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ABSTRACT 
Exact substring matching is a common task in many software          
applications. Despite the existence of several algorithms for        
finding whether or not a pattern string is present in a target string,             
the most common implementation is a naïve, brute force         
approach. Alternative approaches either do not provide enough of         
a benefit for the added complexity, or are impractical for modern           
character sets, e.g., Unicode. We present a new algorithm, Scout,          
that is straightforward, quick and appropriate for all applications.         
We also compare the performance characteristics of the Scout         
algorithm with several others. 
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1 Introduction 
Many software applications require an exact match of a pattern in           
a target string. Such matching is simpler than and distinct from           
matching regular expressions, contextual grammars, search      
engines, fuzzy matches and other related activities. In this paper,          
we will focus only on exact matches, also called substring          
searches. We will present an algorithm, dubbed “Scout”, which in          
most cases performs as well as or better than the best alternative            
substring search algorithms in existence. The algorithm is simple         
to implement, performs significantly better than the brute force         
algorithm most commonly employed, requires no preprocessing,       
has better memory usage characteristics than the best algorithms,         
and importantly, works for modern character sets, such as         
Unicode. 

Scout performs at least as well as alternative algorithms, as          
measured by wall-clock time. Assessments of substring matching        
algorithms often focus on the number of character comparisons as          
the primary metric of performance. Our research indicates that         
memory lookups affect performance at least as much as         
comparisons. We also considered some subjective measures for        
comparing various algorithms, for example, the suitability to other         
languages and non-ASCII character sets. 

In the rest of this paper, we will present the Scout algorithm,            
and contrast it briefly with other substring matching algorithms.         
Of the dozens of algorithms available, we will select some          
exemplar algorithms for further comparison. We will present the         
results of performance comparisons for various testbeds. We will         
briefly examine factors that drive performance, and attempt to         
tease out the characteristics of the exemplars to explain their          
performance. In the interests of brevity, we will not present          
detailed tabular data and charts. We expect to submit         
implementations of our code to open-source repositories for        
inclusion in language libraries. 

2 Algorithm Description 
The central idea in the Scout algorithm is to identify a “scout”            

character quickly. This character is dispatched to obtain        
information, in this case, an appropriate location in the target          
string for a deeper match. Let us denote a pattern string p as             
containing m characters, and a target string t as containing n           
characters. The scout is always a character from the pattern string           
p, and we use it to find an appropriate location in the target string              
t. 

Given p and t, we begin the algorithm by comparing the first            
characters of each. On a match, we move on to the next characters             
of each, and so on, sequentially searching, much like the brute           
force approach. On a mismatch, Scout diverges from brute force.          
In brute force, we would re-initiate a sequential search starting          
from the next character of t. In other words we would “slide” the             
pattern p one character “to the right” along t. In contrast, in Scout,             
we designate the currently-mismatched pattern character as a        
“scout”. We compare the scout with the character in t immediately           
past the mismatch. If those characters are mismatched, we         
advance along t, and compare the next character to the scout. We            
proceed in this fashion until the first time we encounter a           
character in t that matches the scout. If we find no such match, p              
is not contained in t. If we do, we slide p along t such that the last                 
mismatched character in p (which was the scout’s original         
position) lines up with the scout’s current match in t. We then            
initiate a sequential search of p in t starting from this new            
position. 
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An additional check, called a “twin” check can occasionally         

slide p along t further. Whenever we initiate a per-character          
sequential search of p in t, on a match, we additionally check if             
the current character in p is identical to the scout and precedes it.             
If so, this character, which we call a “twin”, can be used to slide p               
further along until the twin aligns with the scout’s position.          
Whether a slide occurred because of a twin or because of the scout             
alone, we initiate a sequential search of p starting from its current            
alignment with t. During this sequential search, we may encounter          
another mismatch. This mismatched pattern character is the new         
scout, which continues the algorithm as before. 

The Scout algorithm is provably correct. The proof rests on          
three lemmata, of which two are obvious. First, sequential search          
obviously either finds a match, or finds the first mismatched          
pattern character. Second, the scout character obviously finds the         
first possible target location where a match could occur, by          
construction. Third, less obviously, sequential search and scout        
alignment suffice to find a pattern match if one exists. The twin            
character alignment is not strictly necessary, but is provably         
correct, and results in better performance. Put together, the Scout          
algorithm will find a pattern match if one exists. 

3 Related Work 
The brute force, double-loop algorithm is the most common         

one used to find a substring. Since the late 1970s through the early             
1990s, several alternative algorithms have been proposed, notably,        
Knuth-Morris-Pratt [2], Karp-Rabin [3] and Boyer-Moore [1],       
along with dozens of variants. One of the best-performing         
algorithms is the Sunday Quick Search algorithm [4], a variant of           
Boyer-Moore. Although the theoretical average- and worst-case       
performance of each of these algorithms beats brute force, these          
algorithms have not found their way into common usage. We          
believe that there are several criteria other than theoretical         
performance that hinder their adoption. We will examine those         
criteria shortly. 

Most substring search algorithms fall into a few broad classes.          
One large class contains algorithms that identify properties of the          
pattern or target so that portions of the target can be skipped over.             
This class includes Boyer-Moore and several variants. Most of         
these algorithms require a preprocessing step. Most of them         
reserve memory proportional to the size of the pattern or the size            
of the alphabet used in the pattern and target. Brute force may be             
considered a degenerate member of this class. Brute force skips          
characters by the minimum possible value, i.e., one. A second          
class contains algorithms that compute some heuristic that could         
result in false positives, but not false negatives. On a positive           
match for the heuristic, these algorithms rely on a sequential          
search for disambiguation. This class includes Karp-Rabin and        
some variants. A third class contains algorithms that use         
characteristics of the language, e.g., character frequencies, to        
determine how to navigate the target. In our work, we do not            
undertake any objective comparisons against algorithms in this        
third class. Our goal is to find the best possible domain-agnostic,           
generic substring matching algorithm. 

The brute force algorithm is deployed widely. It is the          
algorithm deployed for String indexOf in the Java language         
library for OpenJDK as of version 9.0.1. The C implementation of           

strstr also uses brute force. In other words, the most common           
libraries for two of the most popular languages for large-scale          
applications use the brute force approach for any and all substring           
matching. The Python implementation of the find method uses         
Sunday Quick Search (although it claims to use Boyer-Moore),         
but makes some accommodations in order to circumvent the most          
problematic characteristic of that algorithm, namely the need to         
store a bad character array whose size is dependent on the           
character set. The python implementation retains a skip value for          
only the last character, and uses a low-fidelity Bloom filter to           
check for the presence of a target character in the pattern. These            
accommodations result in smaller shifts than the classical        
Boyer-Moore algorithm, but avoid some of its most problematic         
characteristics. 

Exhaustive comparisons across all of forty or so algorithms         
and variants based on performance, memory, applicability,       
simplicity, etc. would be a welcome body of work. Our detailed           
comparisons will use four algorithms alone: Brute force,        
Karp-Rabin, Sunday Quick Search and Scout. While we        
acknowledge the risk involved in limiting our focus to a few           
algorithms alone, we believe our choices are reasonable because         
they permit us to perform a deep analysis along our lines of            
inquiry. 

We chose brute force simply because it is a baseline as well as             
an incumbent algorithm. We chose Karp-Rabin to represent the         
heuristic class of algorithms. The Boyer-Moore class has the         
largest number of variants, but it is generally accepted that          
Sunday Quick Search is the fastest among them. We did not           
choose language-specific algorithms because our goal has always        
been to identify domain-agnostic algorithms. Finally, we chose        
our best implementation of Scout. 

4 Comparison of Algorithms 
When comparing substring search algorithms, most authors       

focus on performance, understandably so. Performance often       
translates to number of character comparisons, whether best,        
worst or average case. Of course, other metrics matter as well, for            
example memory usage. However, character comparisons      
dominate most discussions around performance because character       
comparisons count towards order complexity, and order       
complexity remains the gold standard in computer science for         
evaluating the performance of algorithms. We argue for a broader          
approach for evaluating substring searching algorithms, without       
diluting the focus on performance. 

Our performance numbers indicate that Scout should be a         
strong contender for a general-purpose substring searching       
implementation. As a matter of practical performance, we will         
show that Scout is one of the fastest algorithms available. While it            
may score poorly on the count of character comparisons, it scores           
well on memory lookups. Although traditional measures of        
performance are based on character comparisons, we believe        
memory lookups should be given more prominence because the         
former are far less expensive than the latter. Therefore, an          
algorithm that reduces memory lookups, be it at the expense of           
more character comparisons is likely to be faster, as shown by           
Scout. 
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Several subjective criteria may influence the choice of a         

general-purpose substring search algorithm over and above       
practical performance, preprocessing and memory usage. 

● Character set. Some algorithms, notably Karp-Rabin and       
Boyer-Moore, assume an ASCII character set consisting of        
256 characters, i.e., characters representable within one byte.        
Modern Unicode character sets can take 1-4 bytes. These         
algorithms were formulated when Unicode was not prevalent.        
With Unicode, they either fail outright, or when upgraded,         
consume prohibitive amounts of memory. 

● Language specificity. Some algorithms, notably Sunday      
Maximal Shift [4], rely on letter frequencies in languages.         
Obviously, letter frequencies vary by language, making the        
algorithms harder to generalise. Moreover, letter frequencies       
in specific subdomains will likely differ, e.g., in genome         
matching. 

● Simplicity. The brute force approach is simple to implement,         
requiring less than 20 lines of formatted code, including         
boiler-plate. The other approaches, including ours, can be 2-4         
times larger. Of course, lines of code is a trivial concern, but            
conceptual complexity can complicate provability, thus      
hindering broader acceptance. 

In our experiments, we have endeavoured to offer every         
advantage possible to alternative algorithms. We have faithfully        
transcribed the implementations available publicly. We made       
variable names and formatting more readable, which does not         
affect performance. Most importantly, for algorithms that required        
memory proportional to the alphabet size, we assumed the         
alphabet size to be 256 characters. In other words, we permitted           
these algorithms to function for the ASCII character set alone,          
although Scout works as-is for Unicode. When we refactored the          
alternative algorithms faithfully to work for Unicode, they either         
failed outright or resulted in absurdly high wall-clock times. 

5 Methodology and Results 
We crafted a suite of tests for assessing substring search          

performance. Our testbeds and tests, written in Java, were crafted          
to test several aspects: 

1. Obviously, our algorithms as well as the alternatives should         
function correctly. We measured correctness somewhat more       
stringently than necessary, by checking for the exact position         
at which a pattern was found in the target, rather than merely a             
true/false check. We also checked for Unicode patterns and         
targets. 

2. We varied the depth at which the pattern was found in a fixed             
target. In other words, we crafted a synthetic target of a fixed            
size (100 characters), and inserted a fixed-size pattern (5         
characters) that was guaranteed to exist in the target. We          
varied whether the pattern was found at the start (0%), the end            
(100%), the middle (50%) as well as several other         
intermediate positions. Specifically, our pattern string was       
“aabca”, and our target string was      
“xx...xaabcaxx...x”, where the prefix of x characters       
was of length p, and the suffix was of length q. Therefore            
pattern length m = 5, and target length n = p+q+m = 105. If p               
= 0, the pattern depth is 0%, but if q = 0, the pattern depth is                
100%. Using this testbed, we tried to ascertain how         

algorithmic performance varied from best case (0%) through        
worst-case (100%). 

3. We varied the length of the target string. We crafted          
increasingly long target strings (from 0 through 10,000        
characters), and appended a fixed pattern string (5 characters)         
at the very end to simulate worst-case behaviour. Specifically,         
our pattern string was “aabca”, and our target string was          
“xx...xaabca”, where the prefix of x characters was of         
length p. Therefore pattern length m = 5, and target length n =             
p+m. We varied p in order to craft longer target strings. We            
expected all algorithms to grow linearly in wall-clock time as          
length increased. However, we wanted to observe the slopes         
of those linear curves for various algorithms. 

4. We simulated real-life scenarios by choosing a well-known        
literary passage (Hamlet’s famous soliloquy, Act III, Scene I,         
“To be, or not to be [...] Be all my sins, remember’d.”), and             
searching for substrings deeper and deeper into this target,         
again starting from 0% through 100%. This test not only          
simulated real-life human behaviour, but also tested whether        
all of the algorithms processed punctuation, spaces and mixed         
cases correctly. By concatenating all of the lines in the          
soliloquy, we were able to craft a target string of          
modest-to-large size (1500 characters). We readily concede       
the cultural monotony in the choice of this text. While it does            
not include characters from other languages or even accents,         
by choosing a well-known piece of English text, we gave all           
algorithms any implicit language-specific advantage they      
could claim. 

For all of the tests, in our Java implementations, we measured           
four metrics. One, wall-clock time, with timers surrounding        
repeated method invocations within loops. Two, comparisons, by        
instrumenting the code with counters. Three, memory accesses,        
for array characters in the pattern and target string. In short, we            
counted one memory access for every pair of [ and ] brackets in             
the code, but not for accesses to local or global variables. Four,            
expensive arithmetic operations, such as multiplication, division,       
modulo and exponentiation (if any). The instrumentation slows        
down the raw performance of the algorithms, which is a reason to            
ignore absolute wall-clock times but pay attention to relative         
times. 

We did not measure memory consumption in our tests,         
primarily so we could focus on practical performance. Of course,          
memory consumption matters, and several alternative algorithms       
store large amounts of global or per-pattern or per-target state          
prior to the actual search. We have penalised all preprocessing by           
counting them towards the wall-clock time taken to execute the          
search. Doing so exempts algorithms that require global        
preprocessing, e.g., constructing a one-time dictionary, and also        
ignores the memory consumption of these algorithms. We refer         
interested readers to surveys that have examined the memory         
consumption characteristics of alternative algorithms. Of our       
exemplars, only Sunday Quick Search requires any significant        
memory. This search algorithm, like most members of the         
Boyer-Moore class, stores a bad-character integer map whose size         
is proportional to the size of the character set. 

Our tests ran on a MacBook Pro with a 2.9 GHz Intel Core i9,              
with 32GB RAM, running macOS v10.15.7 (Catalina). The Java         
version was 9.0.1 (build 9.0.1+11). Our performance results are         
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shown in the charts below. When plotting wall-clock time, the          
Y-axes are in nanoseconds. For each data point, we averaged the           
result of one million runs to smooth out any spurious results. The            
absolute numbers are irrelevant; only the relative performance        
matters.

 

Figure 1: Wall-clock times (ns.) for different pattern depths in          
a given target string length (100 characters). 

Scout clearly outperforms all of the other exemplars at most          
data points in terms of wall-clock time. All of the algorithms           
display roughly linear performance, but the slopes and intercepts         
are rather different. For a given target string, as the pattern is            
situated deeper and deeper (Figure 1), we observe that Scout and           
Sunday Quick Search have gentler slopes, i.e., the time taken          
increases slowly as the pattern is found deeper in the target string.            
However, Sunday Quick Search has a large y-intercept, because         
of its high preprocessing cost. If the target string is increased in            
size, with the pattern situated at 100% (Figure 2), all of the            
algorithms display a linear increase in time. The high         
preprocessing overhead penalises Sunday Quick Search for small        
target string lengths, but as the strings elongate, the benefits of           
that processing become apparent. 

 

Figure 2: Wall-clock times (ns.) for different target string         
lengths with a given pattern depth (100%). Log scales. 

 

Figure 3: Wall-clock times (ns.) for different pattern depths in          
Hamlet’s soliloquy (1500 characters). 

6 Discussion of Performance 
When comparing alternative algorithms, we checked our       

implementations of each for correctness. One immediate       
conundrum was that several of the algorithms, in particular all of           
the Boyer-Moore variants, tolerated only ASCII characters. When        
we tested them against Unicode characters, the algorithms        
failed,e.g., dumped a stack trace. The ASCII-centrism of these         
algorithms forced us to choose the Hamlet soliloquy as a real-life           
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testbed. In contrast, Scout runs correctly, as-is, whether the         
passage is from Hamlet in English, from the Bhagavad Gita in           
Sanskrit, the Iliad in Greek, or the Tao Te Ching in Chinese. 

The memory consumption of alternative algorithms is a        
significant concern as well. The Boyer-Moore variants require one         
or more integer arrays with one entry per ASCII character. We           
could have re-sized this array to have one entry per Unicode           
character, but the prospect of allocating and initialising an array          
containing up to 232 entries for every search was daunting. In the            
end, we left the alternative algorithms as-is in terms of their           
ASCII-centric memory consumption so as to give them an         
advantage. 

The point of evaluating performance is to assess whether one          
algorithm is speedier than another, especially at scale. Turning to          
time taken as a metric of performance, we recognise that while           
character comparisons certainly contribute towards time taken,       
they are not as dominant as other factors. Several algorithms          
undertake preprocessing steps in order to speed up subsequent         
searching. Technically, the work done in those preprocessing        
steps does not count towards the number of character         
comparisons. However, general-purpose substring searching is      
likely to have low reuse, i.e., it is likely that every time the             
algorithm is invoked, the pattern and target may change.         
Therefore, algorithms that preprocess either the pattern or target         
or both have to undertake those steps for every single invocation.           
Preprocessing consumes time, whether or not the character        
comparison counts improve. 

Yet other algorithms involve expensive operations, such as        
modulo arithmetic in Karp-Rabin. On most microcomputers, these        
operations are far more expensive than character counts.        
Certainly, some microcomputers may come equipped with       
separate processing units to speed up arithmetic calculations, but         
such processing is still likely to be more expensive than character           
comparisons. 

Memory lookups affect performance. On most modern       
microcomputers, memory lookups can take several more       
processor cycles than character comparisons. Therefore, reducing       
the number of memory lookups can reduce time taken to execute           
an algorithm. Memory lookups play another role in performance         
when spatial and temporal locality are taken into account.         
Techniques such as paging and multi-level caching have been         
developed to reduce the cost of memory lookups. While we do not            
expect to craft algorithms to account for paging or caching          
techniques on specific machines, an algorithm that naturally        
exploits basic paging and caching will perform better than an          
equivalent algorithm that does not. 

We have chosen to normalise all of these factors by comparing           
wall-clock time. The question of how to account for all of the key             
factors is challenging. Counting character comparisons alone can        
seem myopic especially if a low count comes at the expense of too             
many memory lookups or costly arithmetic operations. Loading        
up most of the work in a preprocessing step so as to make the              
search cheap is counter-productive. Deep textual analysis may        
reduce character comparisons dramatically, but may not lend        
themselves to practical solutions. By focusing on wall-clock time,         
we force a normalisation of all of these disparate factors into a            
common, comparable and practical currency. 

Wall-clock time as a common currency is not flawless.         
Wall-clock times for the same tests run on different machines,          
operating systems, compilers, loads, etc. will differ. Therefore,        
only relative wall-clock times lead to meaningful comparisons.        
More particularly, the wall-clock times have to be compared for          
the same tests on the same machines, under the same load           
conditions. Another issue with wall-clock times is that underlying         
performance trends and patterns are not readily apparent unless         
several data points are plotted and examined. A pen-and-paper         
analysis of an algorithm may suggest its performance grows         
linearly, but a wall-clock time plot may reveal large start-up costs           
that are not amortised well enough to make the linear growth           
apparent until extremely large data sets are chosen. Alternatively,         
another seemingly linear-growth algorithm may be revealed to        
encounter page thrashing, which causes performance to       
deteriorate for large data sets. 

In the next few charts, we show the results of instrumenting           
our Java code to count character comparisons as well as memory           
lookups. We will consider the “real-life” Hamlet testbed for our          
discussion below. 

 

Figure 4: Wall-clock times (ns) at different counts of character          
comparisons for exemplar algorithms. 

The scatter-plot in Figure 4 shows that wall-clock time is          
loosely linearly correlated with the number of character        
comparisons. We make two observations from this plot. One,         
when considering a particular algorithm alone, sometimes the        
correlation is tight (e.g., for Brute force), and sometimes loose          
(e.g., for Karp-Rabin). Two, when considering all of the         
algorithms put together, the correlation is extremely weak. In         
contrast, the scatter-plot in Figure 5 shows a much tighter          
correlation in both cases between wall-clock time and memory         
lookups. Of course, character comparisons are correlated to        
memory lookups; the point of accessing pattern and target         
characters is to facilitate a comparison. However, whether        
considering a specific algorithm, or looking at all algorithms,         
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memory lookups is a much better predictor of wall-clock time          
performance than character comparison counts. 

 

Figure 5: Wall-clock times (ns) at different counts of memory          
lookups for exemplar algorithms. 

Another key performance factor is spatial and temporal        
locality. An algorithm that accesses the same characters in rapid          
succession, or accesses nearby characters quickly, lends itself to         
better caching performance. We did not measure the effect of          
caching on any of the algorithms. However, an inspection of the           
code for the algorithms reveals that Scout shows good spatial and           
temporal locality. In contrast, Sunday Quick Search, despite        
performing fewer memory lookups, shows poor locality. In        
particular, as with every Boyer-Moore variant, it depends on the          
bad character array, which is simply another array of integers          
different from the pattern and the target, and which is indexed and            
accessed by the ASCII value of the currently-mismatched target         
character. The access pattern for the bad character array is          
effectively random, leading to poor locality. Although we were         
not able to quantify the effects of caching, we encourage further           
research into how caching can improve the performance of         
substring matching. 

7 Conclusions 
Searching for a substring is so routine a task that most           

languages provide in-built libraries that software developers can        
reuse. Many of these libraries implement a brute force algorithm          
to search for a substring despite there being dozens of alternative           
algorithms. We submit that these library methods should be         
rewritten to implement better algorithms. We provide an        
algorithm, Scout, whose performance as measured by wall-clock        
time ranks among the fastest algorithms. Additionally, Scout        
requires no preprocessing and has low, constant memory usage. It          
is language-agnostic and works for any character set. 

Scout runs faster than alternative algorithms in most cases. We          
crafted testbeds so that we could compare Scout against the best           
alternatives. We picked brute force and the best variants as          
exemplars for comparison. When performing our comparisons, we        
endeavoured to give every advantage to each exemplar, so as to           
make the performance comparisons salient. 

The usual metric of performance for substring matches, i.e.,         
character comparisons, is a weak predictor of wall-clock time.         
Our results show that memory lookups predict performance better.         
We showed that merely counting memory accesses correlated        
better with observed wall-clock time than comparison counts. We         
speculate that caching effects because of spatial and temporal         
locality explain the remaining memory-related performance. 

We encourage popular implementations of substring libraries       
to use our Scout algorithm. 
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