
1

The Legion Support for Advanced Parameter-Space Studies on a Grid*

Anand Natrajan, Marty A. Humphrey, Andrew S. Grimshaw
Department of Computer Science, University of Virginia
{anand, humphrey, grimshaw}@cs.virginia.edu

Abstract. Parameter-space studies involve running a
single application several times with different parameter
sets. Since the jobs are mutually independent, many
computing resources can be recruited to conduct an entire
study in a distributed manner. Parameter-space studies
are attractive applications for grids, which are networked
collections of computing and other resources. Legion is a
grid infrastructure that facilitates the secure and easy use
of heterogeneous, geographically-distributed resources by
providing the illusion of a single virtual machine from
those resources. Legion provides tools and services that
support advanced parameter-space studies, i.e., studies
that make complex demands such as transparent access to
distributed files, fault-tolerance and security. We
demonstrate these benefits with a protein-folding
experiment in which a molecular simulation package was
run over a grid managed by Legion.

1. Introduction
A computational grid or a grid is a collection of

distributed heterogeneous resources connected by a
network. Grids are becoming more pervasive platforms for
running distributed jobs to solve large problems. In such
an environment, users can access resources transparently
and securely. When a user submits jobs in a grid, the
system runs them on distributed resources and enables her
to access her results during execution and on completion.
In a grid, users are not limited by geography, by non-
possession of accounts, by limits of resources at one site or
another and so on. In short, as long as a resource provider
is willing to permit a user to use the resource, there is no
barrier between the user and the resource.

Increasingly, grids are becoming platforms for running
large parameter-space (p-space) studies. In the past, grids
have been viewed as platforms for high-performance
applications with multiple communicating tasks
distributed across several machines. However, current
network latencies, although greatly reduced from what
they were in the past, still do not support running
communication-intensive tasks across different machines;
the latencies in communication reduce performance

significantly. Therefore, the new focus of grid
infrastructures is to support high-performance computing
by running large p-space studies. Since in p-space studies,
individual tasks do not communicate with one another,
high performance can be achieved by ignoring network
latencies largely although not entirely.

This paper describes the support for p-space studies
provided by Legion, a grid infrastructure. Legion is a
software infrastructure for managing a grid [10]. Legion
provides an abstraction of the grid similar to what a
traditional operating system provides for a single machine.
This abstraction supports the current performance
demands of scientific applications. Legion supports
capacity computing, i.e., the ability to conduct larger
computational experiments either by expending more
resources on a single problem or on multiple, independent
problems, as well as capability computing, i.e., new
mechanisms with which to conduct computational science
experiments. A number of scientific applications already
run using Legion as the underlying infrastructure [22]. In
the future, scientists will demand support for new methods
of collaboration. Legion supports these expected demands
as well [21]. The aim of this paper is to show that Legion
provides most of the current requirements of p-space
studies: data management, binary management,
scheduling, fault tolerance, transparent remote execution
of legacy and non-legacy applications, distributed file
systems, security and a job monitoring interface.

In §2, we briefly present and discuss some of the
underlying philosopy of Legion. In §3, we present
Legion’s support for p-space studies. In this section we
first discuss Legion’s support for running single
applications; running p-space studies can be viewed as
running single applications several times over. In §4, we
present a case study that demonstrates Legion’s support
for running high-performance parallel legacy p-space
applications on cross-organisational, heterogeneous,
distributed and potentially-faulty resources. The results of
this experiment clearly indicate that an integrated grid
infrastructure is essential for enabling users to take
advantage of grid resources. In §5, we present the current

* This work was supported in part by the National Science Foundation grant EIA-9974968, DoD/Logicon contract 979103 (DAHC94-96-C-0008) and
by the NASA Information Power Grid program.

2

status of Legion’s support for p-space study. The support
is influenced by our experiences with users who run high-
performance p-space studies. We conclude in §6.

2. Legion Background
The Legion project is an architecture for designing and

building system services that present users the illusion of a
single virtual machine [10]. This virtual machine provides
secure shared objects and shared name spaces. Whereas a
conventional operating system provides an abstraction of a
single computer, Legion aggregates a large number of
diverse computers running different operating systems
into a single abstraction. As part of this abstraction,
Legion provides mechanisms to couple diverse
applications and diverse resources, vastly simplifying the
task of writing applications in heterogeneous distributed
systems.

Legion is a grid operating system. It provides standard
operating system services — process creation and control,
interprocess communication, file system, security and
resource management — on a grid. In other words, Legion
abstracts the distributed, heterogeneous and potentially
faulty resources of a grid by presenting users with the
illusion of a single virtual machine [12]. In order to
achieve this goal, Legion manages complexity in a number
of dimensions. For example, it masks the complexity
involved in running on machines with different operating
systems and architectures, managed by different software
systems, owned by different organisations and located at
multiple sites. In addition, Legion provides a user with
high-level services in the form of tools for specifying what
an application requires and accessing available resources.

Each system and application component in Legion is an
object. The object-based architecture enables modularity,
data and fault encapsulation, and replaceability — the
ability to change implementations of any component.
Legion provides persistent storage, process management,
resource management services, security and inter-process
communication, long regarded as the basic services any
operating system must provide. Legion provides these
services in an integrated environment, not as disjoint
mechanisms such as Globus does [7]. Of particular
importance is the integration of security into Legion from
the design through implementation. Legion supports PVM
[8], MPI [27], C, Fortran (with an object-based parallel
dialect), a parallel C++ [9], Java and the CORBA IDL
[26]. Also, Legion addresses critical issues such as
flexibility and extensibility, site autonomy, binary
management and limited forms of fault detection/recovery.
From inception, Legion was designed to manage millions
of hosts and billions of objects — a capability lacking in
other object-based distributed systems [13].

A well-designed grid should not only satisfy current
demands of users but also anticipate and satisfy future
demands. Currently, many applications require high
performance. However, in the near future, grid systems
such as Legion will be able to deliver high performance to
applications routinely by providing access to distributed
resources. We believe that at that point, users will look
beyond high performance as the defining feature of a grid
system. At that point, users’ demands may include
heterogeneity, security, fault-tolerance and collaboration.

Heterogeneity is a fundamental design principle in
Legion [11]. Typically, a running grid that uses Legion
incorporates diverse resources — machines of different
architectures running different operating systems
consisting of different configurations and managed by
different organisations. Legion users can register
implementations of different architectures for their
applications. For parallel applications, different tasks
started by a single job may run on heterogeneous machines
and communicate with one another as if they ran on
homogeneous machines. For p-space studies, different
jobs of an application may be started on machines of
different architectures.

Security was designed into Legion from the start [6].
Every Legion object, whether it be a resource, a user, a
file, an application or a running job, has a security
mechanism associated with it. The mechanisms provided
by Legion are general enough to accommodate different
kinds of security policies within a single grid. Typically,
the security provided is in the form of access control lists.
An access control list indicates which objects can call
which methods of an object. This fine-grained control
mechanism enables users and grid administrators to set
sophisticated policies for different objects. The
authentication mechanism currently employed by Legion
is a public key infrastructure based on key pairs. The keys
are used to encrypt and decrypt messages securely as well
as for signing certificates.

Fault-tolerance can be implemented in a number of
ways in Legion [24]. Basic Legion objects are fault-
tolerant because they can be deactivated at any time.
When a Legion object is deactivated, it saves its state to
persistent storage and frees memory and process state.
Subsequently, it may be reactivated from its persistent
state either on the same or a different machine. If it is
reactivated on a different machine, Legion transfers its
state to the new machine whenever possible. In addition,
some objects can be replicated for performance or
availability. Legion’s MPI implementation provides
mechanisms for checkpointing, stopping and restarting
individual instances. Finally, Legion provides tools for
retrieving intermediate files generated by legacy
applications. Users can restart their instances using these

3

intermediate files. For p-space studies, individual jobs can
be monitored and restarted anew if they fail.

Legion enables new paradigms for collaboration
between researchers conducting experiments that require
using grid resources. We believe that collaboration is an
important goal for a grid system. We believe that
researchers should not be limited by geographical distance
between one another as well as the resources they desire to
use. Accordingly, the ability to share objects via their
permissions (access control lists) has always been a key
design feature in Legion.

3. Support for Parameter-Space Studies
Legion can benefit scientific applications by delivering

large amounts of resources such as computing power,
storage space and memory. Moreover, Legion provides a
rich set of tools that make the access and use of these
resources simple and straightforward. In particular, there
are tools for running programs written using MPI or PVM
as well as programs that are p-space studies or sequential
codes. In §3.1, we show how Legion enables a user to
access large amounts of computational resources (which
are usually controlled by queuing systems at various
organisations) for running high-performance applications.
In §3.2, we discuss information services and scheduling in
Legion briefly. In §3.3, we present Legion’s distributed
file system, called context space, which can be used to
access data distributed across several machines in a
transparent manner. In §3.4, we present some of Legion’s
tools for running applications, especially tools for running
p-space studies of applications. In §3.5, we discuss
advanced features of runs, such as sharing jobs among
mutually-distrustful users.

3.1. Hosts, Vaults and Queuing Systems
Resources such as machines, disks and queues are

represented by corresponding objects in Legion. The
representations of these resources abstract the particular
details of using them. Consequently, users are presented
with a uniform interface for utilising these resources. The
resource objects also encapsulate local policies about their
usage. For example, a host object may encapsulate policies
about which users can run on the underlying machine.
Likewise, a vault object may encapsulate policies about
how much disk resources can be made available to a user.
A rich set of resources can be abstracted by Legion
objects; in the rest of this subsection, we will discuss the
benefits of abstracting one particular kind of resource,
namely, queuing systems, in Legion.

Queuing systems have been used to schedule jobs on
many clusters of nodes [2] [17] [19] [30] [31]. When a
user submits a job, the queue provides a ticket or job ID or

token, which can be used to monitor the job at any later
time. The ticket becomes invalid shortly after the job
completes. Most queuing systems comply with a POSIX
interface requiring three standard tools for running jobs: a
submit tool (PBS qsub, LSF bsub, LoadLeveler
llsubmit), a status tool (PBS qstat, LSF bjobs,
LoadLeveler llstatus) and a cancel tool (PBS qdel,
LSF bkill, LoadLeveler llcancel). In addition, some
queues provide other tools to check on the aggregate status
of the queuing system, e.g., LSF bqueues and
LoadLeveler llq. A queuing system’s status tool may
report that a job is queued, running or terminated. If the
execution of a job is deemed undesirable, the cancel tool
can be used to terminate the job. Most queuing systems do
not provide tools to access intermediate files or supply
additional inputs. A user desiring such functionality must
employ shared file systems or other file transfer tools.
Queuing systems do not provide any support for checking
aggregate progress of large sets of jobs. Users must check
on the progress of each job individually or construct
interfaces to monitor the progress of the entire set of jobs.

Part of the abstraction Legion provides is to hide the
differences among queuing systems as well as between
queuing and non-queuing systems. A user running over
Legion does not have to know the particulars of every
system on which a job could run. To appreciate why this
abstraction is important, consider running a simple
application, such as “Hello, world”, on different systems.
We could run on a Unix or Windows system by writing a
shell script or batch file such as the one in Figure 1.

However, if we wanted to run on a cluster of nodes
controlled by Portable Batch System (PBS), we would
have to modify the application to construct a submission
script as in Figure 2. If we decided to run on nodes
controlled by Maui/LoadLeveler, we would have to
construct a submission script as in Figure 3. Not only are

different queuing systems dissimilar, but the same queuing
system installed at different sites may be dissimilar in

echo ’Hello, world’
Figure 1. Simple application

#!/bin/ksh
#PBS -A anand
#PBS -c n
#PBS -m n
#PBS -N LegionObject
#PBS -r n
#PBS -l nodes=1:ppn=1:walltime=00:10:00
#PBS -p 1
#PBS -o test.o
#PBS -e test.e
echo ’Hello, world’

Figure 2. Simple application modified for PBS

4

terms of configuration parameters. Moreover, the tools for
running special applications, e.g., MPI programs, may be
different (mpirun versus pam versus poe). The different
submission scripts required to run on different systems
restrict a user in two significant ways:

1. The user is forced to learn the particulars of each
queuing system, thus increasing his cognitive burden and
increasing the time before he can start becoming
productive on these systems.

2. When running large numbers of jobs, the user must
construct submission scripts for running on each queuing
system. The very act of creating a submission script a
priori forces the user to construct a static schedule for
running his jobs. Consequently, he cannot take advantage
of dynamic load changes on resources to schedule jobs.

Legion hides differences among queuing systems
regarding their submit, status and cancel tools as well as
their submission scripts. Also, Legion hides differences
regarding the manner in which MPI jobs are run.
Moreover, Legion provides tools and mechanisms for
accessing intermediate files and viewing the aggregate
status of large numbers of jobs. Finally, Legion does not
require the user to log on to the various queuing systems to
initiate jobs. Single sign-on is one of the most convenient
features of a grid operating system.

3.2. Information Services and Scheduling
Scheduling is the process of running jobs on the best

possible resources on a grid. The general scheduling
problem is NP-complete [28]. In addition, the parameters
involved in making an optimal schedule are numerous and
mutually dependent. Constructing a schedule may involve
making decisions not limited to: (a) the machine
architectures for which a class has implementations, (b)
specific properties of a machine desired by the class (e.g.,
is it a queuing system? can it run MPI jobs natively?), (c)
communication bandwidth versus performance penalty,
(d) current load and storage space on the machine, (e)
permissions for this user to run an instance of this class on
that machine, (f) allocation remaining for the user on that

machine and (g) charges imposed by resource providers
for running on their machine.

Legion provides mechanisms to construct schedulers.
Different schedulers may employ different algorithms to
construct schedules from the list of available resources.
Also, Legion permits users to specify resources directly
for a job, the rationale being that until good heuristics are
developed to address all issues in scheduling, users are
likely to be the best schedulers of their own jobs. For p-
space studies, Legion provides a tool called
legion_make_schedule that constructs schedules
based on requirements for the application as well as
performance characteristics of the available (and working)
machines on which the user is permitted to run.

The general scheduling architecture in Legion is based
on negotiation between resource providers and consumers
[4]. The negotiation process preserves autonomy of
resource providers while satisfying the demands of the
consumers. When a user starts a job, Legion encapsulates
the demands of the user in the job request. The scheduler
uses this request to construct one or more schedules for
this job. Next, it queries the resource objects in turn to
determine if they will accept the job. The resource objects
may exercise the autonomy of the resource providers in
accepting or denying the job. If they accept, the jobs are
initiated on the chosen resources.

Scheduling is an example of a situation requiring
information services. Such services collect and store
information about interesting components of a grid. In
Legion, an information service is represented as an object
called a collection. The collection collects and stores
information about other objects; the choice of objects is a
configuration issue. For example, in a particular grid, a
collection may be configured to collect information about
users (represented as user objects), such as email address,
postal address, last login, preferences, etc. Another
collection may be configured to collect information about
computing resources, such as machines. This collection
would either pull information from the host objects or
have information pushed into it from the host objects. The
information could be static, such as the operating system
and architecture of the host, as well as dynamic, such as
load, available memory, available swap space, etc. The
information in such a collection could be (and is) used by
a scheduler object to assign jobs on machines.

3.3. Distributed File System: Context Space
Legion provides a shared, virtual space to grid users.

The shared, virtual space can be viewed as a truly
distributed, global file system. Components of this file
systems are visible to all Legion users from any of the
machines that are part of the grid. For example, if a job
that is part of a p-space application is scheduled on one of

#!/bin/ksh
@ environment = COPY_ALL;MP_EUILIB=us
@ account_no = met200
@ class = express
@ node = 1,1
@ tasks_per_node = 1
@ wall_clock_limit = 00:10:00
@ input = /dev/null
@ output = test.o
@ error = test.e
@ initialdir = /home/uxlegion
echo ’Hello, world’

Figure 3. Simple application modified for Maui

5

the machines that is part of the grid, the machine can
access the files necessary for that job although the files
may be stored on some other machine. These accesses
occur without the user’s intervention.

The distributed file system is organised in a manner
similar to a Unix file system. In order to distinguish the
global file system from the file systems present on
individual machines, we call the global file system a
context space. Directories in context space are called
contexts. A context called “/” typically denotes the root of
the context space. A context is an object that contains
other objects — contexts, hosts, schedulers, users, classes,
files, etc. All users of a grid, no matter where located
physically, have the same view of the context space. The
analogue of this model in traditional operating systems is
an NFS-mounted disk that is visible to all machines that
share the mount, or a Samba-mounted Unix directory that
is visible from a Windows machine.

The scope of Legion’s context space is much vaster
than that of any of its predecessors. Distributed file
systems are not novel. Legion’s implementation has
predecessors in Network File System (NFS) [25], the
Andrew File System (AFS) [16] and Extensible File
System (ELFS) [18]. However, context space is truly
distributed and global; individual components may be
physically located on machines that do not have anything
in common except that they are part of the same grid.

Users may freely transfer files from their local file
systems to context space. For example, one of the options
to a tool called legion_cp permits users to copy a text
file from their file system to context space. Likewise,
registering a program effectively transfers an executable
from a local file system to context space. A growing
number of tools available in Legion permit users to
interface with context space in novel ways. For example, a
tool called legion_export_dir lets a user mirror an
entire directory in his local file system into Legion. This
tool is particularly useful for enabling large parameter sets
to be accessible to several jobs running on different
machines using Legion. Likewise, a Windows tool lets
users browse context space. When these two tools are used
in conjunction, a user on one Windows machine may be
able to view the contents of his collaborator’s directories
on another Windows machine across the globe. Naturally,
the permissions on the exported directory and its
components have to be set to permit the collaborator (and
perhaps only the collaborator) to view them. However,
setting the permissions is a matter of manipulating the
access control lists of the objects. Legion provides tools
for manipulating the access control lists of objects.

Tools for traversing context space include a suite of
Unix-like command-line tools, a point-and-click Web
browser interface, an FTP tool, a Samba interface for

Windows, an HTTP interface, and a Legion
implementation of NFS for accessing context space with
standard Unix tools such as ls and cat as well as with
standard system calls like open, read and write [29].
Using these tools, grid users can collaborate by sharing
and exchanging data in a manner familiar to them.
Moreover, because of the possibility of setting fine-
grained access controls, collaborators can also select the
level of collaboration.

3.4. Running Single Applications
In Legion, running an application typically requires two

steps. The first step, called “registering”, requires the user
to supply Legion with the binaries for the application. The
second step, involves the actual execution of the binaries
on different resources. Registering binaries is a necessary
one-time step whereby the user lets Legion transfer the
correct binaries to the machines (and only those machines)
on which the user eventually runs. Binary management is
a useful feature for users who desire to access large
numbers of resources for their application. Given that
users often may not even be aware of the machines on
which their applications run, it becomes the responsibility
of the grid infrastructure to transfer the appropriate
binaries on exactly those machines on which the
application runs. In the following subsections, we discuss
Legion’s support for various kinds of applications.

Legacy Applications. Legion supports running legacy
applications on a grid. Legacy applications are those
whose source code does not consist of any calls to Legion
routines and does not utilise Legion objects and tools.
Moreover, the source code of the application may not be
modified to target it to Legion, either because it is
unavailable or because its authors are unavailable or
unwilling to make the necessary changes. In all such cases,
Legion neither mandates re-targetting the application nor
denies access to grid resources.

Legacy applications are not targetted specifically to a
grid or Legion. Legion supports such applications “as is”,
i.e., the user neither has to change a single line of code nor
re-link the object code to run such an application. All
Legion requires are the executables for the application for
various architectures. A user who chooses this form of
support understands the trade-offs for the convenience of
not changing the application at all. One trade-off is that
Legion can control very few aspects of the execution of
the job after it is initiated. For example, Legion cannot
provide restart support for a legacy application if the
application itself does not write checkpointing data.
However, Legion can and does provide support for starting
the job, checking its status as reported by the underlying
system and terminating the job if necessary. In addition,

6

Legion provides the ability to send in or get out
intermediate files while the job is running.

A Legion user may run a legacy application on the
distributed resources of a grid by undertaking two steps
(tool names are in parentheses): register the executable as
a runnable class (legion_register_program) and
run the class (legion_run). The first step results in the
creation of a runnable class, analogous to an executable in
Unix or Windows. Registering an executable is an
infrequent step, required only when the runnable class
does not exist in Legion or when the executable available
to the user changes. A user is likely to execute the second
step repeatedly in order to initiate, monitor and complete
repeated runs of the application. The executable registered
with this class is called an implementation. Multiple
executables, typically of different architectures, may be
registered with the same class.

Once a runnable class has been created in Legion, a
user can run the class by issuing a legion_run
command. The simplest form of the command is:

legion_run myClass
Here, the user implies that Legion can run an instance of
the class on any resource present in Legion provided (a)
myClass has implementations for the machine on which
the instance eventually runs (e.g., Solaris or SGI
implementations), (b) the user is permitted to run on the
machine, and (c) the machine accepts the instance for
running. More sophisticated runs can involve the user
specifying machines or architecture types on which she
would like to run, input and output files as well as meta-
information regarding how a job should be run on a
particular machine. Legion ensures that the input and
output files are copied to and from the machine on which
the instance runs. Moreover, if the user desires, she can
observe the on-screen output of the remotely-executing
job on her current terminal. In keeping with the Legion
philosophy of providing mechanisms on which policies
can be constructed, there exist many different strategies
for executing a legacy application on distributed
resources. These different strategies can be applied by
choosing from a large number of options available in
legion_run. The options are part of the standard
documentation and man pages available at each Legion
installation [1].

MPI Applications. Many high-performance parallel
applications are written using the Message Passing
Interface (MPI) library [27]. An MPI library provides
routines that enable communication among various
processes of a parallel application. MPI is a standard, i.e.,
it defines the interface of the routines. Different vendors of
MPI may implement a routine differently provided they
adhere to the standard interface. Legion’s support for MPI
is three-fold: Legion MPI, native MPI and mixed MPI.

Legion MPI. Legion can be viewed as another MPI
vendor because it provides implementations to standard
MPI routines. If a user desires to run an application that
uses MPI routines on a grid, he has to undertake three
simple steps: re-link the object code of the application
with Legion libraries (legion_link), register the
executable as an MPI runnable class
(legion_mpi_register), run the class
(legion_mpi_run). The first step ensures that
Legion’s implementation of MPI routines are used when
running the application. Note that it is not necessary to
change the source code of the application. The subsequent
steps are similar to those for legacy applications. The
options and operations of the actual commands are similar
to those for registering and running legacy applications.

Native MPI. Some MPI applications are intolerant of
high latencies for inter-process communications. Running
such applications on distributed resources may degrade the
performance of the application. Such applications are
better supported by running them on proximal resources to
reduce communications latency. Moreover, many MPI
implementations are tuned finely to exploit the
architecture of underlying resources. Finally, the users of
many MPI applications may be unwilling or unable to re-
link the application with Legion libraries. Therefore,
Legion supports running MPI applications in “native”
mode, i.e., using other implementations of MPI, such as
MPICH [14]. Native MPI support is similar to support for
Legion MPI as well as legacy applications. The steps a
user has to undertake are: register the executable as a
runnable class (legion_native_mpi_register)
and run the class (legion_native_mpi_run). The
benefits to the user are that no recompiling or re-linking is
necessary to access remote resources transparently. We
describe an example of Legion’s support for native MPI
applications in §4.

Mixed MPI. In Legion’s mixed MPI support, an
application is executed in “native” mode, but the
application can access Legion’s objects, such as files. The
steps required are: modify source code to initiallise Legion
library, re-link the object code with Legion libraries
(legion_link), register the executable as a runnable
class (legion_native_mpi_register) and run the
class (legion_native_mpi_run -legion). The
user has to modify the source code to initiallise Legion
with one call from within the application. Registering and
running the class is similar to native MPI with the addition
of one option. Applications written to take advantage of
mixed MPI support can benefit in two ways: (a) since jobs
are executed in native mode, performance for latency-
intolerant applications does not suffer, and (b) jobs can
access Legion objects and thus take advantage of the grid.

7

Mentat and Basic Fortran Support (BFS). High-
performance applications can be supported in Legion if
they are written in Mentat or if they use the Basic Fortran
Support. Mentat is a language similar to C++ with a few
additional keywords [9]. In Mentat, users may specify
classes to be stateless or persistent. The Mentat compiler
identifies data dependencies within a program and
constructs a dataflow graph to execute the program.
Mentat provides a platform for users to write high-
performance applications using a compiler constructed to
mask the tedium of writing parallel programs. Legion’s
support for Fortran programs is called BFS [5]. If users
desire to write grid applications in Fortran, then Legion
requires that grid directives be embedded within Fortran
comments. Currently, BFS support targets Mentat, but
may not in future releases.

Parameter-Space Studies. Many grid applications are
p-space studies. In a p-space study, a single program is
called repeatedly with different sets of parameters.
Multiple instances of the program may run concurrently
with different sets of parameters. These instances are
completely independent of one another. Therefore, they
can be scheduled easily across geographically-distributed
resources. With Legion’s support, users may run their p-
space studies orders of magnitude faster than sequential.
First, the application must be registered. Next, the user
must indicate which files must be mapped to the files
required by an instance. Finally, the application must be
run with legion_run_multi. Legion runs each
instance of the application by mapping the proper files for
the instance and copying output files appropriately.
legion_run_multi takes a number of options in order
to tailor the running of a p-space application for a user.
This tool ensures that input files and output files are
arranged such that the user can identify corresponding sets
easily. Legion provides tools for viewing the progress and
performance of a p-space study (legion_show_multi
and legion_plot_multi respectively).

Legion’s support for p-space studies involves
determining the requirements of the application, picking
the best machines to run on and controlling the flow of
jobs such that high throughput is achieved. In addition,
legion_run_multi checks whether the appropriate
output files for each job have been retrieved and restarts
jobs that complete unsuccessfully. In addition, if the user
so desires, he can view the progress of each and every job.
In Figure 4, we show part of the view a user sees when
running p-space studies. On the left is a view showing
1000 jobs of an application with 250 jobs running at any
time. Since this view of a realistic p-space study is
somewhat dense for explanation, on the right we show a
view of 75 jobs of a similar application with 25 running at

any time. Each horizontal line shows the progress of a job
along the time axis (left is earlier in time). The colour of a
line encodes the state of that job, e.g., blue indicates that
the job is actually running on a remote machine, green
indicates that the job is done, etc. The labels on the left of
each line denote the ID of that job. A user can observe the
progress of any job from the corresponding line. The
vertical lines at the bottom show how many jobs were
running at any given time. Ideally, the number of jobs
running at all times should be equal to the number
specified by the user (25 in this case). However, when the
p-space application is started and when it is completing,
the number of jobs running changes. Likewise, at times,
the tool does not manage to keep the maximum number of
jobs running because it has to cycle through the completed
jobs to retrieve output files and start new jobs in their
place. In Figure 5, we show a snapshot of the full screen
visible to a user when the application is in progress. On the
right is the view similar to the one shown on the right in
Figure 4. The buttons at the bottom left can be used to
obtain more detail about any particular job. For example,
in the snapshot, the user has pressed the button
corresponding to the job labelled “41”. The text window at
the middle left shows details about the job, e.g., its status
and the machine on which it is running. The buttons at the
top left can be used to obtain details about any particular
machine, e.g., which jobs are currently in progress on it.
The machines selected for this particular job are selected
based on load from the entire set of machines available on
this grid (npacinet).

Currently, a limitation with Legion’s support for p-
space studies is that the user must specify the number of
jobs that can be in progress concurrently. The user does
not have to specify the total number of jobs; that number is
deduced by legion_run_multi as the number of
complete sets of input files less the number of complete
sets of output files. However, Legion does not deduce the
number of jobs that must be concurrent. The number of
concurrent jobs cannot be made arbitrarily high for several
reasons: (a) too many jobs can swamp the client from
which the p-space jobs is initiated in terms of CPU usage,
process table usage, memory, etc. (b) if the duration of a
single job is shorter than the time it takes to start several
jobs, then starting more jobs concurrently does not result
in better throughput (c) from an accounting viewpoint, the
number of concurrent jobs may be throttled because the
user cannot afford to pay for using so many resources
concurrently (d) initiating too many jobs may overload
available machines. Deducing the number of jobs that
must be run concurrently is an interesting area of future
research in running p-space applications on a grid.

8

Fi
gu

re
 4

. P
ro

gr
es

s
of

 P
ar

am
et

er
-S

pa
ce

 S
tu

di
es

9

Fi
gu

re
 5

. F
ul

l D
is

pl
ay

 o
f S

m
al

l P
ar

am
et

er
-S

pa
ce

 S
tu

dy

10
3.5. Sharing Jobs
Legion’s object model is flexible enough to permit

novel means of collaboration among researchers, for
example, sharing jobs. In Legion, running instances of a
class are first-class objects themselves. Therefore, as with
any object in Legion, access control lists can be set for
them to control permissions in interesting ways.

Suppose two researchers situated across a country wish
to collaborate. The nature of their collaboration requires
one of them to initiate a job which both observe. Currently,
such a collaboration would be impossible unless both
researchers were able to share an account on some
machine. In Legion, neither researcher would need an
account on the machine on which the instance runs.
Instead, both could access the same object using Legion
tools from their own machines.

Suppose a researcher constructs an application that is
used widely by others in the same field. The researcher
could register her executable as a runnable class in Legion
and set the permissions to allow anyone, a group of users
or an a priori known set of users to run instances of the
class. Currently, the researcher would have to send or sell
her executable to her fellow researchers. In the Legion
model, she could control who runs her class when, where
and how many times without physically transporting her
executable to the other researchers’ machines.

Suppose two mutually-distrustful parties wish to
collaborate on an experiment with one providing the
executable and the other the data. Currently, such a
collaboration is impossible because either the executable
or the data must be transported to the other collaborator.
However, in Legion, such a collaboration is legitimate and
possible. The collaborator with the executable would
register the executable as a class in Legion and start an
instance. Then he would set the permissions on the
instance allowing only the other collaborator to perform
data transfers but retaining permission to terminate the
experiment. The second collaborator, after verifying that
the permissions are indeed as outlined above, could
commence transferring data files. The application in
question would have to be written in such a manner that it
can wait until the data files become present. With that
minor change in place, Legion can enable these mutually-
distrustful parties to collaborate.

Other means of collaboration will become evident as
grids are used more widely and routinely. We expect the
Legion model to be flexible enough to accommodate these
collaboration efforts as they arise.

4. Case Study: Running CHARMM on
NPACI Resources using Legion

In order to demonstrate Legion’s support for high-
performance p-space computing, we conducted an
experiment in which a computational scientist accessed
resources from NSF’s National Partnership for Advanced
Computational Infrastructure (NPACI) using the grid
infrastructure provided by Legion. The application used
was CHARMM (Chemistry at HARvard Molecular
Mechanics) [3] [20], a popular general simulation package
used by molecular biologists to study protein and nucleic
acid structure and function. One large problem for which
CHARMM is used is the study of the nature of the protein
folding process. The scientist desired to study the energy
and entropy of many folded and unfolded states of a
certain protein, Protein L, to gather information about its
behaviour during its folding process and to generate a
protein-folding landscape. This study required multiple
CHARMM jobs to be run with different initial parameters.

There were two clear goals for this experiment:
1. Enhance the productivity of the user by solving a

large and computationally-challenging problem. By
accessing distributed grid resources, the user condensed
the time required for performing his computations from a
month (if he used the resources available at his
organisation) to less than two days.

2. Demonstrate a match between mechanisms
expected by the user and those provided by the grid
infrastructure. The user had to learn five commands or
fewer in order to perform his computations on a variety of
resources.
In the process of meeting these goals, we made a number
of observations that affect grid infrastructure developers as
well as grid users. In this paper, we present those
observations in the context of the experiment.

Our primary observation was that grid infrastructures
must provide high-level services in addition to low-level
functionality. Providing low-level functionality alone is
not enough; without high-level services built on top of the
underlying infrastructure, a user’s productivity can fall
tremendously. The novelty of this experiment is not the
solving of a large problem, but the ease with which the
user accessed grid resources and the low cognitive burden
imposed on him by the grid infrastructure, Legion. In this
paper, we describe how the user interacted with a grid
using Legion services, what problems arose with the
resources that were part of the grid and how Legion
addressed those problems, and what lessons we learned
regarding new functionality that can be provided to users.

11
4.1. CHARMM
The protein folding process is not well-understood and

the state-of-the-art methods of studying it are too
computationally intensive to be undertaken often. One
method is to calculate the free energy surface of the
folding process. The calculation is designed to reveal the
process by which a small protein (Protein L) folds up into
its normal, three-dimensional configuration. The folding
process occurs in nature every time a protein molecule is
manufactured within a cell. The biophysics of folding
must be understood in detail before the information can be
used in developing ways of interacting with proteins to
cure diseases such as Alzheimer’s or cystic fibrosis.

The CHARMM molecular simulation package uses the
CHARMM force field to model the energetics, forces and
dynamics of biological molecules using the classical
method of integrating Newton’s equations of motion.
Typical systems studied involve protein or nucleic acid
molecules of several hundred to several thousand atoms
and a bath of solvent, usually water, consisting of many
thousands of molecules, for a total of 20000 to 150000
atoms. All chemical bonds and all interactions that do not
involve bonds (for example, electrostatics) are used to
model the system. These interactions number in the
millions to billions. For a typical simulation, hundreds of
thousands to millions of timesteps of integration are
required and, at each timestep, all interactions are
determined. In a parallel job, all forces and all coordinates
must be shared among all processors.

CHARMM is computation- as well as communication-
intensive. In a single CHARMM job, hundreds of
processes may perform computations and communicate
with one other. The processes communicate using
Message Passing Interface (MPI), a standard for writing
parallel programs [15] [27]. The parallel efficiency of the
computation depends on the number and speed of the
processors, and the speed and latency of the interconnect.
Since processor speed has increased but interconnect
speed has lagged on current-generation high-performance
computers, CHARMM’s performance degrades rapidly
after 32 processors on almost all architectures except the
T3E, on which it scales well to 128 processors. Therefore,
we chose to run with 16 processors on most architectures,
getting better than 95% parallel efficiency throughout the
experiment on all high-performance architectures. For a
16-processor job, all processors communicate about 1
Mbyte of data at every timestep in a couple of all-to-all
communications, and another 4 Mbytes in each-to-each
communications. For a typical 16-processor job on a
375MHz Power3, approximately 3 timesteps occur per
second. Each job requires a number of input files, some of
which are a few Mbytes large, and generates a number of
output files, some of which are hundreds of Mbytes large.

Thus, a single job requires powerful computation
resources, fast network capabilities and large amounts of
disk space. In our experiment, the user required multiple
(up to 400) CHARMM jobs to be run.

We decided to run the CHARMM jobs on a
computational grid because the total amount of computing
resources required made it unattractive to run at a single
site. Typically though not necessarily, supercomputing
centres such as the San Diego Supercomputing Center
(SDSC) use queuing systems to control powerful
computation resources connected by fast networks. Since
such resources are exactly what CHARMM jobs require,
our experiment was conducted on queuing systems.
Nothing in CHARMM requires a queuing system; our
choice of resources was governed by the coincidence that
the kinds of resources that CHARMM requires are usually
controlled by queues.

4.2. NPACInet
The grid chosen for running CHARMM was npacinet,

a nation-wide grid consisting of heterogeneous resources
present at multiple sites and administered by different
organisations. The majority of the organisations
contributing resources to npacinet are part of NSF’s
National Partnership for Advanced Computing
Infrastructure (NPACI) thrust. Legion has been managing
this grid continuously for several months during which we
have demonstrated Legion features numerous times,
conducted tutorials on multiple occasions and supported
various academic users running a variety of applications.

4.3. Steps for Running CHARMM on NPACI
Resources

The steps the user had to undertake to run CHARMM
over Legion are illustrated in Figure 6. All of these steps
were performed after the user logged on (in the Unix
sense) to a machine on which Legion had been installed.
The shaded boxes represent the steps the user performed
without Legion’s help. Of these, two, “Creating Jobs” and
“Analysing Results”, are specific to the application. The
third, “Creating Executables”, could have been performed
with Legion’s help. The user had to learn one new Legion
command for each of the unshaded boxes. Learning four
commands is a small price to pay for the ability to run
multiple parallel jobs on distributed heterogeneous
resources in a secure and fault-tolerant manner.

Creating Executables. In this step, the user created the
executables for CHARMM. Recall that the user chose
Legion’s legacy MPI support for CHARMM. If he desired,
he could have used legion_make, a tool to compile the
source code on machines or architectures of his choosing
(in which case, he would have done so after “Logging on
to Grid”). The resulting executables would still be legacy

12
code because Legion would not require changing the
source code or linking the object code against Legion
libraries. Currently, legion_make works for
applications with relatively simple and standard make
rules, i.e., it works for applications that use standard
compilers and have straightforward local dependencies.
Since CHARMM is not such an application, the user
decided to compile for different architectures without
Legion’s help.

Creating Jobs. This step involved creating a set of
input files for each job. Clearly, this step is application-
specific and requires no help from Legion.

Logging on to Grid. In order to log on to the npacinet
grid, the user ran the command legion_login, which
required him to enter his Legion ID and password. Once
the user logged in, Legion did not require him to log on to
any other machine.

Registering Executables. Registering executables is
the process by which Legion can run a Unix or Windows
executable. After an executable is registered with
legion_register_program, Legion has the
information necessary for selecting the appropriate
executable to run on any particular machine. Multiple
executables of different architectures may be registered
with the same Legion object. The benefit is that a user can
request Legion to run the object without having to manage
which executable should copied and run on which
machine. For example, Legion will ensure that only a
Solaris executable is copied and run on a Solaris machine.

Running Jobs. After registering the executables for
every architecture of interest, the user requested Legion to
run the object with the command legion_run. This
command has a number of parameters and options (details
are in the Legion man pages accompanying the standard
distribution [1]). Parameters for this command include the
name of the object and parameters for the job, the names
of input and output files for the job, and options such as
number of nodes desired, tasks per node desired, duration,
etc. Reasonable defaults are chosen for unspecified
options. The user may specify a particular machine on
which to run or let Legion choose the machine. Likewise,

the user may choose to run on any machine of a particular
architecture or let Legion make that decision.

The CHARMM user specified the input and output files
for each job and the machines on which he desired to run.
In addition, he specified the name of a “probe file” for
monitoring the job. The user ran the legion_run
command as many times as he wanted to initiate jobs.
Although he chose different machines on which to run
different jobs (effectively self-scheduling his application
dynamically), at no point did he have to write a single
submit script, log on to any other machine*, copy
executables and input/output files, or learn a new
command for running jobs. The user could have initiated
as many jobs as he desired concurrently; in practice, he
initiated a few tens of jobs concurrently because i) the
nature of the jobs imposed sequential dependencies, and
ii) initiating multiple jobs is pointless when the next job is
certain to be queued behind previous ones.

This particular user did not use our tool for p-space
studies, legion_run_multi because he wished to
have greater control over each run. At the time of the
experiment, legion_run_multi did not offer the kind
of control that this user desired.

Monitoring Jobs. The user monitored each job in two
ways. First, he started a console object for the Unix shell
from which he initiated his jobs with one command,
legion_tty. After the console object was started,
output and error messages printed by the user’s jobs or the
queuing systems on remote machines became visible on
the user’s shell. Second, the user requested Legion to save
a probe for every job. Using the probe and a tool called
legion_probe_run, the user determined the status of
each and every job as well as sent in and got out
intermediate files at his leisure. If at any time the user
determined that a job was not progressing satisfactorily, he
terminated it, corrected any problems and restarted it.

Analysing Results. The final step involved analysing
the results from each job. A basic analysis step involved
determining whether each job actually ran to completion.
The user made this determination by checking whether a
certain output file contained specific lines in it. A large
part of the subsequent analysis involved retrieving
archived files and processing them by running CHARMM
again. The subsequent steps were specific to the
application and are outside the scope of this discussion.

Figure 6. Steps for CHARMM over Legion

Creating Executables

Creating Jobs Registering Executables

Running Jobs

Monitoring Jobs

Analysing Results

Logging on to Grid

* In fact, in the current configuration of Legion on the NPACI
machines, the user was not even required to own accounts on the
machines. Legion ran his jobs as a generic user on those machines. In the
future, the NPACI resources may insist that the user can run on their
machines only if he has an account on them as well. Since respecting site
autonomy is a critical part of the Legion philosophy, support for the latter
mode of operation is under progress.

13
4.4. Results from Case Study
The experiment was conducted successfully over a

period of two days. The user logged in to one machine at
the University of Virginia on which Legion was installed*.
From a single shell on that machine, he initiated as many
jobs as he could, subject to the limitations discussed
earlier. Some of the jobs failed, but a large number ran to
completion successfully. Consequently, although the user
did not manage to complete all of the jobs he desired
initially, a significant fraction of the jobs were completed.
The experiment showed the viability of running large,
high-performance applications on a computational grid. In
the following sections, we discuss how well Legion met
the goals mentioned earlier.

Increasing User Productivity. A success of this
experiment was that the grid was used to generate results
for an actual scientific study. At the time of writing,
around 88 of the desired 400 jobs had been completed. We
demonstrated that Legion can be used to harness a vast
amount of processing power harnessed for scientific users.
In the final tally, 1020 processors of different architectures
and speeds were utilised for this experiment. The
breakdown of these processors is:

• 512 375MHz IBM Blue Horizon Power3s at San
Diego Supercomputing Center (SDSC)

• 128 440MHz HP PA-8500 at California Institute of
Technology (CalTech)

• 24 375MHz IBM SP3 Power3s at University of
Michigan (UMich)

• 32 160MHz IBM Azure Power2s at University of
Texas (UTexas)

• 32 533MHz DEC Alpha EV56s at University of
Virginia (UVa)

• 260 300MHz-nodes Cray T3E at SDSC
• 32 400MHz Sun HPC 10000s at SDSC

In the future, we intend adding the following resources:
• 88 300MHz-nodes Cray T3E at UTexas
• 32 400MHz dual-CPU Intel Pentium IIs at UVa

We estimate that if the user had used the resources
available at his organisation alone (128 SGI Origins), it

would have taken one month to complete what was
complete in less than two days on the grid. The number of
jobs run on each resource is shown in Figure 7. The vast
majority of the jobs ran on the Blue Horizon at SDSC
because that machine was by far the most powerful
machine in the mix of available machines. Some of the
machines did not contribute significantly to the results
because of run-time problems.

Simplifying Grid Access. Legion’s ease of use could
be measured in what the user had to do as well as what he
did not have to do to run his jobs. The user had to learn a
mere four or five commands to run on the grid. The small
number of commands is comparable to the number the
user would have to learn for each queuing system had he
not chosen Legion. During the experiment, the user did not
have to log on to any of the queuing systems. He logged
on to one machine at UVa on which Legion was installed.
From a single shell on that machine, he initiated multiple
jobs. Legion made the heterogeneous NPACI resources
available to the user without his having to know the details
of how to run on each resource. The heterogeneity of the
resources extended in a number of dimensions:

• 6 organisations (UVa, TSRI, SDSC, UTexas, UMich,
CalTech)

• 6 queue types (Maui, LoadLeveler, LSF, PBS, NQS)
• Up to 10 queuing systems
• Up to 6 architectures (IBM AIX, HP HPUX, Sun

Solaris, DEC Linux, Intel Linux, Cray Unicos)
Identifying and Eliminating Problems. A number of

run-time problems caused fewer total jobs to complete.
Minor organisational problems aside, the problems we
encountered fell into two categories: network slowdowns
and site failures. The Legion run-time system suffered no
problems during the experiment, although a number of
potential extensions were identified. Also, although the
CHARMM user used the grid heavily, the remaining users
on the same grid were unaware of the experiment. While
the experiment progressed, other Legion users continued
to run their usual jobs on the grid.

Network Slowdown. During the experiment, we
experienced slowdowns in the network connections
between UVa and SDSC. From around noon through about
3PM US EST, transmission of medium-sized to large
packets was difficult. Preliminary investigation showed
that packets of size equal to or greater than 8800 bytes
were lost entirely. Packets in the size range 8000-8800
bytes suffered over 90% loss rates. The loss rates for
packets of size less than 8000 bytes were lower but still
significant. The implication for Legion was that some
messages between objects had to be retransmitted a
number of times to ensure that they were received
correctly. Consequently, for the CHARMM user,
monitoring jobs became a slow process. At one point,

* Legion was not installed on the user’s machines at The Scripps
Research Institute (TSRI) because of site-specific firewall restrictions.

Figure 7. Breakup of CHARMM jobs completed

14
inquiring about the status of a job took nearly a minute to
complete. Ordinarily, this process is almost instantaneous.
Since the user could not monitor jobs quickly enough to
start new ones, throughput was reduced.

Site Failures. Some of the NPACI sites experienced
unforeseen failures. For example, at UMich, Legion
encountered NFS failures. Since the ability to access
permanent storage is important to Legion as well as
CHARMM, the NFS failures reduced the throughput of
CHARMM jobs. On the Blue Horizon machine at SDSC,
the queuing system, Maui/LoadLeveler, had to be restarted
a number of times because it became overloaded. During
the time the queuing system was down, currently-running
jobs continued to run. However, the queuing system could
not inform anyone about the status about those jobs. Since
“no information” is similar to what the queuing system
reports when a job has been complete for a while, Legion
assumed the jobs were complete and informed the
CHARMM user accordingly. This erroneous reporting led
the user to believe that it was safe to access the output files
from the job. However, on analysis of these jobs, the user
discovered that the output files were only partially
complete. At UMich, the purge policy in place removed
CHARMM files as well as persistent state required by
Legion objects. Without their persistent state, Legion
objects can behave erroneously. Likewise, without the
appropriate input files CHARMM cannot run as intended.

5. Current Status of Parameter-Space
Support in Legion

From the experiences of the CHARMM user and other
p-space users we make some observations about grids and
identify potential extensions to Legion. These extensions
would enhance Legion’s usability by building on low-level
functionality already present. The first three of the
following sub-sections present our observations; the last
three present extensions we identified.

High-Level Services. The CHARMM experiment
reassured us that a grid infrastructure must provide low-
level functionality and high-level services. We consider it
a significant advantage that using Legion, the user
accessed heterogeneous resources controlled by multiple
organisations with four or five commands and achieved
order-of-magnitude speedup as compared to running at
just one site. One example of a high-level service is the
support for p-space studies. Without proper tools for
initiating and monitoring large number of jobs, and
collating the results of the jobs, users may find it difficult
to run their p-space applications on a grid.

Human Factors. Three people were involved
intimately with the continuous successful progress of the
jobs: the user, a Legion liaison and an NPACI liaison. The

Legion liaison was present in case problems arose with
Legion itself during the execution. Since Legion itself
suffered no run-time problems, this person used Legion
tools to identify site-specific problems as they arose. The
NPACI liaison coordinated on-site efforts to keep the
experiment running. Finally, administrators at individual
sites ensured that problems were resolved as soon as
possible by correcting misconfigurations, restarting
services, increasing quotas, etc. Although this
collaboration was rewarding, in the future the involvement
of all parties except the user must be eliminated.

Site Services. The number of site failures that were
identified was astonishingly high. Normally, users never
expect services such as queues and operating systems to
fail. Likewise, users rarely consider network failures when
running their applications. However, running large
numbers of high-performance jobs can stress-test every
component of a grid. We discovered previously-ignored
limits on the number of jobs queues can manage, queue-
imposed job duration limits, credential expirations with
file systems, purge policies, process table limits, quota
exhaustions and numerous other problems, each of which
could make a site unusable for continued running.

Graceful Error Handling. Legion has been designed
to mask many kinds of failures from end-users. While this
strategy usually benefits the user, sometimes it is
important for the grid infrastructure not to mask failures
from the user. For example, the network failures discussed
earlier were masked from the user who saw only
gracefully-degraded performance. However, Legion also
masked most site failures from the user, which often
conveyed the mistaken impression that Legion itself had
failed. Consequently, we are reviewing all aspects of error
handling and propagation in Legion.

Support for Archiving. Although Legion permits
users to specify input and output files at any time during
the execution of a job, archival support is almost non-
existent. In particular, there is no way for a user to specify
that some files are meant to be stored on some kind of
long-term storage after the job is complete. Instead, the
Legion file solutions are that after a job is complete, the
files are either copied out to the user’s local directories, or
to Legion’s own distributed shared file system, or deleted.
None of these solutions is satisfactory for jobs that
generate large amounts of data. The user’s local directories
or the individual components of the distributed file system
may not have space to store large amounts of data.
Moreover, the user may not want to copy files out the
moment the job is done. Instead, scientific users
generating large amounts of data, such as the CHARMM
user, are likely to want to archive the data generated by
their jobs on some long-term storage and access the data at
their leisure. Since Legion developers did not anticipate

15
such a need, currently, archiving has to be done by users
themselves as part of their jobs.

Web Interfaces. We have developed a web portal that
scientists can use to run jobs such as CHARMM. The
Legion Grid Portal is an interface to a grid system. Users
interact with the portal, and hence a grid through an
intuitive interface from which they can view files, submit
and monitor jobs, and view accounting information. The
architecture of the portal is designed to accommodate
multiple diverse grid infrastructures, legacy systems and
application-specific interfaces. The current
implementation of the Legion Grid Portal is with familiar
web technologies over the Legion grid infrastructure. The
portal can be extended in a number of directions —
additional support for grid administrators, greater number
of application-specific interfaces, interoperability between
grid infrastructures, and interfaces for programming
support. The portal has been in operation since February
2000 on npacinet, our worldwide grid managed by Legion
on NPACI resources [23].

6. Conclusion
The success of a grid system depends on how easily

and securely it permits users to perform their computations
by collaborating and accessing available resources. A key
component of a grid system is software that presents users
with abstractions of resources. Legion provides those
abstractions via uniform, easy-to-use interfaces. These
interfaces, ranging from tool-level to programming-level,
greatly reduce the difficulties of computing in distributed,
heterogeneous environments. The mechanisms underlying
the interfaces enable users to perform cross-machine,
cross-architecture and cross-organisation computation. By
enabling such computations on a large scale, Legion
supports capacity computing. Legion’s flexible and
extensible object model supports capability computing by
permitting novel methods of computation.

Legion is a suitable environment for running large
numbers of high-performance jobs on a grid, as
demonstrated by the CHARMM experiment. Legion
provides a suite of tools for a grid that are similar to what
traditional operating systems provide for a single system.
Using these tools, users can start, monitor and terminate
jobs on remote machines in a straightforward manner.
Legion masks unwanted detail from the user, thus
permitting him to focus on completing his work.

Legion consists of 350,000 lines of code and has been
ported to Windows NT as well as a large number of Unix
variants, including Linux (Intel, Alpha), Unicos (T90,
T3E), AIX (SP-2, SP-3), HPUX, FreeBSD, IRIX (Origin
2000) and Solaris (Enterprise 10000). Legion has been
integrated with a large number of queuing systems, such

as PBS, LSF, Codine, LoadLeveler and NQS. It has been
deployed on machines belonging to NSF-PACI, NASA
IPG and the DoD MSRCs. Currently, Legion is running at
over 300 hosts across the United States and Europe.
Researchers using Legion currently are from a number of
disciplines, such as biochemistry (e.g., complib, a protein
and DNA sequence comparison), molecular biology (e.g.,
CHARMM, a p-space study of 3D structures), materials
science (e.g., DSMC, a Monte Carlo particle-in-cell
study), climate modelling (e.g., BT-MED, a 2D barotropic
ocean model), aerospace (e.g., flapper, a p-space study of a
vehicle with flapping wings), astronomy (e.g., Hydro, a
study of a rotating gas disk around a black hole),
neuroscience (e.g., a biological-scale simulation of a
mammalian neural net), information retrieval (e.g., PIE, a
personalised search environment) and computer graphics
(e.g., a p-space rendering of independent movie frames).

We expect users to become more accustomed to using
distributed resources, often in ways not anticipated today.
Legion’s architecture promises to satisfy grid demands of
the present as well as the future.

7. References
[1] —, The Legion Manuals (v1.7), Univ. of Virginia, Oct. 2000.
[2] Bayucan, A., Henderson, R. L., Lesiak, C., Mann, N., Proett, T.,

Tweten, D., Portable Batch System: External Reference
Specification, Tech. Rep., MRJ Technology Solutions, Nov. 1999.

[3] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J.,
Swaminathan, S., Karplus, M., CHARMM: A Program for
Macromolecular Energy, Minimization, and Dynamics
Calculations, J. Comp. Chem., Vol. 4, 1983.

[4] Chapin, S. J., Katramatos, D., Karpovich, J. F., Grimshaw, A. S.,
Resource Management in Legion, Tech. Rep. CS-98-09, Univ. of
Virginia, Feb. 1998.

[5] Ferrari, A. J., Grimshaw, A. S., Basic Fortran Support in Legion,
Tech. Rep. CS-98-11, Univ. of Virginia, Mar. 1998.

[6] Ferrari, A. J., Knabe, F., Humphrey, M. A., Chapin, S. J.,
Grimshaw, A. S., A Flexible Security System for Metacomputing
Environments, High Perf. Computing and Networking Europe, Apr.
1999.

[7] Foster, I., Kesselman, C., The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

[8] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.,
Sunderam, V., PVM: Parallel Virtual Machine: A User’s Guide and
Tutorial for Networked Parallel Computing, MIT Press, 1998.

[9] Grimshaw, A. S., Ferrari, A. J., West, E., Mentat, Parallel
Programming Using C++, MIT Press, 1996.

[10] Grimshaw, A. S., Wulf, W. A., The Legion Vision of a Worldwide
Virtual Computer, Comm. of the ACM, Vol. 40, No. 1, Jan. 1997.

[11] Grimshaw, A. S., Lewis, M. J., Ferrari, A. J., Karpovich, J. F.,
Architectural Support for Extensibility and Autonomy in Wide-Area
Distributed Object Systems, Tech. Rep. CS-98-12, Univ. of
Virginia, Jun. 1998.

[12] Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K.,
Metasystems, Comm. of the ACM, Vol. 41, No. 11, Nov. 1998.

16
[13] Grimshaw, A. S., Ferrari, A. J., Knabe, F., Humphrey, M. A., Wide-
Area Computing: Resource Sharing on a Large Scale, IEEE
Computer, Vol. 32, No. 5, May 1999.

[14] Gropp, W., Lusk, E., Doss, N., Skjellum, A., A High-Performance,
Portable Implementation of the Message Passing Interface
Standard, Par. Computing, Vol. 22, No. 6, Sep. 1996.

[15] Hempel, R., Walker, D. W., The Emergence of the MPI Message
Passing Standard for Parallel Computing, Comp. Stds. and
Interfaces, Vol. 7, 1999.

[16] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan,
M., Sidebotham, R., West, M., Scale and Performance in a
Distributed File System, ACM Trans. on Computer Syst., Vol. 6,
No. 1, Feb. 1988.

[17] International Business Machines Corporation, IBM LoadLeveler:
User’s Guide, Sep. 1993.

[18] Karpovich, J. F., Grimshaw, A. S., French, J. C., Extensible File
Systems (ELFS): An Object-Oriented Approach to High
Performance File I/O, 9th Annual Conf. on Object-Oriented
Programming Syst., Lang. and App. (OOPSLA), Oct. 1994.

[19] Kingsbury, B. A., The Network Queueing System (NQS), Tech.
Rep., Sterling Software, 1992.

[20] MacKerell, A. D.. Jr., Brooks, B. R., Brooks, C. L. III, Nilsson, L.,
Roux, B., Won, Y., Karplus, M., CHARMM: The Energy Function
and Its Parameterization with an Overview of the Program, The
Encycl. of Comp. Chem., Vol. 1, 1998.

[21] Natrajan, A., Humphrey, M. A., Grimshaw, A. S., Capacity and
Capability Computing in Legion, The 2001 Intl. Conf. on
Computational Sc., May 2001.

[22] Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M. A.,
Fox, A. D., Grimshaw, A. S., Brooks, C. L. III, Studying Protein
Folding on the Grid: Experiences using CHARMM on NPACI
Resources under Legion, 10th Intl. Symp. on High Perf. Dist.
Computing, Aug. 2001.

[23] Natrajan, A., Nguyen-Tuong, A., Humphrey, M. A., Grimshaw, A.
S., The Legion Grid Portal, Grid Computing Environments 2001,
Concurrency and Computation: Practice and Experience, 2001.

[24] Nguyen-Tuong, A., Integrating Fault-tolerance Techniques in Grid
Applications, Ph.D. Diss. CS-2000-05, Univ. of Virginia, Aug.
2000.

[25] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.,
Design and Implementation of the SUN Network File System, Proc.
of USENIX Conf., 1985.

[26] Seigel, J., CORBA Fundamentals and Programming, Wiley, ISBN:
0471-12148-7, 1996.

[27] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.,
MPI: The Complete Reference, MIT Press, 1998.

[28] Weissman, J., Scheduling Parallel Computations in a
Heterogeneous Environment, Ph.D. Diss. CS-1995-06, Univ. of
Virginia, Aug. 1995.

[29] White, B. S., Grimshaw, A. S., Nguyen-Tuong, A., Grid-Based File
Access: The Legion I/O Model, High Perf. Dist. Computing 9, Aug.
2000.

[30] Zhou, S., LSF: Load Sharing in Large-scale Heterogeneous
Distributed Systems, Proc. of Work. on Cluster Computing, Dec.
1992.

[31] Zhou, S., Wang, J., Zheng, X., Delisle, P., Utopia: A Load Sharing
Facility for Large, Heterogeneous Distributed Computer Systems,
Soft. Prac. and Exp., Vol. 23, No. 2, 1993.

	The Legion Support for Advanced Parameter-Space Studies on a Grid
	Abstract. Parameter-space studies involve running a single application several times with differe...
	1. Introduction
	2. Legion Background
	3. Support for Parameter-Space Studies
	3.1. Hosts, Vaults and Queuing Systems
	Figure 1. Simple application
	Figure 2. Simple application modified for PBS
	Figure 3. Simple application modified for Maui

	3.2. Information Services and Scheduling
	3.3. Distributed File System: Context Space
	3.4. Running Single Applications
	Figure 4. Progress of Parameter-Space Studies
	Figure 5. Full Display of Small Parameter-Space Study

	3.5. Sharing Jobs

	4. Case Study: Running CHARMM on NPACI Resources using Legion
	4.1. CHARMM
	4.2. NPACInet
	4.3. Steps for Running CHARMM on NPACI Resources
	Figure 6. Steps for CHARMM over Legion

	4.4. Results from Case Study
	Figure 7. Breakup of CHARMM jobs completed

	5. Current Status of Parameter-Space Support in Legion
	6. Conclusion
	7. References
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	[21]
	[22]
	[23]
	[24]
	[25]
	[26]
	[27]
	[28]
	[29]
	[30]
	[31]

