in order to permit increased
concurrence [4] [13] [14] [12] [19]*. Moreover, isolation of
transactions is considered a desirable property of database
systems. Next, we discuss situations where isolation may
be undesirable.

4. Abandoning Isolation
For some applications, the system must not isolate

concurrent interactions since they may be dependent on
one another. Serialization and alternative policies that relax
or extend serialization isolate interactions. Therefore, they
cannot be correct policies for resolving the effects of
dependent concurrent interactions. Correct policies for
these interactions must not isolate the interactions.

In the following examples,not isolating concurrent
interactions, i.e., abandoning isolation, enables resolving
their dependent effects correctly. Consider entitiesA andB
that change an attributev. Consider two concurrent
interactions:A.write(v, …) and B.write(v, …) .
A sequential order for these interactions could be
A.write(v, …) followed by B.write(v, …) or
B.write(v, …)  followed byA.write(v, …) .

In a model of a billiards table,A and B could be ball
entities andv could be the velocity of a ball. The two
interactions could be A.write(v, δvA) and
B.write(v, δvB) , whereδvA is a change inv caused
by A and δvB is a change inv caused byB. The correct
policy to resolve these two interactions is to changev by

the vector addition ofδvA and δvB. Serializing these
interactions may be incorrect for a number of reasons
discussed below. Let⊕ denote vector addition. Letv1, v2
andv3 be three possible outcomes of addingδvA andδvB
to the original valuev0 of the velocityv.

v1 = (v0 ⊕ δvA) ⊕ δvB
v2 = (v0 ⊕ δvB) ⊕ δvA
v3 = v0 ⊕ (δvA ⊕ δvB)

The parentheses show the order in which the interactio
take effect.v1 andv2 are computed by serializing the two
interactions, whereasv3 is computed by combining the two
interactions before applying them tov. Mathematically,
v1 = v2 = v3. However, when executing a model, the
results of these orderings can differ. For example,δvA and
δvB may be so small that adding them tov0 individually
does not changev. However,δvA andδvB combined may
be sufficient to changev. In such a case,v1 = v2 ≠ v3. As
another example,δvA andδvB may overcome the inertia
of the entity with velocity v when combined, but not
individually. Finally, suppose a display process
continuously plots the trajectory of the ball with velocityv.
If v changes tov1 or v2, P will plot two changes, whereas
if v changes tov3, P will plot only one change. The former
change causes P andv to be temporally inconsistent.v1
and v2 are computed by serialization, whereasv3 is
computed by combination. Here, combination is a mo
meaningful policy than serialization.

In a model of an autonomous agent,A could be a
planner that pre-determines the steps to fulfill the agen
goal, B could be a perception/action (PA) system tha
observes and acts on the agent’s environment, andv could
be the visibility of an obstacle. The two interactions coul
be A.write(v, yes) and B.write(v, no) ,
implying that the planner reports that the obstacle can
seen, whereas the PA system reports that the obstacl
hidden. Serializing these interactions causes the final va
of v to be eitheryes or no arbitrarily. However, applying
B’s interaction and ignoringA’s interaction may be a more
reasonable, if pessimistic, policy to resolve thes
interactions. Alternatively, applyingA’s interaction and
ignoringB’s interaction may be a reasonable, if optimistic
policy. Another reasonable policy may be assignin
weights to the two interactions based on a belief system
produce a multi-modal value forv.

In a model of a chemical reaction,A could be an acid
entity,B a catalyst entity, andv the volume of a by-product
retrieved from the reaction. The two interactions could b
A.write(v, δvA) and B.write(v, δvB) , where
δvA andδvB are increases in the value ofv whenA andB
are added. In chemical reactions, it is well-known th
adding a catalyst can increase the rate of a react
tremendously. As a result, the final change inv may be
more thanδvA + δvB. Serializing the interactions does no

* A detailed analysis of each correctness criterion and policy
presented for databases would take up too much time and space.
Over 100,000 pages of new material are published every year in
databases alone [[7]].
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capture the cooperative nature of these interactions. If the
interactions must be serialized, then either the model’s
representation must be augmented with an attribute that
keeps track of whether the acid or catalyst has been added
previously, or the model must capture the effects of adding
a catalyst — an increase in the surface area of the reaction
— at a finer level of detail. Alternatively, a special policy
must be formulated to increasev appropriately if these
concurrent interactions occur.

In the above examples, serializing concurrent
interactions produces unintended effects. Isolating them
from one another produces effects that are semantically
incorrect. Since serialization and other correctness criteria
that relax or extend serialization isolate interactions, none
of them is a correct policy for resolving them. These
interactions are dependent particularly because they are
concurrent. Therefore, these interactions require
correctness criteria that abandon isolation. The correctness
criteria for dependent concurrent interactions are
application-specific. Next, with the help of an abstract
application, we show how resolving the effects of
dependent concurrent interactions by abandoning isolation
makes the design of an application complex.

5. Switches — A Simple System
We use a simple system of switches as an abstraction for

models with concurrent interactions. We add constraints to
the initial model, explaining the effort required to design
the corresponding system. Next, we introduce dependent
concurrent interactions and show how designing such a
simple system becomes complex. We argue that the effects
of dependent concurrent interactions must be resolved in
an organized manner.

5.1. Unconstrained System
We start with an

unconstrained system on which
we perform subsequent
analyses. Consider the
switches SA, S1 and S2 in
Figure 1, each with two states: on (or 1) and off (or 0). A
client may turn a switch on or off by an interaction (shown
by an arrow). The state of the system is an ordered triplet,
individual triplet elements being the states of SA, S1 and S2
respectively. In the state transition diagram in Figure 2, an
oval is a possible state of the system, a solid arrow is a state
transition caused by turning one switch on, and a dashed
arrow is a state transition caused by turning one switch off.
Transitions that cause the system to begin and end in the
same state, for example, turning S1 off in the state [0 0 0],
are not shown in Figure 2 to reduce clutter. Since the
switches are independent, all possible states are present in
the state diagram.

5.2. Constrained System
Typically, systems are

constrained; their components
are related. Accordingly, we
add a constraint to our
switches: If S1 and S2 are both
on, then SA must be on. In other words,
(S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1). As a result of this
constraint, the switches are no longer independe
Figure 3 shows the new version of the switches applicati
with the constraint depicted by arrows between th
switches. The arrows merely depict a dependency betwe
switches without outlining the nature of the dependenc
The new set of valid states for the system is a subset of
old set of valid states. Figure 4 shows the new set of va
states. The crossed-out state does not exist in the n
system.

Usually, constraints reduce the
possible states of a system. All
transitions going into those states
must be redirected elsewhere. The
implications of the reduction in the
set of valid states on the state
transition diagram are shown in
Figure 5. The arrows from the
states [0 1 0] and [0 0 1] to [0 1 1]
have been redirected to [1 1 1] in accordance with th
constraint. However, the constraint does not indicate whi
state to transition from [1 1 1] if only SA is turned off. In
theory, it is possible to transition to any of the seven stat
(or a hitherto absent state) in such a situation. However,
us abide by the constraint as far as possible. The followi
are re-statements of the constraint.

(S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1)

FIGURE 1: Switches

SA

S1 S2

FIGURE 2: State Transition Diagram

0 0 0

0 0 10 1 01 0 0

0 1 11 1 01 0 1

1 1 1

FIGURE 3: Constraints

SA

S1 S2

FIGURE 4: States

SA S1 S2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 1 0

FIGURE 5: Constrained State Transition Diagram

0 0 0

0 0 10 1 01 0 0

1 0 1

1 1 1
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¬((S1 = 1) ∧ (S2 = 1)) ∨ (SA = 1) [Implication rule]
¬(S1 = 1) ∨ ¬(S2 = 1) ∨ (SA = 1) [DeMorgan’s laws]
(S1 = 0) ∨ (S2 = 0) ∨ (SA = 1) [Switch states]
(SA = 1) ∨ (S1 = 0) ∨ (S2 = 0) [Re-arrangement]
¬(SA = 1) ⇒ (S1 = 0) ∨ (S2 = 0) [Implication rule]
(SA = 0) ⇒ (S1 = 0) ∨ (S2 = 0) [Switch states]

The last statement suggests what to do when SA is
turned off while S1 and S2 are on. In order to keep
transitions deterministic, we choose [0 0 1] arbitrarily as
the state to transition from [1 1 1] in case SA is turned off,
i.e., we turn S1 off.

State transition diagrams describe a model effectively
when sequences of interactions occur. The effects of each
interaction are captured by appropriate transitions. Since a
state transition diagram can never put the system in an
inconsistent state, every interaction can take effect without
violating any constraint. Concurrent interactions, whether
dependent or not, introduce problems with state transition
diagrams, as we show next.

5.3. Dependent Concurrent Interactions
In order to demonstrate the effects of dependent

concurrent interactions that cannot be serialized, we add
new transitions. Consider the switch system from §5.2,
with two concurrent interactions. Let the system be in the
state [0 0 1], and let the two interactions be turning SA off
and turning S1 on. If we serialize them, turning SA off
before turning S1 on results in the transitions [0 0 1]→
[0 0 1] → [1 1 1], while turning S1 on before turning SA off
results in the transitions [0 0 1]→ [1 1 1] → s[0 0 1]. The
order in which the concurrent interactions are serialized
determines the final state of the system. If the final state is
immaterial as long as the system stays in a valid state, i.e.,
a state present in the state transition diagram, then
serialization is correct but non-deterministic.

For deterministic behavior, we add other state
transitions that capture the effects of concurrent
interactions. In Figure 6, we add a transition between
[0 0 1] and [0 1 0]. The semantics of this transition could
be, for example, that if SA is turned off and S1 is turned on
concurrentlyin the state [0 0 1], then transition directly to
state [0 1 0]. The fact that the interactions were concurrent
caused this transition, and the final state of the transition is
different from that if the two interactions were serialized.

5.4. Complexity
We desire systems to behave predictably no matter w

interactions occur and how they occur. Accordingly
singly-occurring interactions as well as concurren
interactions must have predictable results. A brute-for
approach to resolving the effects of all possible concurre
interactions can be overwhelming. Therefore, a means
encoding dependencies among interactions is necessar

For the switches system in §5.2, given the six kinds
interactions (turning one of the switches on or off) and th
seven different states, an exponential number of transitio
are possible on concurrent interactions. In the worst ca
the total number of transitions for the switches applicatio
is: (2number of interaction types− 1) × number of states= (26 −
1) × 7 = 441. This calculation assumes that concurre
interactions of the same kind can be serialized witho
changing their effect. In other words, concurrent multip
occurrences of the interaction to turn S1 off, for example,
can be serialized. Nevertheless, even in our simple syste
the number of transitions that must be considered is larg
Applications with more attributes, some non-Boolean, a
likely to have many more states than our simple syste
Consequently, the number of transitions to be consider
can grow further. However, a number of mitigating factor
can reduce the number of state transitions for a system
the switch system, in order to reduce the number
possible transitions, we stated that multiple occurrences
the same interaction can be serialized. Another reasona
assumption is that a switch client will not send concurre
on and off interactions to its switches. This assumptio
reduces the number of transitions to the product of t
number of states and the number of all possible concurr
interactions. The latter number is the sum of concurre
interactions occurring in all combinations of threes, two
and ones. Therefore, the total number of transitions

. This number of transitions
shown is an upper-bound, because we assume that no s
concurrent interactions is serializable.

Applications must exhibit predictable behavior whe
concurrent interactions occur. Serialization is an examp
of predictability. However, as we have seen in §4
serialization fails to resolve dependent concurre
interactions correctly, because it assumes that t
interactions can be isolated. Another example
predictability is commutativity [18], wherein the effects o
commutable interactions are the same regardless of
order in which they are applied. Since commutativity als
assumes that interactions can be isolated, it cannot reso
the effects of dependent concurrent interactions correc
When dependent concurrent interactions occu
predictability can be gained by encoding transitions
rigorous formulæ. In such an approach, the behavior of t
system when any set of concurrent interactions occur mFIGURE 6: Transitions on Concurrent Interactions
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be encodeda priori. Such an encoding is similar to
specifying transitions in a state diagram for every possible
set of concurrent interactions. As we have shown with our
simple switches system, specifying all possible transitions
can become a complex task.

We encode semantic information in interactions in our
technique for predictable behavior when dependent
concurrent interactions occur. Our technique does not
isolate interactions, and does not incur the complexity cost
of specifying all transitions.

6. A Taxonomy of Interactions
The effects of dependent concurrent interactions are

application-specific. Specifying policies for resolving the
effects of every set of interactions that may occur
concurrently is a complex design task. However, specifying
policies for resolving the effects ofclassesof interactions
can be less complex. We discuss the properties of a good
taxonomy of interactions. MRM designers may classify
their interactions into any taxonomy that exhibits these
properties. We present and justify one such taxonomy
consisting of four classes of interactions. Our taxonomy is
based on semantic characteristics of interactions we
encountered often in models. Also, we present policies for
resolving the effects of classes of concurrent interactions.

6.1. Properties of a Taxonomy of Interactions
A good taxonomy exhibits the properties below [1] [11]:

• mutually exclusive: classes do not overlap
• exhaustive: classes jointly cover all possible members
• unambiguous: classification not dependent on classifier
• repeatable: subsequent trials lead to same classification
• accepted: logical and intuitive classes
• useful: must lead to insights in particular field

MRM designers may choose any taxonomy of
interactions as long as it exhibits the above properties.
Traditional taxonomies of interactions, for example, reads
versuswrites or serializableversusnon-serializable, may
not exhibit these properties [15].

6.2. Interaction Characteristics and Classes
We show how to classify interactions based on semantic

characteristics. We identify four high-level semantic
characteristics of interactions. These characteristics are
application-independent. The characteristics themselves
are well-known; however, using them to classify
interactions is novel. We identify four interaction classes
from these characteristics of interactions.

Request and Response: Interactions may be
distinguished as being requests or responses. Request
interactions are concerned with an entity soliciting some
behavior from another entity. For example, when an entity
queries the status of another entity, the former sends the

latter a request interaction. Likewise, if an officer entit
orders a soldier entity to fire, the former sends the latte
request interaction. Response interactions are concer
with an entity responding to a request from another or
interaction generated in response to a modeling eve
Responses may not be solicited explicitly, i.e., a respon
may not have a request associated with it. For example
status update is a response interaction. Likewise, billia
ball entities may send one another response interactio
generated because of a collision.

The distinction between request and respon
interactions is temporal. A request interaction is mad
regarding a future action. A response interaction is ma
regarding an action in the past. An interaction may be
request or a response, but not both.
• Request: An interaction concerned with eliciting future

behavior from an entity.
• Response: An interaction concerned with the effects o

an action in the past.
Certain and Uncertain: Interactions may or may not

have the desired outcomes. Certain interactions ha
predictable outcomes. For example, when billiard ba
entities collide, the outcome of their interaction i
predictable because of physical laws. Likewise, when
acid entity is added to an alkali entity, the outcome of the
interaction is predictable because of chemical law
Uncertain interactions are those whose outcomes are
predictable. For example, a request for information ma
not always be satisfied, or satisfied truthfully. Likewise,
request to perform an action may not be satisfied.

Uncertainty in interactions may be defined along
continuum. For example, interactions may be distinguish
on a scale with completely certain interactions at one e
and increasingly uncertain interactions further away fro
that end. In such a case, the uncertainty of an interaction
a measure of its distance from the completely-certain e
of the scale. Priorities may be viewed as an example
such a continuum. High-priority interactions always tak
effect preferentially over lower-priority interactions.
• Certain: An interaction whose outcome is predictable.
• Uncertain: An interaction whose outcome is

unpredictable.
Combining Characteristics: Combining these

characteristics gives us four classes of interactions, wh
we name Type 0, 1, 2 and 3. We list the four classes bel
along with the conjunction of characteristics that define
each class. Also, we present an example interaction
each class. We depict the four classes in Figure 7.

Type 0: Response∧ Certain e.g., physical events
Type 1: Response∧ Uncertain e.g., updates
Type 2: Request ∧ Certain e.g., reads
Type 3: Request ∧ Uncertain e.g., orders
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6.3. Evaluating the Taxonomy
Our taxonomy of interactions exhibits the properties of

a good taxonomy. Our four interaction classes are mutually
exclusive since no two of them possess the same
conjunction of characteristics. Our taxonomy is exhaustive
because the four interaction classes cover all possible
combinations of the four interaction characteristics. We
believe our taxonomy is unambiguous, repeatable, intuitive
and useful. Our characteristics capture semantic
information about interactions. An interaction can be
classified into our four classes according tosemantic
information, (i.e., its expected effect on its sender and
receiver), rather than non-semantic information (e.g., its
syntax, the variables it reads or writes, its size, the time
taken to transmit it). We assume model designers can
identify the semantics of an interaction and determine its
characteristics subsequently. Determining the type of an
interaction from its characteristics is unambiguous and
repeatable. Our classes are logical combinations of
orthogonal interaction characteristics. The classes are
intuitive because they are derived from well-known
characteristics of interactions. All of the interactions we
have encountered exhibit these characteristics. Next, we
will demonstrate the usefulness of our taxonomy by
showing how concurrent interactions can be resolved.

6.4. Resolving Effects of Concurrent Interactions
We show how to resolve the effects of concurrent

interactions based on two sets of characteristics of
interactions: responseversus request and certainversus
uncertain. Independent interactions are those whose
concurrent occurrence is indistinguishable from their
sequential occurrence. If we can determine that concurrent

interactions are independent, then they may be serializ
The following properties enable designers to determi
whether concurrent interactions are independent.

Property 1: If the concurrent occurrence of
interactions is indistinguishable from a sequentia
occurrence, the interactions are independent.

Argument: Assume the interactions are dependen
Therefore, they are related by either cause-effect
concurrence. If they are related by cause-effect, th
cannot occur concurrently, since cause precedes effect
they are related by concurrence, no sequential occurre
of the interactions can have the same effect as t
concurrent occurrence. Since the interactions do n
depend on one another by either cause-effect
concurrence, the initial assumption is false.

Property 2: If concurrent interactions affect disjoint
sets of attributes, they are independent.

Argument: If concurrent interactions affect disjoint
sets of attributes, their effects can be applied sequentia
Therefore, the concurrent occurrence of these interactio
is indistinguishable from their sequential occurrence. B
Property 1, they are independent.

If concurrent interactions affect non-disjoint sets o
attributes, theyinterfere, but may not be dependent.

Property 3: Concurrent response and reques
interactions are independent.

Argument: Consider the interactions occurring during
a time-step [ti, ti+1] (see Figure 8). Response interaction
received during this time-step refer to behavior prior t
time ti. Request interactions received during this time-ste
refer to behavior after timeti+1. Let there be a timet´ such
that ti < t´ < ti+1. Re-arrange the interactions such that a
response interactions occur during the time-step [ti, t´], and
all request interactions occur during the time-step [t´, ti+1].
This re-arrangement does not alter the semantics of a
interaction because all of the response interactio
continue to refer to behavior prior to timeti and all of the
request interactions continue to refer to behavior after tim
ti+1. All of the response interactions can occur before all
the request interactions. Therefore, the concurre
occurrence of response and request interactions
indistinguishable from a sequential occurrence, name
responses before requests. By Property 1, responses
requests are independent.

FIGURE 7: Classes of Interactions
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FIGURE 8: Independent Concurrent Response and Request Interactions
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When two interactions interfere, but one of them has a
certain outcome and the other has an uncertain outcome,
then the former takes effect preferentially over the latter.
Interactions with certain outcomemusttake effect, whereas
interactions with uncertain outcome may be ignored,
delayed or permitted to take partial effect. A partial effect
for an interaction is the effect of the interaction on some
attributes but not others, or a fractional effect of the
interaction as opposed to the complete effect. If certainty
or uncertainty of interaction outcomes is multi-modal (e.g.,
as in priorities), then interactions with higher degrees of
certainty take effect preferentially over those with lower
degrees of certainty.

When two interactions are resolved, either one of them
takes effect preferentially over another, or they are
combined. In the former case, the preferred interaction
retains its type. In the latter case, the resultant interaction
has the same type as the original interactions. If
interactions of the same type interfere, they must be
resolved by application-specific policies. For example, if
two Type 0 interactions interfere, then they must be
combined by a policy that reflects domain-specific laws. If
the interactions cannot be combined, then the model must
be re-designed to avoid such paradoxical interactions.
When the effect of the combination of some interactions is
greater than the combination of effects of the individual
interactions, the interactions arecooperative. When the
effect of the combination of some interactions is less than
the combination of effects of the individual interactions,
the interactions arecompetitive. If cooperative or
competitive effects exist and the original interactions are
serialized, new interactions must be added to account for
these effects.

6.5. Policies for Resolving Effects of Interactions
We present policies to resolve the effects of dependent

concurrent interactions based on the characteristics of
interactions. Designers of multiple models may choose
from these or similar policies to resolve the effects of
dependent concurrent interactions. We present these
policies in detail elsewhere [15].

Serializing: If the concurrent effects of some
interactions cannot be distinguished from their sequential
effects, the interactions are independent (Property 1).
Therefore, the effects of independent concurrent
interactions may be applied by ordering the interactions
and permitting them to take effect one after another.

Ignoring : The effects of some sets of dependent
concurrent interactions can be resolved meaningfully by
ignoring some of the interactions.

Delaying: The effects of some sets of dependent
concurrent interactions can be resolved meaningfully by
delaying some of the interactions.

Combining Cooperatively or Competitively: Some
dependent concurrent interactions may be resolved
enhancing or diminishing the effects of the individua
interactions. The effects of such interactions may b
resolved by applying the effects of the individua
interactions as well as compensatory interactions th
account for cooperative or competitive effects.

7. Constructing an Interaction Resolver
An Interaction Resolver(IR) for an entity must resolve

the effects of concurrent interactions received by the enti
Resolving interactions involves determining the class
each interaction, determining if interactions of the sam
type interfere, propagating the effects of interactions a
resolving the effects at each attribute using applicatio
specific policies. The IR for an entity may be a singl
component or a number of components distributed over t
attributes in the entity. Conceptually, the distinction i
unimportant; during implementation, the distributed view
may be more efficient.

7.1. Operation of an IR
The operation of an IR involves encoding an

implementing policies for resolving the effects of classe
or types of concurrent interactions.

At design time, a designer encodes the type of ea
interaction and policies for resolving types of concurre
interactions. Encoding the type enables the IR to class
interactions, while encoding the policies enables the IR
resolve interactions. For example, when Type 1 and Type
interactions interfere, the former are discarded. Th
designer must specify a policy for discarding the Type
interactions, for example by ignoring or delaying them
The choice of policies may be dynamic, i.e., varying durin
run-time. However, designers must specify condition
under which the appropriate policy is chosen.

At run time, an entity sends and receives concurre
interactions. An IR for the entity must determine the typ
of each interaction and group the interactions according
their type. Initially, the effect of each interaction on the se
of attributes in all the representations is determine
assuming that the interaction occurred in isolation. Th
semantics of an interaction determine how members in
affectsset are changed. For each attribute, a list of potent
changes caused by the interactions is constructed. Not
of these changes will be applied to the attribute. From
encoded policies, the IR must determine which chang
must be applied.

The IR must resolve the changes caused by
interactions by considering the types of the interactio
and policies that eliminate conflicts among types o
interactions. Based on our classification of interactions, t
IR must consider the changes to each attribute in the or
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Type 0, 1, 2 and 3. This order preserves dependencies
among interactions.

Below, we present an algorithm for an IR. The IR must
determine the effects of all concurrent interactions by
referring to policies encoded by the designer. In this
algorithm, we apply the effects of interactions after all
dependent interactions have been resolved.

For each time-step
List L = sort interactions by type
For each interaction I in L

Determine effects of I on each attribute
For each attribute a

If cooperative/competitive effects exist
Insert compensatory effects in L

If Type 0 and 1 interactions interfere
Discard Type 1 changes

If Type 2 and 3 interactions interfere
Discard Type 3 changes

For each attribute a
Apply remaining changes

When all these changes have been applied, the entity
will be consistent. The IR enforces policies meaningful for
dependent concurrent interactions. Since the specified
policies for dependent concurrent interactions do not
isolate the interactions, the effects of these interactions can
be resolved meaningfully. Consequently, the entity
interacts at multiple representational levels concurrently
and consistently. We present an example IR elsewhere [15].

8. Summary
Concurrent interactions may have effects that are

dependent on one another. Resolving the effects of such
interactions by serializing them is generally incorrect since
serialization isolates the interactions. We present some
characteristics of interactions — request, response, certain
and uncertain — and four classes of interactions based on
combinations of these characteristics — Types 0, 1, 2 and
3. The classes distinguish semantic types of interactions
encountered commonly in modeling and simulation. Based
on these intrinsic characteristics of interactions, we
presented policies for resolving the effects of their
concurrent occurrence. We showed how to construct an
Interaction Resolver (IR) for an entity. An IR encodes
policies for resolving the effects of dependent concurrent
interactions at run-time. By designing an IR, a designer can
ensure that an entity’s behavior is meaningful when it
interacts concurrently.
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