
Scout Algorithm for Fast Substring Matching

Anand Natrajan†
Germantown MD, USA

anand@anandnatrajan.com

Mallige Anand
Germantown MD, USA

mallige@anandnatrajan.com

ABSTRACT
Exact substring matching is a common task in many software
applications. Despite the existence of several algorithms for
finding whether or not a pattern string is present in a target string,
the most common implementation is a naïve, brute force
approach. Alternative approaches either do not provide enough of
a benefit for the added complexity, or are impractical for modern
character sets, e.g., Unicode. We present a new algorithm, Scout,
that is straightforward, quick and appropriate for all applications.
We also compare the performance characteristics of the Scout
algorithm with several others.
†Both authors conducted this work independent of any affiliation to any organisation.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
https://doi.org/ ID: CACM-20-10-3795

CCS CONCEPTS
• Theory of computation~Design and analysis of algorithms~Data
structures design and analysis~Pattern matching

KEYWORDS
scout, substring matching, exact matching, pattern matching

ACM Reference format:
Anand Natrajan and Mallige Anand. 2020. Scout Algorithm for Fast
Substring Matching. Submitted to Communications of ACM.

1 Introduction
Many software applications require an exact match of a pattern in
a target string. Such matching is simpler than and distinct from
matching regular expressions, contextual grammars, search
engines, fuzzy matches and other related activities. In this paper,
we will focus only on exact matches, also called substring
searches. We will present an algorithm, dubbed “Scout”, which in
most cases performs as well as or better than the best alternative
substring search algorithms in existence. The algorithm is simple
to implement, performs significantly better than the brute force
algorithm most commonly employed, requires no preprocessing,
has better memory usage characteristics than the best algorithms,
and importantly, works for modern character sets, such as
Unicode.

Scout performs at least as well as alternative algorithms, as
measured by wall-clock time. Assessments of substring matching
algorithms often focus on the number of character comparisons as
the primary metric of performance. Our research indicates that
memory lookups affect performance at least as much as
comparisons. We also considered some subjective measures for
comparing various algorithms, for example, the suitability to other
languages and non-ASCII character sets.

In the rest of this paper, we will present the Scout algorithm,
and contrast it briefly with other substring matching algorithms.
Of the dozens of algorithms available, we will select some
exemplar algorithms for further comparison. We will present the
results of performance comparisons for various testbeds. We will
briefly examine factors that drive performance, and attempt to
tease out the characteristics of the exemplars to explain their
performance. In the interests of brevity, we will not present
detailed tabular data and charts. We expect to submit
implementations of our code to open-source repositories for
inclusion in language libraries.

2 Algorithm Description
The central idea in the Scout algorithm is to identify a “scout”

character quickly. This character is dispatched to obtain
information, in this case, an appropriate location in the target
string for a deeper match. Let us denote a pattern string p as
containing m characters, and a target string t as containing n
characters. The scout is always a character from the pattern string
p, and we use it to find an appropriate location in the target string
t.

Given p and t, we begin the algorithm by comparing the first
characters of each. On a match, we move on to the next characters
of each, and so on, sequentially searching, much like the brute
force approach. On a mismatch, Scout diverges from brute force.
In brute force, we would re-initiate a sequential search starting
from the next character of t. In other words we would “slide” the
pattern p one character “to the right” along t. In contrast, in Scout,
we designate the currently-mismatched pattern character as a
“scout”. We compare the scout with the character in t immediately
past the mismatch. If those characters are mismatched, we
advance along t, and compare the next character to the scout. We
proceed in this fashion until the first time we encounter a
character in t that matches the scout. If we find no such match, p
is not contained in t. If we do, we slide p along t such that the last
mismatched character in p (which was the scout’s original
position) lines up with the scout’s current match in t. We then
initiate a sequential search of p in t starting from this new
position.

mailto:email@email.com
https://doi.org/

An additional check, called a “twin” check can occasionally

slide p along t further. Whenever we initiate a per-character
sequential search of p in t, on a match, we additionally check if
the current character in p is identical to the scout and precedes it.
If so, this character, which we call a “twin”, can be used to slide p
further along until the twin aligns with the scout’s position.
Whether a slide occurred because of a twin or because of the scout
alone, we initiate a sequential search of p starting from its current
alignment with t. During this sequential search, we may encounter
another mismatch. This mismatched pattern character is the new
scout, which continues the algorithm as before.

The Scout algorithm is provably correct. The proof rests on
three lemmata, of which two are obvious. First, sequential search
obviously either finds a match, or finds the first mismatched
pattern character. Second, the scout character obviously finds the
first possible target location where a match could occur, by
construction. Third, less obviously, sequential search and scout
alignment suffice to find a pattern match if one exists. The twin
character alignment is not strictly necessary, but is provably
correct, and results in better performance. Put together, the Scout
algorithm will find a pattern match if one exists.

3 Related Work
The brute force, double-loop algorithm is the most common

one used to find a substring. Since the late 1970s through the early
1990s, several alternative algorithms have been proposed, notably,
Knuth-Morris-Pratt [2], Karp-Rabin [3] and Boyer-Moore [1],
along with dozens of variants. One of the best-performing
algorithms is the Sunday Quick Search algorithm [4], a variant of
Boyer-Moore. Although the theoretical average- and worst-case
performance of each of these algorithms beats brute force, these
algorithms have not found their way into common usage. We
believe that there are several criteria other than theoretical
performance that hinder their adoption. We will examine those
criteria shortly.

Most substring search algorithms fall into a few broad classes.
One large class contains algorithms that identify properties of the
pattern or target so that portions of the target can be skipped over.
This class includes Boyer-Moore and several variants. Most of
these algorithms require a preprocessing step. Most of them
reserve memory proportional to the size of the pattern or the size
of the alphabet used in the pattern and target. Brute force may be
considered a degenerate member of this class. Brute force skips
characters by the minimum possible value, i.e., one. A second
class contains algorithms that compute some heuristic that could
result in false positives, but not false negatives. On a positive
match for the heuristic, these algorithms rely on a sequential
search for disambiguation. This class includes Karp-Rabin and
some variants. A third class contains algorithms that use
characteristics of the language, e.g., character frequencies, to
determine how to navigate the target. In our work, we do not
undertake any objective comparisons against algorithms in this
third class. Our goal is to find the best possible domain-agnostic,
generic substring matching algorithm.

The brute force algorithm is deployed widely. It is the
algorithm deployed for String indexOf in the Java language
library for OpenJDK as of version 9.0.1. The C implementation of

strstr also uses brute force. In other words, the most common
libraries for two of the most popular languages for large-scale
applications use the brute force approach for any and all substring
matching. The Python implementation of the find method uses
Sunday Quick Search (although it claims to use Boyer-Moore),
but makes some accommodations in order to circumvent the most
problematic characteristic of that algorithm, namely the need to
store a bad character array whose size is dependent on the
character set. The python implementation retains a skip value for
only the last character, and uses a low-fidelity Bloom filter to
check for the presence of a target character in the pattern. These
accommodations result in smaller shifts than the classical
Boyer-Moore algorithm, but avoid some of its most problematic
characteristics.

Exhaustive comparisons across all of forty or so algorithms
and variants based on performance, memory, applicability,
simplicity, etc. would be a welcome body of work. Our detailed
comparisons will use four algorithms alone: Brute force,
Karp-Rabin, Sunday Quick Search and Scout. While we
acknowledge the risk involved in limiting our focus to a few
algorithms alone, we believe our choices are reasonable because
they permit us to perform a deep analysis along our lines of
inquiry.

We chose brute force simply because it is a baseline as well as
an incumbent algorithm. We chose Karp-Rabin to represent the
heuristic class of algorithms. The Boyer-Moore class has the
largest number of variants, but it is generally accepted that
Sunday Quick Search is the fastest among them. We did not
choose language-specific algorithms because our goal has always
been to identify domain-agnostic algorithms. Finally, we chose
our best implementation of Scout.

4 Comparison of Algorithms
When comparing substring search algorithms, most authors

focus on performance, understandably so. Performance often
translates to number of character comparisons, whether best,
worst or average case. Of course, other metrics matter as well, for
example memory usage. However, character comparisons
dominate most discussions around performance because character
comparisons count towards order complexity, and order
complexity remains the gold standard in computer science for
evaluating the performance of algorithms. We argue for a broader
approach for evaluating substring searching algorithms, without
diluting the focus on performance.

Our performance numbers indicate that Scout should be a
strong contender for a general-purpose substring searching
implementation. As a matter of practical performance, we will
show that Scout is one of the fastest algorithms available. While it
may score poorly on the count of character comparisons, it scores
well on memory lookups. Although traditional measures of
performance are based on character comparisons, we believe
memory lookups should be given more prominence because the
former are far less expensive than the latter. Therefore, an
algorithm that reduces memory lookups, be it at the expense of
more character comparisons is likely to be faster, as shown by
Scout.

Submitted to Comm. of the ACM, Oct. 2020 A. Natrajan et al.

Several subjective criteria may influence the choice of a

general-purpose substring search algorithm over and above
practical performance, preprocessing and memory usage.

● Character set. Some algorithms, notably Karp-Rabin and
Boyer-Moore, assume an ASCII character set consisting of
256 characters, i.e., characters representable within one byte.
Modern Unicode character sets can take 1-4 bytes. These
algorithms were formulated when Unicode was not prevalent.
With Unicode, they either fail outright, or when upgraded,
consume prohibitive amounts of memory.

● Language specificity. Some algorithms, notably Sunday
Maximal Shift [4], rely on letter frequencies in languages.
Obviously, letter frequencies vary by language, making the
algorithms harder to generalise. Moreover, letter frequencies
in specific subdomains will likely differ, e.g., in genome
matching.

● Simplicity. The brute force approach is simple to implement,
requiring less than 20 lines of formatted code, including
boiler-plate. The other approaches, including ours, can be 2-4
times larger. Of course, lines of code is a trivial concern, but
conceptual complexity can complicate provability, thus
hindering broader acceptance.

In our experiments, we have endeavoured to offer every
advantage possible to alternative algorithms. We have faithfully
transcribed the implementations available publicly. We made
variable names and formatting more readable, which does not
affect performance. Most importantly, for algorithms that required
memory proportional to the alphabet size, we assumed the
alphabet size to be 256 characters. In other words, we permitted
these algorithms to function for the ASCII character set alone,
although Scout works as-is for Unicode. When we refactored the
alternative algorithms faithfully to work for Unicode, they either
failed outright or resulted in absurdly high wall-clock times.

5 Methodology and Results
We crafted a suite of tests for assessing substring search

performance. Our testbeds and tests, written in Java, were crafted
to test several aspects:

1. Obviously, our algorithms as well as the alternatives should
function correctly. We measured correctness somewhat more
stringently than necessary, by checking for the exact position
at which a pattern was found in the target, rather than merely a
true/false check. We also checked for Unicode patterns and
targets.

2. We varied the depth at which the pattern was found in a fixed
target. In other words, we crafted a synthetic target of a fixed
size (100 characters), and inserted a fixed-size pattern (5
characters) that was guaranteed to exist in the target. We
varied whether the pattern was found at the start (0%), the end
(100%), the middle (50%) as well as several other
intermediate positions. Specifically, our pattern string was
“aabca”, and our target string was
“xx...xaabcaxx...x”, where the prefix of x characters
was of length p, and the suffix was of length q. Therefore
pattern length m = 5, and target length n = p+q+m = 105. If p
= 0, the pattern depth is 0%, but if q = 0, the pattern depth is
100%. Using this testbed, we tried to ascertain how

algorithmic performance varied from best case (0%) through
worst-case (100%).

3. We varied the length of the target string. We crafted
increasingly long target strings (from 0 through 10,000
characters), and appended a fixed pattern string (5 characters)
at the very end to simulate worst-case behaviour. Specifically,
our pattern string was “aabca”, and our target string was
“xx...xaabca”, where the prefix of x characters was of
length p. Therefore pattern length m = 5, and target length n =
p+m. We varied p in order to craft longer target strings. We
expected all algorithms to grow linearly in wall-clock time as
length increased. However, we wanted to observe the slopes
of those linear curves for various algorithms.

4. We simulated real-life scenarios by choosing a well-known
literary passage (Hamlet’s famous soliloquy, Act III, Scene I,
“To be, or not to be [...] Be all my sins, remember’d.”), and
searching for substrings deeper and deeper into this target,
again starting from 0% through 100%. This test not only
simulated real-life human behaviour, but also tested whether
all of the algorithms processed punctuation, spaces and mixed
cases correctly. By concatenating all of the lines in the
soliloquy, we were able to craft a target string of
modest-to-large size (1500 characters). We readily concede
the cultural monotony in the choice of this text. While it does
not include characters from other languages or even accents,
by choosing a well-known piece of English text, we gave all
algorithms any implicit language-specific advantage they
could claim.

For all of the tests, in our Java implementations, we measured
four metrics. One, wall-clock time, with timers surrounding
repeated method invocations within loops. Two, comparisons, by
instrumenting the code with counters. Three, memory accesses,
for array characters in the pattern and target string. In short, we
counted one memory access for every pair of [and] brackets in
the code, but not for accesses to local or global variables. Four,
expensive arithmetic operations, such as multiplication, division,
modulo and exponentiation (if any). The instrumentation slows
down the raw performance of the algorithms, which is a reason to
ignore absolute wall-clock times but pay attention to relative
times.

We did not measure memory consumption in our tests,
primarily so we could focus on practical performance. Of course,
memory consumption matters, and several alternative algorithms
store large amounts of global or per-pattern or per-target state
prior to the actual search. We have penalised all preprocessing by
counting them towards the wall-clock time taken to execute the
search. Doing so exempts algorithms that require global
preprocessing, e.g., constructing a one-time dictionary, and also
ignores the memory consumption of these algorithms. We refer
interested readers to surveys that have examined the memory
consumption characteristics of alternative algorithms. Of our
exemplars, only Sunday Quick Search requires any significant
memory. This search algorithm, like most members of the
Boyer-Moore class, stores a bad-character integer map whose size
is proportional to the size of the character set.

Our tests ran on a MacBook Pro with a 2.9 GHz Intel Core i9,
with 32GB RAM, running macOS v10.15.7 (Catalina). The Java
version was 9.0.1 (build 9.0.1+11). Our performance results are

Scout Algorithm for Fast Substring Matching Submitted to Comm. of the ACM, Oct. 2020

shown in the charts below. When plotting wall-clock time, the
Y-axes are in nanoseconds. For each data point, we averaged the
result of one million runs to smooth out any spurious results. The
absolute numbers are irrelevant; only the relative performance
matters.

Figure 1: Wall-clock times (ns.) for different pattern depths in
a given target string length (100 characters).

Scout clearly outperforms all of the other exemplars at most
data points in terms of wall-clock time. All of the algorithms
display roughly linear performance, but the slopes and intercepts
are rather different. For a given target string, as the pattern is
situated deeper and deeper (Figure 1), we observe that Scout and
Sunday Quick Search have gentler slopes, i.e., the time taken
increases slowly as the pattern is found deeper in the target string.
However, Sunday Quick Search has a large y-intercept, because
of its high preprocessing cost. If the target string is increased in
size, with the pattern situated at 100% (Figure 2), all of the
algorithms display a linear increase in time. The high
preprocessing overhead penalises Sunday Quick Search for small
target string lengths, but as the strings elongate, the benefits of
that processing become apparent.

Figure 2: Wall-clock times (ns.) for different target string
lengths with a given pattern depth (100%). Log scales.

Figure 3: Wall-clock times (ns.) for different pattern depths in
Hamlet’s soliloquy (1500 characters).

6 Discussion of Performance
When comparing alternative algorithms, we checked our

implementations of each for correctness. One immediate
conundrum was that several of the algorithms, in particular all of
the Boyer-Moore variants, tolerated only ASCII characters. When
we tested them against Unicode characters, the algorithms
failed,e.g., dumped a stack trace. The ASCII-centrism of these
algorithms forced us to choose the Hamlet soliloquy as a real-life

Submitted to Comm. of the ACM, Oct. 2020 A. Natrajan et al.

testbed. In contrast, Scout runs correctly, as-is, whether the
passage is from Hamlet in English, from the Bhagavad Gita in
Sanskrit, the Iliad in Greek, or the Tao Te Ching in Chinese.

The memory consumption of alternative algorithms is a
significant concern as well. The Boyer-Moore variants require one
or more integer arrays with one entry per ASCII character. We
could have re-sized this array to have one entry per Unicode
character, but the prospect of allocating and initialising an array
containing up to 232 entries for every search was daunting. In the
end, we left the alternative algorithms as-is in terms of their
ASCII-centric memory consumption so as to give them an
advantage.

The point of evaluating performance is to assess whether one
algorithm is speedier than another, especially at scale. Turning to
time taken as a metric of performance, we recognise that while
character comparisons certainly contribute towards time taken,
they are not as dominant as other factors. Several algorithms
undertake preprocessing steps in order to speed up subsequent
searching. Technically, the work done in those preprocessing
steps does not count towards the number of character
comparisons. However, general-purpose substring searching is
likely to have low reuse, i.e., it is likely that every time the
algorithm is invoked, the pattern and target may change.
Therefore, algorithms that preprocess either the pattern or target
or both have to undertake those steps for every single invocation.
Preprocessing consumes time, whether or not the character
comparison counts improve.

Yet other algorithms involve expensive operations, such as
modulo arithmetic in Karp-Rabin. On most microcomputers, these
operations are far more expensive than character counts.
Certainly, some microcomputers may come equipped with
separate processing units to speed up arithmetic calculations, but
such processing is still likely to be more expensive than character
comparisons.

Memory lookups affect performance. On most modern
microcomputers, memory lookups can take several more
processor cycles than character comparisons. Therefore, reducing
the number of memory lookups can reduce time taken to execute
an algorithm. Memory lookups play another role in performance
when spatial and temporal locality are taken into account.
Techniques such as paging and multi-level caching have been
developed to reduce the cost of memory lookups. While we do not
expect to craft algorithms to account for paging or caching
techniques on specific machines, an algorithm that naturally
exploits basic paging and caching will perform better than an
equivalent algorithm that does not.

We have chosen to normalise all of these factors by comparing
wall-clock time. The question of how to account for all of the key
factors is challenging. Counting character comparisons alone can
seem myopic especially if a low count comes at the expense of too
many memory lookups or costly arithmetic operations. Loading
up most of the work in a preprocessing step so as to make the
search cheap is counter-productive. Deep textual analysis may
reduce character comparisons dramatically, but may not lend
themselves to practical solutions. By focusing on wall-clock time,
we force a normalisation of all of these disparate factors into a
common, comparable and practical currency.

Wall-clock time as a common currency is not flawless.
Wall-clock times for the same tests run on different machines,
operating systems, compilers, loads, etc. will differ. Therefore,
only relative wall-clock times lead to meaningful comparisons.
More particularly, the wall-clock times have to be compared for
the same tests on the same machines, under the same load
conditions. Another issue with wall-clock times is that underlying
performance trends and patterns are not readily apparent unless
several data points are plotted and examined. A pen-and-paper
analysis of an algorithm may suggest its performance grows
linearly, but a wall-clock time plot may reveal large start-up costs
that are not amortised well enough to make the linear growth
apparent until extremely large data sets are chosen. Alternatively,
another seemingly linear-growth algorithm may be revealed to
encounter page thrashing, which causes performance to
deteriorate for large data sets.

In the next few charts, we show the results of instrumenting
our Java code to count character comparisons as well as memory
lookups. We will consider the “real-life” Hamlet testbed for our
discussion below.

Figure 4: Wall-clock times (ns) at different counts of character
comparisons for exemplar algorithms.

The scatter-plot in Figure 4 shows that wall-clock time is
loosely linearly correlated with the number of character
comparisons. We make two observations from this plot. One,
when considering a particular algorithm alone, sometimes the
correlation is tight (e.g., for Brute force), and sometimes loose
(e.g., for Karp-Rabin). Two, when considering all of the
algorithms put together, the correlation is extremely weak. In
contrast, the scatter-plot in Figure 5 shows a much tighter
correlation in both cases between wall-clock time and memory
lookups. Of course, character comparisons are correlated to
memory lookups; the point of accessing pattern and target
characters is to facilitate a comparison. However, whether
considering a specific algorithm, or looking at all algorithms,

Scout Algorithm for Fast Substring Matching Submitted to Comm. of the ACM, Oct. 2020

memory lookups is a much better predictor of wall-clock time
performance than character comparison counts.

Figure 5: Wall-clock times (ns) at different counts of memory
lookups for exemplar algorithms.

Another key performance factor is spatial and temporal
locality. An algorithm that accesses the same characters in rapid
succession, or accesses nearby characters quickly, lends itself to
better caching performance. We did not measure the effect of
caching on any of the algorithms. However, an inspection of the
code for the algorithms reveals that Scout shows good spatial and
temporal locality. In contrast, Sunday Quick Search, despite
performing fewer memory lookups, shows poor locality. In
particular, as with every Boyer-Moore variant, it depends on the
bad character array, which is simply another array of integers
different from the pattern and the target, and which is indexed and
accessed by the ASCII value of the currently-mismatched target
character. The access pattern for the bad character array is
effectively random, leading to poor locality. Although we were
not able to quantify the effects of caching, we encourage further
research into how caching can improve the performance of
substring matching.

7 Conclusions
Searching for a substring is so routine a task that most

languages provide in-built libraries that software developers can
reuse. Many of these libraries implement a brute force algorithm
to search for a substring despite there being dozens of alternative
algorithms. We submit that these library methods should be
rewritten to implement better algorithms. We provide an
algorithm, Scout, whose performance as measured by wall-clock
time ranks among the fastest algorithms. Additionally, Scout
requires no preprocessing and has low, constant memory usage. It
is language-agnostic and works for any character set.

Scout runs faster than alternative algorithms in most cases. We
crafted testbeds so that we could compare Scout against the best
alternatives. We picked brute force and the best variants as
exemplars for comparison. When performing our comparisons, we
endeavoured to give every advantage to each exemplar, so as to
make the performance comparisons salient.

The usual metric of performance for substring matches, i.e.,
character comparisons, is a weak predictor of wall-clock time.
Our results show that memory lookups predict performance better.
We showed that merely counting memory accesses correlated
better with observed wall-clock time than comparison counts. We
speculate that caching effects because of spatial and temporal
locality explain the remaining memory-related performance.

We encourage popular implementations of substring libraries
to use our Scout algorithm.

ACKNOWLEDGEMENTS
We thank several colleagues who critiqued earlier versions of the
algorithm, and read longer versions of this paper.

REFERENCES
[1] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications

of the ACM, 20:762-772, 1977.
[2] D.E. Knuth, J.H. Morris (Jr) and V.R. Pratt. Fast pattern matching in strings,

SIAM Journal on Computing, 6(1):323-350, 1977.
[3] R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms.

IBM Journal of Res. Dev., 31(2):249-260, 1987.
[4] D.M. Sunday. A very fast substring search algorithm, Communications of the

ACM, 33(8):132-142, 1990.

Submitted to Comm. of the ACM, Oct. 2020 A. Natrajan et al.

