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ABSTRACT 
Distributed systems adapt to changing load conditions by adding         
or removing servers that process requests. In such systems, it is           
often efficient to persist connections between specific clients and         
servers, while concurrently balancing the load between servers.        
Our algorithm, called plastic hashing, achieves high connection        
stability with an even load distribution. The algorithm is fast and           
straightforward to implement and lends itself to distributed        
decision-making. 
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1​ Introduction 
Architects of distributed systems often try to balance the load          
generated by a large number of clients communicating with a fleet           
of servers. The mechanisms they use include a hashing algorithm          
that uses a request identifier to identify the server that will process            
the request. Once the server is identified, they may prefer to           
persist the client-server connection in order to make ongoing         
communications between the two more efficient. The client-server        
connection may be stateful, with each installment in the ongoing          
communication using information from prior installments. Typical       
examples of explicit and implicit information are sessions,        
connection streams and server-side caches. 

A typical load balancing approach applies a hashing algorithm         
h(​•​) to a request to identify the server that will process the request.             
This hashing algorithm often uses a ​modulo function to generate a           
hashed request identifier, or ​hashed request​. The resulting        
remainder can be used to select the server directly by identifying           
the ordinal number of a server, or indirectly by identifying the           
ordinal number of a virtual server, which subsequently identifies         

the actual server. This approach is ​fast​, using the modulo function           
just once in one invocation of the hashing algorithm. It is ​even            
because uniformly-distributed hashed requests will be distributed       
uniformly over the fleet of servers. It is ​stable because requests           
that result in the same hashed request will always be sent to the             
same server. Speed, evenness and stability are crucial to load          
balancing algorithms or technologies because they enable the        
design of robust and efficient systems. 

Changes to the operating characteristics of the system,        
specifically, a change to the volume of inbound requests, may          
change the number of servers in the fleet. If the server count            
grows, the new servers should service the excess volume.         
However, the process of re-hashing all inbound requests may         
cause some ongoing requests to be handed off to a different           
server, which may necessitate an expensive set of operations to          
re-establish the state between the client and the new server.          
Likewise, if the server count reduces, indubitably some requests         
will have to move from defunct to surviving servers. The goals of            
evenness, stability and speed can sometimes conflict with each         
other in the face of changing server counts. 

We propose a novel hashing algorithm, called ​plastic hashing         
that achieves a desirable balance between evenness, stability and         
speed. In the next section, we will examine popular alternative          
approaches so as to highlight the difficulties involved in achieving          
even, stable and fast load balancing. Subsequently, we will         
present the plastic hashing algorithm. Next, we will present         
comparisons of plastic hashing with the alternatives for simulated         
workloads. These workloads are crafted to subject our simulated         
fleet of servers to shocks small and large in either direction. Our            
results show how all of the algorithms adapt to these shocks, in            
terms of evenness and stability. We will then discuss results and           
policies briefly before concluding. 

2​ Related Work 
Distributed systems often adapt to changes in the request load          

by changing the number of servers. Obviously, increasing the         
number of servers when load increases improves throughput and         
latency. Decreasing the number of servers when load decreases         
results in lower costs by increasing utilisation. The naïve approach          
to balancing changing load simply uses the new count of servers           
in the modulo function within ​h(​•​)​. Doing so is fast and even, but             
not stable. The change in the divisor causes a large proportion of            
requests to move from one server to another. 

Consistent hashing is an alternative approach that achieves        
more stability, but at the price of evenness. Here, the load           
balancing system maintains a list of slots, arranged as a ring [1].            
Each server is hashed using ​h(​•​)​, the same algorithm as the           
requests, but the enclosed modulo function uses the number of          
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slots, not the number of servers. A server that hashes to a specific             
slot is said to occupy that slot. Inbound requests are hashed and            
subjected to the same modulo function. If the resultant slot for a            
request coincides with the slot occupied by a server, that request is            
processed by that server. If the slot is unoccupied, the algorithm           
finds the nearest occupied slot, usually by walking along the ring           
clockwise. The first occupied slot identifies the server used to          
process the request. When a new server is added, it occupies a            
new slot in the ring. The only requests that move are the ones that              
hash in between this new server and the server occupying a           
previous slot. Likewise, removing a server affects only the         
requests incident on this server which have to move further along           
the ring to the next occupied slot. Finding the next server in the             
ring can be slow if the ring is sparse, i.e., the number of slots far               
exceeds the number of servers. However, speed can be improved          
by constructing more sophisticated support data structures and        
algorithms to search the ring. The most serious criticism of          
consistent hashing is that it can lead to unbalanced loads, i.e.,           
violate evenness greatly. This criticism can be rebuffed somewhat         
by adjusting the modulo function, the number of slots and the           
algorithm to make every server occupy multiple slots on the ring. 

Rendezvous hashing is another approach that achieves       
stability by hashing each request with every server in the fleet and            
picking a winning hash [2]. In other words, for every request, the            
algorithm invokes ​h(​•​) for every server. From the resulting set of           
hashes, the algorithm picks a predictable winner, usually the         
maximum. The server contributing to that hash is chosen as the           
one to process the request. Choosing several algorithm parameters         
wisely is critical. Specifically, adding and removing servers must         
preserve the roughly uniform probability of any server being         
selected. With a good choice of hashing algorithm, rendezvous         
hashing can achieve a high degree of evenness and stability, but at            
the expense of speed. For large fleets of servers, computing the           
per-server hash for every request can become expensive. 

3​ Algorithm Description 
Our new approach, called plastic hashing, is an alternative to          

previous approaches. Plastic hashing uses a simple but novel         
algorithm to assign a server for each request. The algorithm          
achieves evenness comparable to the naïve approach, stability        
comparable to consistent and rendezvous hashing, and speed        
comparable to naïve and consistent hashing. The algorithm relies         
on a “configuration history”, which is simply a list of the counts            
of servers in each epoch. For example, if in a particular system,            
the initial count of servers is 5, then grows to 7, then shrinks to 4,               
the configuration history is (5, 7, 4) at the end of those three             
epochs. This list can grow unbounded, although in a later section           
we will show how to reduce its size. The algorithm does not            
specify what an epoch is, nor how long. Practically, we expect an            
epoch to be any length of time during which the server counts do             
not change. Presently, we will introduce the concept of a “quiet”           
epoch during which we can perform housekeeping. 

We present a pseudocode version of the algorithm below, and          
work through it with some examples in the table following. The           
table shows some sample requests with request identifiers in the          
first row. Successive rows show initial, growing and shrinking         
epochs respectively. The numbers in each cell show the server          

number allocated by plastic hashing (servers are numbered from 0          
onwards). The subscripted numbers show what naïve hashing        
would have done, as comparison. 

 ​1 ​def h(​•​) as algorithm to get server for one request 
 ​2 ​    let ​id​ be the identifier for the request 
 ​3 ​    let ​N​:​ ​N​

0​, ​N​1​, ... ​N​k​ be the configuration history 
 ​4 ​    let ​N​

old​ ​←​ ​N​
0
 

 ​5 ​    let ​S​
old​ ​←​ ​id​ modulo ​N​

old​ be the chosen server 
 ​6 ​    for each ​N​

new​ ​←​ ​N​
1​ ... ​N​k 

 ​7 ​        let ​S​
new​ ​←​ ​id​ modulo ​N​

new
 

 ​8 ​        if ( ​N​
new​ ​>​ ​N​old​ and ​S​

new​ ​≥​ ​N​old​ ) or 
 ​9 ​           ( ​N​

new​ ​<​ ​N​old​ and ​S​
old​ ​≥​ ​N​new​ ) 

10 ​                let ​N​
old​ ​←​ ​N​

new
 

11 ​                let ​S​
old​ ​←​ ​S​

new
 

12 ​    return ​S​
old​ as the chosen server 

The algorithm cycles through the configuration history, from        
oldest to newest. Consecutive epochs grow (​N​

new
> ​N​

old​) or shrink           
(​N​

new
< ​N​

old​) server counts. The algorithm begins by computing          
the request modulo the server count of the first epoch in the            
configuration history. Tentatively, the algorithm selects the       
resulting server as the chosen server. The algorithm then goes to           
the next epoch in the configuration history and computes the          
request modulo the server count in the new epoch. 

Consider the request with ​id = 78. In the first epoch, both            
plastic hashing and naïve hashing place the request on server 3           
(78 modulo 5). In the next epoch, the server count grows to 7, and              
N = (5, 7). The naïve algorithm would move the request to server             
1 (78 modulo 7). In contrast, the plastic algorithm computes ​S​

old
           

= 3, ​N​
old

= 5, ​N​
new

= 7 and ​S​
new

= 1. As a result, the condition on                  
line 8 evaluates to false, leaving ​S​

old
unchanged as the server           

choice. In the next epoch, the server count shrinks to 4, and ​N =              
(5, 7, 4). The naïve algorithm would again move the request to            
server 2 (78 modulo 4). But the plastic algorithm computes ​S​

old
=            

3, ​N​
old

= 5, and on the second iteration, ​N​
new

= 4 and ​S​
new

= 2. This                 
time, the condition on line 9 evaluates to false, again leaving ​S​

old
            

untouched. This conservative behaviour of the plastic algorithm        
contributes to its stability. 

Of course, the algorithm also must try to even the load.           
Consider the request with ​id = 111. In the first epoch, it is placed              
on server 1. In the next epoch, ​S​

old
= 1, ​N​

old
= 5, ​N​

new
= 7 and ​S​

new
                  

= 6. Now, the condition on line 8 evaluates to true, funnelling off             
this request to the newly-added server 6. The next epoch shrinks           
the fleet, so by the second loop iteration, ​S​

old
= 6, ​N​

old
= 7, ​N​

new
=                

4 and ​S​
new

= 3. The condition on line 9 evaluates to true,             
representing a forced move from defunct to surviving servers. In          
this case, the algorithm sacrificed stability either to even out the           
load or out of compulsion. 
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Epoch / ​id 280 78 111 354 417 361 

N = (5) 0​0 3​3 1​1 4​4 2​2 1​1 

N = (5, 7) 0​0 1​3 6​6 4​4 4​2 4​1 

N = (5, 7, 4) 0​0 2​3 3​3 2​2 1​2 1​1 



 

 
This small sample of requests clearly shows plastic hashing         

attempting to preserve the server allocation for requests across         
epochs. The algorithm is conservative about changing the server         
to which a request is allocated, and does so only when forced to in              
a shrinking phase, or in a proportional manner in a growing phase. 

A challenge with plastic hashing is that the time required to           
identify a server grows as the configuration history grows. For          
each request, the number of modulo operations required increases         
as the configuration history accretes epochs. We introduce a         
housekeeping operation, called “snap”, to speed up plastic        
hashing. The snap operation, typically performed during some        
quiet epoch, discards the entire configuration history except for         
the last entry, i.e., the current server configuration. Since the          
entire configuration history vanishes, the algorithm incurs an        
epoch's worth of moves. However, after those moves, plastic hash          
functions as efficiently as the naïve algorithm. 

Virtual hosts can be used in conjunction with consistent         
hashing and rendezvous hashing as well as plastic hashing for an           
additional layer of load balancing or for redundancy. Here, the          
algorithms are deployed to select a virtual server, as opposed to an            
actual server. The virtual server in turn points to one or more            
actual servers that field the request. Virtual hosts permit adding          
and removing servers in arbitrary order, not just last-in-first-out. 

Plastic hashing is well-suited for making distributed decisions.        
Some systems eliminate the load balancer itself within the         
architecture, relying instead on the clients to balance the load.          
This approach not only alleviates the risk of a single point of            
failure, but can also reduce the number of network hops a request            
must traverse before landing on a server. Such client-side load          
balancing requires all clients to share not just the hashing          
algorithm ​h(​•​)​, but also the state variables that factor into ​h(​•​)​. The            
state variable that must be shared in plastic hashing is the           
configuration history. Specifically, the ​change in the       
configuration history is the ​only state variable that must be          
coordinated among clients. The hashing algorithm, the       
maintenance of a sequence of counts, and the triggers for an           
automatic snap can all be decided before the system becomes          
operational. In contrast, the shared-state requirements of       
consistent hashing and rendezvous hashing are significantly       
larger. 

4​ Methodology and Results 
In order to view and compare the various algorithms in action,           

we simulated a synthetic load and ran it for several epochs against            
each algorithm. In our simulation, we ran 100,000 requests in          
each epoch. In a real-life workload, a request would likely be           
identified by some transaction ID. For our purposes, a simple          
counter from 0 through 99,999 sufficed as the request identifier          
because it is uniformly distributed. A request with an identifier ​R           
can be considered the next installment of a request with the same            
identifier ​R from a previous epoch. Controlling the request         
identifiers enabled us to control all of the variables that might           
affect which server processes which request. 

The requests themselves did nothing and incurred no        
processing time. Given our desire to merely compare algorithms,         
our simulation abstracted away all of the complexity of distributed          

systems, such as server failures, network connection speeds,        
faulty responses, etc. While those considerations are important in         
the design of distributed systems, none of them affects the          
operation of any of the load balancing algorithms. These         
algorithms can be imagined as running entirely within a load          
balancer, and simply computing a server number for each request. 

We crafted two workloads, labelled “adjusting” and “chaotic”,        
each with 10 epochs. In each workload, we changed server counts           
in the first 7 epochs, reserving the last 3 epochs for quiet periods             
that did not change server counts. In the adjusting workload, the           
server counts changed by small amounts in the range 45-55 at           
random. In the chaotic workload, the server counts changed to any           
number in the range 1-99. For consistent hashing, we chose 1024           
slots with 8-way replication for each server. 

For each request in each epoch, we noted if the request ended            
up on the same server as it did on the immediately prior epoch. If              
it did not, we incremented a counter to count such moves. We            
computed the percentage of requests that moved, to lend         
perspective to the magnitude of changes. The lower the         
percentage, the greater the stability. At the end of each epoch, we            
tallied up the number of requests that were processed on each           
server in the fleet. We then measured the coefficient of variance           
for the distribution of requests (i.e., the ratio of the standard           
deviation to the mean). The lower the coefficient of variance, the           
more even the load distribution. Finally, we measured the time          
each algorithm took to complete each epoch. 

In Figure 1, we show the number of moves incurred by each            
algorithm as a percentage of the total number of requests, for the            
adjusting workload. The X-axis shows that the server counts         
change by relatively small numbers as the epochs progress from          
left to right. In the first epoch, every algorithm assigns requests to            
servers for the first time, so we do not count them as moves. For              
every subsequent epoch, we count how many times a request          
moved to a server different from the server it was on in the             
previous epoch. The large bars for the naïve algorithm are          
expected. Every alternative tries to reduce the number of moves.          
Plastic hashing compares favourably against all of the alternatives         
except for the solitary spike in the third-to-last epoch. This spike           
is because we initiate housekeeping in a quiet epoch, the benefits           
of which can be seen shortly. 

 

Figure 1: ​Number of moves as a percentage of total          
requests for each epoch in an adjusting workload. Lower         
percentages indicate desirably greater stability. 
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Figure 2: ​Coefficient of variance of server load at the end           
of each epoch in an adjusting workload. Lower coefficients of          
variance indicate desirably more even load distribution. 

In Figure 2, we show the coefficient of variance of the load            
distribution across the fleet of servers for the same adjusting          
workload. The naïve algorithm always has a perfect distribution of          
load across servers, and therefore shows zero coefficient of         
variance. Every other alternative encounters some non-zero       
coefficient of variance. Of these, plastic hashing shows the lowest          
coefficient of variance, i.e., the most even load distribution. 

 

Figure 3: ​Number of moves as a percentage of total          
requests for each epoch in a chaotic workload. Lower         
percentages indicate desirably greater stability. 

For the chaotic workload, the X-axis in Figure 3 shows that           
the server counts change by relatively large numbers for         
consecutive epochs. Every algorithm incurs a greater number of         
moves to adapt to these changes, although the naïve algorithm          
continues to be the least stable. Plastic hashing is within reach of            
all of the alternatives. Once again, plastic hashing incurs a spike           
in moves because of the housekeeping in a quiet epoch. 

The naïve algorithm continues to have a perfect load         
distribution for the chaotic workload as well, as seen in Figure 4.            
Plastic hashing shows the next lowest coefficient of variance, i.e.,          
the next most even load distribution. Notice how the coefficient of           
variance for plastic drops even further, to a perfect zero during the            
quiet periods. The benefit of the snap is that it compresses the            

configuration history to a ​single entry, i.e., the current server          
count. Doing so results in an even load automatically. 

 

Figure 4: ​Coefficient of variance of server load at the end           
of each epoch in a chaotic workload. Lower coefficients of          
variance indicate desirably more even load distribution. 

We present empirical observations about the performance of        
the algorithms rather than numerical comparisons. Clearly, load        
balancers must select a server for a request rapidly, so as to not             
add to the request processing latency. The modulo operation         
inherent to all hashing algorithms typically takes a few         
nanoseconds on the modern processors within most load        
balancers. However, repeated invocations of the modulo function        
per request can add up to a significant latency penalty. In           
deference to work done by others, we did not attempt to fine-tune            
our implementations of each algorithm to improve wall-clock        
execution time. In our empirical observations, the naïve algorithm         
is expectedly the fastest. Even our simple-minded implementation        
of the ring traversal for consistent hashing is fast, typically taking           
only twice as long as naïve. Plastic hashing is next fastest, taking            
anywhere from twice to eight times as long as naïve. Rendezvous           
hashing is the slowest, with speeds two orders of magnitude          
slower than naïve. These observations comport with a        
straightforward tallying up of the number of modulo operations         
each algorithm requires per request. 

5​ Discussion of Results 
Expectedly, the naïve algorithm has the worst stability, i.e.,         

greatest number of moves. Changing the number of servers,         
whether more or fewer, by a little or a lot, causes virtually all             
requests to move around. This well-known behaviour of the naïve          
algorithm is the reason alternatives were proposed in the first          
place. The naïve algorithm does have the property of perfect          
evenness. The number of requests on each server is identical to           
the number on any other server (ignoring “off by one” cases when            
the number of requests is not an integral multiple of the count of             
servers). Intuitively, the naïve algorithm is fast because the only          
work involved is computing one modulo function. Our empirical         
observations corroborate that intuition. 

Consistent hashing and rendezvous hashing have the best        
stability (least number of moves). However, stability comes at the          
price of uneven load distribution (large coefficient of variance). It          
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is somewhat difficult to adjudge which of these is better than           
which other because the results depend a lot on various          
configuration factors. Consistent hashing relies on a wise choice         
of the number of slots and number of replicas for a server in the              
ring of slots. The slot hashing can result in an uneven placement            
of servers in the slot ring, which makes server load uneven.           
Adding and removing servers necessitates removing all replicas        
from the slot ring, which can perturb the load distribution even           
more. Consistent hashing is a pretty quick algorithm. Although         
our simple-minded implementation performed a sequential search       
around the slot ring, it was still quite speedy. Faster          
implementations using binary search can speed up the algorithm         
even more, and are likely necessary if the number of slots is large             
and the slot ring is sparse. 

Rendezvous hashing has stability and evenness comparable to        
consistent hashing. The algorithm relies on a wise choice of          
hashing function to produce a joint hash of every request with           
every server. The winning hash for every request (usually the          
maximum), must itself be evenly distributed across the fleet of          
servers. Although several excellent hashing functions exist and        
can be employed, the rendezvous algorithm does run the hazard of           
encountering server configurations that favour some servers more        
than others, resulting in an uneven load distribution. The choice of           
the hash function has to be wise in yet another regard; it must be              
fast. Because rendezvous hashing requires each request to be         
hashed with every server in the fleet, if the number of servers            
becomes large, the algorithm slows down. Some alternative        
approaches have been proposed in the literature to speed up this           
process. Our simple-minded implementation performed a brute       
force calculation of all hashes, which penalised the wall-clock         
performance of rendezvous hashing. 

Plastic hashing exhibits a coefficient of variance significantly        
better than the alternatives, approaching naïve hashing. It does so          
with a stability that is almost as good as consistent hashing and            
rendezvous hashing. Already fast, plastic hashing speeds up        
further every time the snap operation is performed. 

Snap Judgement. The snap clearly adds to the number of          
moves incurred by plastic hashing. Without a snap, plastic         
hashing would still have stability that rivals consistent and         
rendezvous hashing, with superior evenness. However, the       
performance of the algorithm would steadily degrade as the         
configuration history grew. The snap offers an opportunity to         
wipe the slate clean, albeit with some transient pain. Notice that           
the coefficient of variance in the quiet periods after the snap is            
zero, unlike the alternative algorithms, which retain their final         
distribution, however uneven. 

The snap operation can be triggered at any convenient time. In           
our simulations we triggered it at the first epoch where the server            
configuration did not change. Upon reflection, the snap operation         
really devolves into two separate and orthogonal decisions: ​when         
to invoke it, and ​what​ to do when invoked. 

As to ​when​, it is always possible to invoke the judgement of a             
human operator. However, we can strive to encode and automate          
the decisions such a human would make. Extreme choices for that           
decision are “never” and “before every epoch”. More nuanced         
choices, such as “before every ​k​th epoch”, “when server counts          
are below some ​n​”, “when request volumes are below some ​r​” and            

“when server counts have not changed in ​k consecutive epochs”          
are worth considering as well. 

As to ​what​, the gentlest change to the configuration history is           
to unify adjacent configurations that have identical server counts.         
The snap operation we discussed earlier is drastic, decapitating all          
of the history except for the last entry. Cleaving the configuration           
history into two equal or unequal sections is another option,          
although it is unclear which section to retain; the latter section           
contains the current server configuration, but the former section         
builds up the flavour of the conservative allocation within plastic          
hashing. Yet another option is to spring back to an earlier           
configuration history. For example, if the configuration history is         
N = (53, 47, 51, 59, 61), and the next epoch is about to add 47 to                 
the list, we can spring the history back to ​N = (53, 47). We could               
also anneal the history, gradually changing previous       
configurations by small amounts so that the final history         
resembles the current server configuration alone. 

Most of the ​when​/​what combinations possible from the        
choices above outperform alternative hashing algorithms.      
Evidently, some of the possible combinations are pathological,        
therefore undesirable. For example, snapping before every epoch        
causes plastic hashing to degenerate to naïve hashing. Any         
combination involving annealing causes too many moves over        
time. Our preliminary studies indicate that the best combinations         
are those that are sensitive to the current state of the system. In             
particular, our recommended snap at periods of stasis, when         
server counts are not changing, achieves a balance between         
number of moves, load distribution and speed. Likewise,        
springing back before every epoch to a prior history if possible,           
also achieves a similar balance. By design, our simulations do not           
permit modelling periods of low request volumes, but intuitively,         
a policy built using low request volume as a trigger is likely to        
work well. 

6​ Conclusions 
We have presented a novel algorithm, called plastic hashing,         

that can be used for selecting which servers process which          
requests. The algorithm results in an even, stable and fast          
distribution of requests to servers. Addition and subtraction of any          
number of servers causes a small number of requests to move           
between servers, but the percentage of requests that must move is           
comparable to the best alternatives. Where plastic hashing excels         
is in the even distribution of requests, a characteristic improved          
upon even further with an infrequent snap operation that restores          
the variance to the ideal value of zero. The snap also improves            
runtime performance of the algorithm. 
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