
ber of
systems

as the

tational
coming

the user
sults is

tor

ding a
pecific.
to users.

g grid
n §3, we
s. In §4,

.

ueuing
nitoring
ystems
only a

s they

ss IDs
ach job

ll as
tter
ent,
Monitoring Remote Jobs in a Grid System
Anand Natrajan, Michael P. Walker

Department of Computer Science, University of Virginia
Charlottesville, VA 22904

{anand, mpw7t}@virginia.edu

Abstract.When users submit jobs to a grid system, they desire to monitor the progress of the jobs for a num
reasons. In this paper, we present a small set of attributes about jobs that are of interest to users. Some grid
already provide mechanisms for retrieving some of these attributes, whereas others do not. We use Legion
implementation platform for demonstrating how these attributes can be retrieved.

1 Introduction
As available computing power increases because of faster processors and faster networking, compu

scientists are attempting to solve problems that were considered infeasible until recently. Grid systems are be
more pervasive platforms for running distributed jobs to solve such problems. Agrid systemis an environment in
which users, such as scientists, can access resources in a transparent and secure manner.

In a grid system, when a user submits a job, the system runs the job on distributed resources, and enables
to access the results of the jobs when they complete. This model of submitting jobs and accessing their re
similar to the batch processing model prevalent in the early days of computing.

Often, users desire to monitor their jobswhile they execute. Some of the reasons why users choose to moni
their jobs are:

• To check on the progress (or lack thereof) of the jobs*

• To access intermediate results, either for checkpointing or for display
• To terminate the jobs if their progress is undesirable
• To steer the computation of the jobs after they have begun
• To check on the resource consumption of the jobs
• To share the results of their jobs in a secure manner

Naturally, many more reasons, some application-specific, may exist.
In this paper, we present a small set of attributes of executing jobs that may be of interest to a user. Fin

complete set of attributes is a futile task, particularly because some of the attributes may be application-s
Instead, our approach is to present a reasonable set of attributes that grid systems must make available
Individual grid systems may make additional attributes available.

In §2, we discuss how users monitor jobs in traditional (i.e., non-grid), systems. We present how existin
systems permit users to monitor jobs and contrast and compare these approaches with traditional systems. I
present a set of attributes of jobs. A grid system must enable a user submitting a job to access these attribute
we demonstrate how to access these attributes in the Legion system [GRIM98]. In §5, we summarise this discussion

2 Related Work
We present advantages and disadvantages of job monitoring in traditional (i.e., non-grid) systems and q

systems and discuss how grid systems can improve on it. Also, we show how existing grid systems enable mo
jobs, and contrast them with traditional systems. We compare and contrast the tools provided by existing grid s
with those provided by traditional systems. Given the large number of grid systems in existence, we evaluate
few representative systems.

2.1 Traditional Systems
In traditional or non-grid systems, after a user initiates jobs, she has the ability to monitor the jobs a

execute. Unix-like operating systems provide a rich set of tools that can be used to monitor jobs [RIT74]. For
example,ps andtop can be used to monitor the process status of jobs. Typically, these tools display the proce
of each job, the process ID of the parent of each job, the CPU usage of each job, the memory consumption of e

* A user’s lack of confidence in the progress of her jobs may stem from her lack of confidence in the application as we
her lack of confidence in the grid system itself, particularly in its ability to sustain jobs in the “running” state. The la
attitude is not seen usually with traditional non-grid operating systems. As grid systems evolve from their curr
incipient implementations, this attitude can be countered.
1

d

an be

itional

s
ls were
tools,
ntages

ll on
hine.
ch of

h job
.
bs,
able.
ols

ers,

sions to

, those
tools

to one
mits a
ID or
e job

ng jobs:

dicator
ueued,
n to be

. If the
b. Most
ality is
ems, the
rces are
of large

rogress
and its status according to the operating system. Likewise,du anddf can be used to monitor the disk usage an
available disk space for the jobs. Tools such astraceroute andnetstat can be used to monitor the network
behaviour of the jobs. In Windows-like operating systems, a number of graphical tools are available that c
utilised to monitor jobs [RIC98].

Traditional systems provide tools to perform all the tasks listed in §1 (and more). Tools such asps , du and
traceroute can be used to check on the progress of jobs and to monitor their resource consumption. Add
input files or can be sent and intermediate results accessed over NFS or using tools likeftp . Jobs can be terminated
by sending them signals either from the command line or by using tools likekill . Finally, users can share the result
of their jobs by setting appropriate permissions on files created by their jobs. Although in many cases the too
not written for the explicit purpose of job monitoring, as users have become more familiar with the available
they have been able to use them for job monitoring. However, traditional systems suffer a number of disadva
with respect to job monitoring:

• Checking the progress of a job or monitoring its resource consumption typically requires starting a she
the machine on which the job is executing, in turn, requiring that the user have an account on that mac
As the number of machines participating in a grid increases, requiring users to procure accounts on ea
them becomes unscaleable rapidly.

• Accessing intermediate files or providing additional input files requires shared file system support orftp -
like capability. File systems shared by widely-distributed machines can be inefficient. Tools likeftp and
scp typically require users to have accounts on the machines.

• Checking aggregate progress of large sets of jobs is difficult. Users must check on the progress of eac
individually. Alternatively, they must construct interfaces to monitor the progress of the entire set of jobs

• Monitoring jobs typically requires knowing on which machines the jobs are executing. For large sets of jo
requiring users to know or record the names of the machines on which their jobs are running is unscale

• Typically, users can monitor not only their own jobs but also other jobs on the machine. For example, to
like ps andtop can be used to monitor the jobs of other users, albeit in a limited manner. For some us
even this limited monitoring may be an invasion or privacy.

These disadvantages are not inherently a result of bad design. Rather, the tools are well-designed exten
operating systems that were not meant to be grid systems.

In summary, traditional systems offer users a rich set of tools that can be utilised to monitor jobs. However
tools come with a few disadvantages. With grid systems we have the opportunity to construct job monitoring
that combine the best features of traditional tools with the benefits of grid systems.

2.2 Queue Systems
Traditionally, queue systems have been used to manage job scheduling on a cluster of nodes [BAY99] [FER93]

[IBM93] [Z HOU92] [ZHOU93]. Typically but not necessarily, the nodes are homogeneous and are located close
another (e.g., within a single building). Most queues operate in “batch” mode. In other words, when a user sub
job, the submission program immediately returns the user to the prompt and provides her with a ticket or job
token, which can be used to monitor the job at any later time. The ticket becomes invalid shortly after th
completes. Most queuing systems comply with a POSIX interface that requires three standard tools for runni

• a submit tool (qsub in PBS,bsub in LSF,llsubmit in LoadLeveler)
• a status tool (qstat in PBS,bjobs in LSF,llstatus in LoadLeveler)
• a cancel tool (qdel in PBS,bkill in LSF,llcancel in LoadLeveler)

In addition, some queues provide other tools to check on the aggregate status of the queuing system (e.g.,bqueues
in LSF andllq in LoadLeveler).

In queuing systems, the progress of jobs can be checked with the status tool. Typically, the progress in
returned is the queuing system’s view of a job. For example, the queue may report that a particular job is q
running or terminated. Some queuing systems, such as LSF, permit application-specific status informatio
returned to the user. The application-specific status augments the status returned by the queuing system
continued execution of a particular job is deemed undesirable, the cancel tool can be used to terminate the jo
queuing systems do not provide tools to access intermediate files or supply additional inputs. If such function
desired by the user, the user must employ shared file systems or other file transfer tools. In most queuing syst
user can specify limits on the resources consumed by jobs, but cannot determine how much of those resou
actually consumed by the jobs. Queuing systems do not provide any support for checking aggregate progress
sets of jobs. Users must check on the progress of each job individually or construct interfaces to monitor the p
2

inally,
ry users

etwork.
r. Grid
es that
of jobs

g, the
possess
ny of the

cts,
behalf
ust run
log on to
its a job
rmation

phical
t provide
system

ith the
ermit a
system

g jobs.

ms for
for their

rmitted
tted to a
of the entire set of jobs. Monitoring jobs does not require knowing on which machines the jobs are executing. F
most queuing systems can be configured such that only privileged users can see the status of all jobs; ordina
can see the status of only their own jobs.

2.3 Grid Systems
A grid system is an operating system for managing heteregeneous resources distributed over a n

Typically, in a grid system, when a user submits a job, the job runs with the permissions of an ordinary use
systems typically span multiple organisations and administrative domains. Often grid systems run on machin
are controlled by queuing systems. Currently, there are no standard methods for monitoring the progress
executed by grid systems. Different grid systems use different techniques for monitoring jobs.

In Globus [FOST99], a user submits a job to a specific set of machines. After the jobs have begun executin
user may log on to any of the machines and monitor specific jobs. Naturally, this process requires the user to
accounts on each machine. However, if the user does have accounts on the machines, the user may use a
tools available on traditional systems to monitor the job.

In Legion [GRIM97], monitoring jobs is rudimentary (until version 1.6.5). In Legion, running jobs are obje
similar to hosts, files and directories. Legion tools that submit jobs for execution monitor the objects created on
of the jobs. However, the information returned to the user is sparse. If the user indicates that a particular job m
on a particular host machine, and the user happens to have an account on that machine, then the user may
that machine and use tools available on traditional systems to monitor the progress of the jobs. If a user subm
but does not specify the machine on which the job must run, then the user may not be able to access any info
about the job.

In Nimrod [ABR95], the system itself monitors jobs submitted by the user. The Nimrod system starts a gra
tool that the user can use to observe the progress of jobs and terminate jobs if necessary. The system does no
any means for accessing intermediate files or providing additional input files unless the user logs on to a
directly and uses traditional tools.

None of the above systems provide any mechanism for checking on the resource consumption of a job. W
exception of Nimrod, none of the systems provide aggregate job monitoring facilities. None of these systems p
user to monitor other users’ jobs unless the user presents the correct credentials or circumvents the grid
altogether by logging on to a specific machine. In summary, grid systems provide sparse support for monitorin
There is room for improvement in the amount of information a grid system can provide about jobs.

3 Job Attributes
In this section, we construct a reasonable set of attributes of running jobs and discuss the mechanis

accessing these attributes. Users submitting jobs to a grid system should be able to access these attributes
jobs and their jobs alone. If a grid system requires a privileged user or administrator, this user may also be pe
to access these attributes for every job in the system. Generally, there are three kinds of jobs that are submi
grid system:

1. Sequential jobs, i.e., single-process jobs
2. Parallel jobs, i.e., multi-process jobs
3. Parameter-space jobs, i.e., multiple instances of typically sequential jobs

For each of these jobs, the minimum set of attributes are:
• status of the jobs according to the grid system
• name of the machine on which the job is running
• working directory of the job
• list of the files in the working directory of the job
• permissions, timestamp and size of any file in the working directory of the job

Therefore, a reasonable set of operations on a running job is:
• get status of the job
• get name of the machine on which the job is running
• get the name of the working directory for the job
• get the list of files in the working directory of the job
• get the permissions, timestamp and size of a file in the working directory of the job
• get any file from the working directory of the job
• send any file to the working directory of the job
3

m may

set is
on grid

ns.

of a
rmance
rlying
these

sion of
hereas a
mber of
Legion
writing

ms are
dition,
ding to

hat are

ams
binary

dically

ecific

rned by
status of
• delete any file from the working directory of the job
• terminate the job
Additional attributes and operations are possible and encouraged. For example, a particular grid syste

offer the following attributes:
• application-specific status
• CPU usage on the machine on which the job is running

Accordingly, additional operations that can be provided may be:
• get application-specific status
• get CPU usage of the machine on which the job is running
• change the priority or “nice”ness of the job

Other operations that a particular grid system may provide may be:
• archive the working directory of the job after the job is complete
• send arbitrary signals to the job
In this paper we will describe an implementation only of the first set of operations. We believe that this

reasonable and small, whereas the latter set is somewhat esoteric. As users run large numbers of jobs run
systems, their patterns of usage may educate grid designers about an even more reasonable set of operatio

4 Legion Implementation
Legion is an architecture for a grid system [GRIM98]. Just as an operating system provides an abstraction

machine, Legion provides an abstraction of the grid system. This abstraction supports the current perfo
demands of scientific applications. A number of applications already run using Legion as the unde
infrastructure. In the future, users will demand support for new methods of collaboration. Legion supports
expected demands as well.

The Legion project is an architecture for designing and building system services that present users the illu
a single virtual machine. This virtual machine provides secure shared objects and shared name spaces. W
conventional operating system provides an abstraction of a single computer, Legion aggregates a large nu
diverse computers running different operating systems into a single abstraction. As part of this abstraction,
provides mechanisms to couple diverse applications and diverse resources, vastly simplifying the task of
applications in heterogeneous distributed systems.

Each system and application component in Legion is an object. Running instances (a.k.a. jobs) of progra
objects. All Legion objects respond to a set of mandatory methods (for example, ping and list-attributes). In ad
specific objects may respond to additional methods. For example, as of version 1.7, the objects correspon
running programs have been written to respond to methods corresponding to the operations outlined in §3.

Users may start either legacy jobs or jobs that use Legion libraries and objects using a number of tools t
part of the Legion distribution:

• legion_run enables users to start legacy sequential jobs
• legion_native_mpi_run enables users to start legacy MPI jobs
• legion_mpi_run enables users to start Legion MPI jobs
• legion_run_multi enables users to start parameter-space jobs, typically of sequential legacy progr
Each tool starts a Legion “runnable” object on some machine. This runnable object then starts the user’s

on the machine, either by a fork/exec or a queue submit. After starting the binary, the runnable object perio
checks the status of the binary using whatever mechanisms are available on that machine.

After starting a job, a user may inquire about its status. In Legion, this action translates into invoking sp
methods on the runnable object corresponding to that job. The Legion tools that enable status inquiries are:

• legion_probe_run enables users to check legacy sequential or MPI jobs
• legion_mpi_probe enables users to check Legion MPI jobs

After a user starts a job, he may request that a probe be returned. This probe is similar to a job ID or ticket retu
a queuing system. Subsequently, the user may use this probe and one of the tools above to inquire about the
the job. Suppose a user started a legacy sequential job. He would have usedlegion_run in the following manner:

legion_run -v -probe pfile -IN file1 -IN file2 -OUT file3 myClass arg1 arg2
In the above command, the probe is stored in the local filepfile. The user has indicated that the local filesfile1 and
file2 are to be supplied as input files and the filefile3 is to be retrieved as an output file at the end of the run.myClass
is the name of the Legion object that corresponds to the user’s program.legion_run effectively creates an instance
of myClass on some remote machine in order to run the user’s job.arg1 andarg2 are arguments for that job.
4

, the file

rectory
of the
d
ested
able

f the job

ince
s control

er, the
example,
n which

onitor
be too

ers.
ailable
ob. We
e being
future

ns
95.

d

Once the job has been started (i.e., the Legion runnable object has been created) on the remote machine
pfile is written. The user can now inquire about the status of the job using commands like the ones below:

legion_probe_run -probe pfile -statjob -pwd -hostname -list
legion_probe_run -probe pfile -IN file4 -stat file4 -OUT file2
legion_probe_run -probe pfile -chdir subdir -pwd -kill

The first of these commands requests Legion to print, in that order, the status of the job, the current working di
of the job, the machine name on which the job is running and a list of the files in the current working directory
job. The second command requests Legion to send in a new filefile4 as an input file, print the permissions, size an
timestamp offile4and getfile2as output. These new inputs and outputs do not affect the inputs and outputs requ
in the legion_run earlier. The third command requests Legion to change the working directory of the runn
object, print the new working directory and kill the job. The options tolegion_probe_run may be specified in
any order (with the caveat that nothing is executed after a-kill).

This probing mechanism can be used not only to check the status of jobs, but also to steer the progress o
in interesting ways. For example, ifmyClasswas written appropriately, sending infile4 later may change the rest of
the computation. Retrievingfile2 periodically can be used to display intermediate results or save checkpoints. S
all of these operations are performed on the Legion runnable object, and since every Legion object has acces
lists associated with it, a single job can be started, viewed, steered and terminated by different sets of users.

The Legion mechanisms provided above are rich enough to monitor the progress of jobs in detail. Howev
mechanisms are flexible enough so that new features can be added as they are deemed essential. For
suppose at a later date it is deemed important that a user should be able to check the CPU load on the host o
hisor her job is running. Adding that functionality to the Legion runnable object and thelegion_probe_run tool
is straightforward, and requires less than an hour’s worth of programming effort.

5 Summary
The ability to monitor the progress of jobs is essential to any user. Most grid systems enable users to m

jobs. Some of these systems, for example, traditional operating systems, provide a rich set of tools, but can
permissive. Other systems are less permissive, but do not provide enough richness in the toolset for many us

We have identified a set of key attributes of a job, namely, job status, machine name, working directory, av
files and status of each file. In our experience, users often desire to know these attributes about their j
implemented a job monitoring scheme in Legion. The tools used for job monitoring have been deployed and ar
used widely. The mechanism for implementing these tools is rich yet flexible enough to accommodate
improvements.

6 References
ABR95 Abramson, D., et al.,Nimrod: A Tool for Performing Parameterised Simulations using Distributed Workstatio,

Proceedings of the 4th IEEE International Symposium on High Performance Distributed Computing, August 19
BAY99 Bayucan, A., Henderson, R. L., Lesiak, C., Mann, N., Proett, T., Tweten, D.,Portable Batch System: External

Reference Specification, Technical Report, MRJ Technology Solutions, November 1999.
FER93 Ferstl, F.,CODINE Technical Overview, Genias, April 1993.
FOST99 Foster, I., Kesselman, C.,The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999.
GRIM97 Grimshaw, A. S., Wulf, W. A.,The Legion Vision of a Worldwide Virtual Computer, Communications of the ACM,

Vol. 40, No. 1, January 1997.
GRIM98 Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K.,Metasystems, Communications of the ACM, Vol. 41,

No. 11, November 1998.
IBM93 International Business Machines Corporation,IBM LoadLeveler: User’s Guide, September 1993.
KING92 Kingsbury, B. A.,The Network Queueing System (NQS), Technical Report, Sterling Software, 1992.
RIC98 Richter, J.,Custom Performance Monitoring for your Windows NT Applications, Microsoft Systems Journal,

August 1998.
RIT74 Ritchie, D. W., Thompson, K.,The UNIX Time-sharing System, Communications of the ACM, Vol. 17, No. 7, July

1974.
ZHOU92 Zhou, S., LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems, Workshop on Cluster

Computing, December 1992.
ZHOU93 Zhou, S., Wang, J., Zheng, X., Delisle, P.,Utopia: A Load Sharing Facility for Large, Heterogeneous Distribute

Computer Systems, Software Practice and Experience, Vol. 23, No. 2, 1993.
5

	Monitoring Remote Jobs in a Grid System
	Abstract. When users submit jobs to a grid system, they desire to monitor the progress of the job...
	1 Introduction
	2 Related Work
	2.1 Traditional Systems
	2.2 Queue Systems
	2.3 Grid Systems

	3 Job Attributes
	4 Legion Implementation
	5 Summary
	6 References
	Abr95
	Bay99
	Fer93
	Fost99
	Grim97
	Grim98
	IBM93
	King92
	Ric98
	Rit74
	Zhou92
	Zhou93

