
Plastic Hashing for Even, Stable, Fast Load Balancing

Anand Natrajan​†
Germantown MD, USA

anand@anandnatrajan.com

ABSTRACT
Distributed systems adapt to changing load conditions by adding
or removing servers that process requests. In such systems, it is
often efficient to persist connections between specific clients and
servers, while concurrently balancing the load between servers.
Our algorithm, called plastic hashing, achieves high connection
stability with an even load distribution. The algorithm is fast and
straightforward to implement and lends itself to distributed
decision-making.
†​The author conducted this work independent of any affiliation to any organisation.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
https://doi.org/​ ID: ​CACM-20-12-3853

CCS CONCEPTS
• Computer systems organization~Architectures~Distributed
architectures~Client-server architectures

KEYWORDS
plastic hashing, load balancing

ACM Reference format:

Anand Natrajan. 2020. Plastic Hashing for Even, Stable, Fast Load
Balancing. Submitted to ​Communications of ACM​.

1​ Introduction
Architects of distributed systems often try to balance the load
generated by a large number of clients communicating with a fleet
of servers. The mechanisms they use include a hashing algorithm
that uses a request identifier to identify the server that will process
the request. Once the server is identified, they may prefer to
persist the client-server connection in order to make ongoing
communications between the two more efficient. The client-server
connection may be stateful, with each installment in the ongoing
communication using information from prior installments. Typical
examples of explicit and implicit information are sessions,
connection streams and server-side caches.

A typical load balancing approach applies a hashing algorithm
h(​•​) to a request to identify the server that will process the request.
This hashing algorithm often uses a ​modulo function to generate a
hashed request identifier, or ​hashed request​. The resulting
remainder can be used to select the server directly by identifying
the ordinal number of a server, or indirectly by identifying the
ordinal number of a virtual server, which subsequently identifies

the actual server. This approach is ​fast​, using the modulo function
just once in one invocation of the hashing algorithm. It is ​even
because uniformly-distributed hashed requests will be distributed
uniformly over the fleet of servers. It is ​stable because requests
that result in the same hashed request will always be sent to the
same server. Speed, evenness and stability are crucial to load
balancing algorithms or technologies because they enable the
design of robust and efficient systems.

Changes to the operating characteristics of the system,
specifically, a change to the volume of inbound requests, may
change the number of servers in the fleet. If the server count
grows, the new servers should service the excess volume.
However, the process of re-hashing all inbound requests may
cause some ongoing requests to be handed off to a different
server, which may necessitate an expensive set of operations to
re-establish the state between the client and the new server.
Likewise, if the server count reduces, indubitably some requests
will have to move from defunct to surviving servers. The goals of
evenness, stability and speed can sometimes conflict with each
other in the face of changing server counts.

We propose a novel hashing algorithm, called ​plastic hashing
that achieves a desirable balance between evenness, stability and
speed. In the next section, we will examine popular alternative
approaches so as to highlight the difficulties involved in achieving
even, stable and fast load balancing. Subsequently, we will
present the plastic hashing algorithm. Next, we will present
comparisons of plastic hashing with the alternatives for simulated
workloads. These workloads are crafted to subject our simulated
fleet of servers to shocks small and large in either direction. Our
results show how all of the algorithms adapt to these shocks, in
terms of evenness and stability. We will then discuss results and
policies briefly before concluding.

2​ Related Work
Distributed systems often adapt to changes in the request load

by changing the number of servers. Obviously, increasing the
number of servers when load increases improves throughput and
latency. Decreasing the number of servers when load decreases
results in lower costs by increasing utilisation. The naïve approach
to balancing changing load simply uses the new count of servers
in the modulo function within ​h(​•​)​. Doing so is fast and even, but
not stable. The change in the divisor causes a large proportion of
requests to move from one server to another.

Consistent hashing is an alternative approach that achieves
more stability, but at the price of evenness. Here, the load
balancing system maintains a list of slots, arranged as a ring [1].
Each server is hashed using ​h(​•​)​, the same algorithm as the
requests, but the enclosed modulo function uses the number of

https://doi.org/

slots, not the number of servers. A server that hashes to a specific
slot is said to occupy that slot. Inbound requests are hashed and
subjected to the same modulo function. If the resultant slot for a
request coincides with the slot occupied by a server, that request is
processed by that server. If the slot is unoccupied, the algorithm
finds the nearest occupied slot, usually by walking along the ring
clockwise. The first occupied slot identifies the server used to
process the request. When a new server is added, it occupies a
new slot in the ring. The only requests that move are the ones that
hash in between this new server and the server occupying a
previous slot. Likewise, removing a server affects only the
requests incident on this server which have to move further along
the ring to the next occupied slot. Finding the next server in the
ring can be slow if the ring is sparse, i.e., the number of slots far
exceeds the number of servers. However, speed can be improved
by constructing more sophisticated support data structures and
algorithms to search the ring. The most serious criticism of
consistent hashing is that it can lead to unbalanced loads, i.e.,
violate evenness greatly. This criticism can be rebuffed somewhat
by adjusting the modulo function, the number of slots and the
algorithm to make every server occupy multiple slots on the ring.

Rendezvous hashing is another approach that achieves
stability by hashing each request with every server in the fleet and
picking a winning hash [2]. In other words, for every request, the
algorithm invokes ​h(​•​) for every server. From the resulting set of
hashes, the algorithm picks a predictable winner, usually the
maximum. The server contributing to that hash is chosen as the
one to process the request. Choosing several algorithm parameters
wisely is critical. Specifically, adding and removing servers must
preserve the roughly uniform probability of any server being
selected. With a good choice of hashing algorithm, rendezvous
hashing can achieve a high degree of evenness and stability, but at
the expense of speed. For large fleets of servers, computing the
per-server hash for every request can become expensive.

3​ Algorithm Description
Our new approach, called plastic hashing, is an alternative to

previous approaches. Plastic hashing uses a simple but novel
algorithm to assign a server for each request. The algorithm
achieves evenness comparable to the naïve approach, stability
comparable to consistent and rendezvous hashing, and speed
comparable to naïve and consistent hashing. The algorithm relies
on a “configuration history”, which is simply a list of the counts
of servers in each epoch. For example, if in a particular system,
the initial count of servers is 5, then grows to 7, then shrinks to 4,
the configuration history is (5, 7, 4) at the end of those three
epochs. This list can grow unbounded, although in a later section
we will show how to reduce its size. The algorithm does not
specify what an epoch is, nor how long. Practically, we expect an
epoch to be any length of time during which the server counts do
not change. Presently, we will introduce the concept of a “quiet”
epoch during which we can perform housekeeping.

We present a pseudocode version of the algorithm below, and
work through it with some examples in the table following. The
table shows some sample requests with request identifiers in the
first row. Successive rows show initial, growing and shrinking
epochs respectively. The numbers in each cell show the server

number allocated by plastic hashing (servers are numbered from 0
onwards). The subscripted numbers show what naïve hashing
would have done, as comparison.

 ​1 ​def h(​•​) as algorithm to get server for one request
 ​2 ​ let ​id​ be the identifier for the request
 ​3 ​ let ​N​:​ ​N​

0​, ​N​1​, ... ​N​k​ be the configuration history
 ​4 ​ let ​N​

old​ ​←​ ​N​
0

 ​5 ​ let ​S​
old​ ​←​ ​id​ modulo ​N​

old​ be the chosen server
 ​6 ​ for each ​N​

new​ ​←​ ​N​
1​ ... ​N​k

 ​7 ​ let ​S​
new​ ​←​ ​id​ modulo ​N​

new

 ​8 ​ if (​N​
new​ ​>​ ​N​old​ and ​S​

new​ ​≥​ ​N​old​) or
 ​9 ​ (​N​

new​ ​<​ ​N​old​ and ​S​
old​ ​≥​ ​N​new​)

10 ​ let ​N​
old​ ​←​ ​N​

new

11 ​ let ​S​
old​ ​←​ ​S​

new

12 ​ return ​S​
old​ as the chosen server

The algorithm cycles through the configuration history, from
oldest to newest. Consecutive epochs grow (​N​

new
> ​N​

old​) or shrink
(​N​

new
< ​N​

old​) server counts. The algorithm begins by computing
the request modulo the server count of the first epoch in the
configuration history. Tentatively, the algorithm selects the
resulting server as the chosen server. The algorithm then goes to
the next epoch in the configuration history and computes the
request modulo the server count in the new epoch.

Consider the request with ​id = 78. In the first epoch, both
plastic hashing and naïve hashing place the request on server 3
(78 modulo 5). In the next epoch, the server count grows to 7, and
N = (5, 7). The naïve algorithm would move the request to server
1 (78 modulo 7). In contrast, the plastic algorithm computes ​S​

old

= 3, ​N​
old

= 5, ​N​
new

= 7 and ​S​
new

= 1. As a result, the condition on
line 8 evaluates to false, leaving ​S​

old
unchanged as the server

choice. In the next epoch, the server count shrinks to 4, and ​N =
(5, 7, 4). The naïve algorithm would again move the request to
server 2 (78 modulo 4). But the plastic algorithm computes ​S​

old
=

3, ​N​
old

= 5, and on the second iteration, ​N​
new

= 4 and ​S​
new

= 2. This
time, the condition on line 9 evaluates to false, again leaving ​S​

old

untouched. This conservative behaviour of the plastic algorithm
contributes to its stability.

Of course, the algorithm also must try to even the load.
Consider the request with ​id = 111. In the first epoch, it is placed
on server 1. In the next epoch, ​S​

old
= 1, ​N​

old
= 5, ​N​

new
= 7 and ​S​

new

= 6. Now, the condition on line 8 evaluates to true, funnelling off
this request to the newly-added server 6. The next epoch shrinks
the fleet, so by the second loop iteration, ​S​

old
= 6, ​N​

old
= 7, ​N​

new
=

4 and ​S​
new

= 3. The condition on line 9 evaluates to true,
representing a forced move from defunct to surviving servers. In
this case, the algorithm sacrificed stability either to even out the
load or out of compulsion.

Submitted to Comm. of the ACM, Dec. 2020 A. Natrajan

Epoch / ​id 280 78 111 354 417 361

N = (5) 0​0 3​3 1​1 4​4 2​2 1​1

N = (5, 7) 0​0 1​3 6​6 4​4 4​2 4​1

N = (5, 7, 4) 0​0 2​3 3​3 2​2 1​2 1​1

This small sample of requests clearly shows plastic hashing

attempting to preserve the server allocation for requests across
epochs. The algorithm is conservative about changing the server
to which a request is allocated, and does so only when forced to in
a shrinking phase, or in a proportional manner in a growing phase.

A challenge with plastic hashing is that the time required to
identify a server grows as the configuration history grows. For
each request, the number of modulo operations required increases
as the configuration history accretes epochs. We introduce a
housekeeping operation, called “snap”, to speed up plastic
hashing. The snap operation, typically performed during some
quiet epoch, discards the entire configuration history except for
the last entry, i.e., the current server configuration. Since the
entire configuration history vanishes, the algorithm incurs an
epoch's worth of moves. However, after those moves, plastic hash
functions as efficiently as the naïve algorithm.

Virtual hosts can be used in conjunction with consistent
hashing and rendezvous hashing as well as plastic hashing for an
additional layer of load balancing or for redundancy. Here, the
algorithms are deployed to select a virtual server, as opposed to an
actual server. The virtual server in turn points to one or more
actual servers that field the request. Virtual hosts permit adding
and removing servers in arbitrary order, not just last-in-first-out.

Plastic hashing is well-suited for making distributed decisions.
Some systems eliminate the load balancer itself within the
architecture, relying instead on the clients to balance the load.
This approach not only alleviates the risk of a single point of
failure, but can also reduce the number of network hops a request
must traverse before landing on a server. Such client-side load
balancing requires all clients to share not just the hashing
algorithm ​h(​•​)​, but also the state variables that factor into ​h(​•​)​. The
state variable that must be shared in plastic hashing is the
configuration history. Specifically, the ​change in the
configuration history is the ​only state variable that must be
coordinated among clients. The hashing algorithm, the
maintenance of a sequence of counts, and the triggers for an
automatic snap can all be decided before the system becomes
operational. In contrast, the shared-state requirements of
consistent hashing and rendezvous hashing are significantly
larger.

4​ Methodology and Results
In order to view and compare the various algorithms in action,

we simulated a synthetic load and ran it for several epochs against
each algorithm. In our simulation, we ran 100,000 requests in
each epoch. In a real-life workload, a request would likely be
identified by some transaction ID. For our purposes, a simple
counter from 0 through 99,999 sufficed as the request identifier
because it is uniformly distributed. A request with an identifier ​R
can be considered the next installment of a request with the same
identifier ​R from a previous epoch. Controlling the request
identifiers enabled us to control all of the variables that might
affect which server processes which request.

The requests themselves did nothing and incurred no
processing time. Given our desire to merely compare algorithms,
our simulation abstracted away all of the complexity of distributed

systems, such as server failures, network connection speeds,
faulty responses, etc. While those considerations are important in
the design of distributed systems, none of them affects the
operation of any of the load balancing algorithms. These
algorithms can be imagined as running entirely within a load
balancer, and simply computing a server number for each request.

We crafted two workloads, labelled “adjusting” and “chaotic”,
each with 10 epochs. In each workload, we changed server counts
in the first 7 epochs, reserving the last 3 epochs for quiet periods
that did not change server counts. In the adjusting workload, the
server counts changed by small amounts in the range 45-55 at
random. In the chaotic workload, the server counts changed to any
number in the range 1-99. For consistent hashing, we chose 1024
slots with 8-way replication for each server.

For each request in each epoch, we noted if the request ended
up on the same server as it did on the immediately prior epoch. If
it did not, we incremented a counter to count such moves. We
computed the percentage of requests that moved, to lend
perspective to the magnitude of changes. The lower the
percentage, the greater the stability. At the end of each epoch, we
tallied up the number of requests that were processed on each
server in the fleet. We then measured the coefficient of variance
for the distribution of requests (i.e., the ratio of the standard
deviation to the mean). The lower the coefficient of variance, the
more even the load distribution. Finally, we measured the time
each algorithm took to complete each epoch.

In Figure 1, we show the number of moves incurred by each
algorithm as a percentage of the total number of requests, for the
adjusting workload. The X-axis shows that the server counts
change by relatively small numbers as the epochs progress from
left to right. In the first epoch, every algorithm assigns requests to
servers for the first time, so we do not count them as moves. For
every subsequent epoch, we count how many times a request
moved to a server different from the server it was on in the
previous epoch. The large bars for the naïve algorithm are
expected. Every alternative tries to reduce the number of moves.
Plastic hashing compares favourably against all of the alternatives
except for the solitary spike in the third-to-last epoch. This spike
is because we initiate housekeeping in a quiet epoch, the benefits
of which can be seen shortly.

Figure 1: ​Number of moves as a percentage of total
requests for each epoch in an adjusting workload. Lower
percentages indicate desirably greater stability.

Plastic Hashing for Even, Stable, Fast Load Balancing Submitted to Comm. of the ACM, Dec. 2020

Figure 2: ​Coefficient of variance of server load at the end
of each epoch in an adjusting workload. Lower coefficients of
variance indicate desirably more even load distribution.

In Figure 2, we show the coefficient of variance of the load
distribution across the fleet of servers for the same adjusting
workload. The naïve algorithm always has a perfect distribution of
load across servers, and therefore shows zero coefficient of
variance. Every other alternative encounters some non-zero
coefficient of variance. Of these, plastic hashing shows the lowest
coefficient of variance, i.e., the most even load distribution.

Figure 3: ​Number of moves as a percentage of total
requests for each epoch in a chaotic workload. Lower
percentages indicate desirably greater stability.

For the chaotic workload, the X-axis in Figure 3 shows that
the server counts change by relatively large numbers for
consecutive epochs. Every algorithm incurs a greater number of
moves to adapt to these changes, although the naïve algorithm
continues to be the least stable. Plastic hashing is within reach of
all of the alternatives. Once again, plastic hashing incurs a spike
in moves because of the housekeeping in a quiet epoch.

The naïve algorithm continues to have a perfect load
distribution for the chaotic workload as well, as seen in Figure 4.
Plastic hashing shows the next lowest coefficient of variance, i.e.,
the next most even load distribution. Notice how the coefficient of
variance for plastic drops even further, to a perfect zero during the
quiet periods. The benefit of the snap is that it compresses the

configuration history to a ​single entry, i.e., the current server
count. Doing so results in an even load automatically.

Figure 4: ​Coefficient of variance of server load at the end
of each epoch in a chaotic workload. Lower coefficients of
variance indicate desirably more even load distribution.

We present empirical observations about the performance of
the algorithms rather than numerical comparisons. Clearly, load
balancers must select a server for a request rapidly, so as to not
add to the request processing latency. The modulo operation
inherent to all hashing algorithms typically takes a few
nanoseconds on the modern processors within most load
balancers. However, repeated invocations of the modulo function
per request can add up to a significant latency penalty. In
deference to work done by others, we did not attempt to fine-tune
our implementations of each algorithm to improve wall-clock
execution time. In our empirical observations, the naïve algorithm
is expectedly the fastest. Even our simple-minded implementation
of the ring traversal for consistent hashing is fast, typically taking
only twice as long as naïve. Plastic hashing is next fastest, taking
anywhere from twice to eight times as long as naïve. Rendezvous
hashing is the slowest, with speeds two orders of magnitude
slower than naïve. These observations comport with a
straightforward tallying up of the number of modulo operations
each algorithm requires per request.

5​ Discussion of Results
Expectedly, the naïve algorithm has the worst stability, i.e.,

greatest number of moves. Changing the number of servers,
whether more or fewer, by a little or a lot, causes virtually all
requests to move around. This well-known behaviour of the naïve
algorithm is the reason alternatives were proposed in the first
place. The naïve algorithm does have the property of perfect
evenness. The number of requests on each server is identical to
the number on any other server (ignoring “off by one” cases when
the number of requests is not an integral multiple of the count of
servers). Intuitively, the naïve algorithm is fast because the only
work involved is computing one modulo function. Our empirical
observations corroborate that intuition.

Consistent hashing and rendezvous hashing have the best
stability (least number of moves). However, stability comes at the
price of uneven load distribution (large coefficient of variance). It

Submitted to Comm. of the ACM, Dec. 2020 A. Natrajan

is somewhat difficult to adjudge which of these is better than
which other because the results depend a lot on various
configuration factors. Consistent hashing relies on a wise choice
of the number of slots and number of replicas for a server in the
ring of slots. The slot hashing can result in an uneven placement
of servers in the slot ring, which makes server load uneven.
Adding and removing servers necessitates removing all replicas
from the slot ring, which can perturb the load distribution even
more. Consistent hashing is a pretty quick algorithm. Although
our simple-minded implementation performed a sequential search
around the slot ring, it was still quite speedy. Faster
implementations using binary search can speed up the algorithm
even more, and are likely necessary if the number of slots is large
and the slot ring is sparse.

Rendezvous hashing has stability and evenness comparable to
consistent hashing. The algorithm relies on a wise choice of
hashing function to produce a joint hash of every request with
every server. The winning hash for every request (usually the
maximum), must itself be evenly distributed across the fleet of
servers. Although several excellent hashing functions exist and
can be employed, the rendezvous algorithm does run the hazard of
encountering server configurations that favour some servers more
than others, resulting in an uneven load distribution. The choice of
the hash function has to be wise in yet another regard; it must be
fast. Because rendezvous hashing requires each request to be
hashed with every server in the fleet, if the number of servers
becomes large, the algorithm slows down. Some alternative
approaches have been proposed in the literature to speed up this
process. Our simple-minded implementation performed a brute
force calculation of all hashes, which penalised the wall-clock
performance of rendezvous hashing.

Plastic hashing exhibits a coefficient of variance significantly
better than the alternatives, approaching naïve hashing. It does so
with a stability that is almost as good as consistent hashing and
rendezvous hashing. Already fast, plastic hashing speeds up
further every time the snap operation is performed.

Snap Judgement. The snap clearly adds to the number of
moves incurred by plastic hashing. Without a snap, plastic
hashing would still have stability that rivals consistent and
rendezvous hashing, with superior evenness. However, the
performance of the algorithm would steadily degrade as the
configuration history grew. The snap offers an opportunity to
wipe the slate clean, albeit with some transient pain. Notice that
the coefficient of variance in the quiet periods after the snap is
zero, unlike the alternative algorithms, which retain their final
distribution, however uneven.

The snap operation can be triggered at any convenient time. In
our simulations we triggered it at the first epoch where the server
configuration did not change. Upon reflection, the snap operation
really devolves into two separate and orthogonal decisions: ​when
to invoke it, and ​what​ to do when invoked.

As to ​when​, it is always possible to invoke the judgement of a
human operator. However, we can strive to encode and automate
the decisions such a human would make. Extreme choices for that
decision are “never” and “before every epoch”. More nuanced
choices, such as “before every ​k​th epoch”, “when server counts
are below some ​n​”, “when request volumes are below some ​r​” and

“when server counts have not changed in ​k consecutive epochs”
are worth considering as well.

As to ​what​, the gentlest change to the configuration history is
to unify adjacent configurations that have identical server counts.
The snap operation we discussed earlier is drastic, decapitating all
of the history except for the last entry. Cleaving the configuration
history into two equal or unequal sections is another option,
although it is unclear which section to retain; the latter section
contains the current server configuration, but the former section
builds up the flavour of the conservative allocation within plastic
hashing. Yet another option is to spring back to an earlier
configuration history. For example, if the configuration history is
N = (53, 47, 51, 59, 61), and the next epoch is about to add 47 to
the list, we can spring the history back to ​N = (53, 47). We could
also anneal the history, gradually changing previous
configurations by small amounts so that the final history
resembles the current server configuration alone.

Most of the ​when​/​what combinations possible from the
choices above outperform alternative hashing algorithms.
Evidently, some of the possible combinations are pathological,
therefore undesirable. For example, snapping before every epoch
causes plastic hashing to degenerate to naïve hashing. Any
combination involving annealing causes too many moves over
time. Our preliminary studies indicate that the best combinations
are those that are sensitive to the current state of the system. In
particular, our recommended snap at periods of stasis, when
server counts are not changing, achieves a balance between
number of moves, load distribution and speed. Likewise,
springing back before every epoch to a prior history if possible,
also achieves a similar balance. By design, our simulations do not
permit modelling periods of low request volumes, but intuitively,
a policy built using low request volume as a trigger is likely to
work well.

6​ Conclusions
We have presented a novel algorithm, called plastic hashing,

that can be used for selecting which servers process which
requests. The algorithm results in an even, stable and fast
distribution of requests to servers. Addition and subtraction of any
number of servers causes a small number of requests to move
between servers, but the percentage of requests that must move is
comparable to the best alternatives. Where plastic hashing excels
is in the even distribution of requests, a characteristic improved
upon even further with an infrequent snap operation that restores
the variance to the ideal value of zero. The snap also improves
runtime performance of the algorithm.

ACKNOWLEDGEMENTS
We thank several colleagues who read earlier versions of this
paper, and provided valuable feedback.

REFERENCES
[1] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine and D. Lewin.

Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. ​Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing​, 654-663, 1997.

Plastic Hashing for Even, Stable, Fast Load Balancing Submitted to Comm. of the ACM, Dec. 2020

[2] D. Thaler and C. Ravishankar. A Name-Based Mapping Scheme for

Rendezvous, ​University of Michigan Technical Report​, CSE-TR-316-96, 1996.

Submitted to Comm. of the ACM, Dec. 2020 A. Natrajan

