Resolving Concurrent Interactions

Anand Natrajan, Paul F. Reynolds, Jr.
Department of Computer Science, University of Virginia
{anand, reynolds}@virginia.edu

Abstract policies for resolving them. We present example policies

Serialization, the traditional method of resolving for resolving concurrent interactions. Our taxonomy
concurrent interactions, is often inappropriate; when enables a designer to choose appropriate policies for
interactions are dependent on each other, other policies for resolving concurrent interactions.
resolving them may be more suitable. We use semantic .
information to help categorize common interactions 2. Interactions
encountered in the mode“ng and simulation domain. This An interactionbetween entities is a communication that

categorization enables us to suggest reasonable policiescauses a change in their behavior. Entities in a model
for re50|ving the effects of concurrent interactions. communicate with one another or influence one another by

interacting. An entity changes the behavior of another
entity by means of an interaction. Interactions are
1. Introduction fundamental to a useful model because they connect it to
its environment. We regard a communication between any
two entities as well as changes an entity makes to its own
state in our definition of interactions.
When the changes caused by an interaction are applied
to attributes in entity representations, the interaction takes

One of the most significant challenges facing the
simulation community is Multi-Representation Modeling
(MRM) — the joint execution of multiple models of the
same object or process [8]. The crux of the challenge is
resolving concurrent interactions on the representations in : - 1>, g)
the different models [17]. Many systems either serialize €ff€Ct. A senderis an entity that initiates an interaction
concurrent interactions or avoid them by restricting the While areceiveris an entity to which an interaction is
interactions that can co-occur. However, serialization anddirected. Theeffectsof an interaction are the changes
avoidance are insufficient for resolving the effects of caused by the interaction to the sender and receiver.
concurrent interactions in the general case. Other solutions, INteractions may beoncurrent i.e., they may occur
such as accumulating, delaying or ignoring some or all QUrlng t_he same tlme-step. S|multanepus interactions, i.e.,
interactions may be more suitable. We describe a newinteractions occurring at the same time, are concurrent

approach that categorizes interactions by augmenting then{Mteractions, although the converse is not necessarily true.
with a small amount of semantic information in order to N @ modeling context, we cannot distinguish simultaneous
resolve them more appropriately. interactions from merely concurrent interactions.

For effective MRM, the effects of dependent concurrent ~ Concurrentinteractions may be dependendefpendent
interactions must be resolved meaningfully. Often interaction is one whose effects are predicated on the

concurrent interactions may have dependent effects, foroccurrence of another interaction. Amdependent
example, precluding or enhancing the effects of one interactionis not dependent on any other interaction. For

another. Traditionally, the effects of concurrent interactions &X@mPple, two interactions may be related by cause and
have been resolved by serialization, in which the gffect, i.e., one interaction causes the other. The form_er
interactions are ordered arbitrarily. However, serialization INtéraction is independent of the latter, but the latter is
i often inappropriate because it isolates interactions whosefePendent on the former. Concurrent interactions may be
effects must be applied concurrently. Other policies, such dePendent solely on account of their concurrence, i.e., if
as combining or ignoring some or all interactions, do not € intéractions were not concurrent, they would be

isolate concurrent interactions and may be more suitablelndependent. _ _ _ .
for resolving any dependent effects. A system that permits concurrent interactions requires a

We present a taxonomy of interactions and show how to policy to resolve any dependencies among interactions and

classify interactions. We assume that MRM designers can® Mechanism to implement the policy. The traditional
understand the semantics of interactions in their POliCY for resolving the effects of concurrent interactions is

application well enough to classify them and formulate Seralization.

3. Serialization
Serialization the traditional policy for resolving
concurrent interactions, involves applying their effects in

sequential order, i.e., one after another. In serialization,

concurrence is resolved by ordering or interleaving
concurrent transactions appropriately.
preservedsolation, which is one of the ACID properties
for database transactions [10].

Serialization

the vector addition ofdv, and dvg. Serializing these
interactions may be incorrect for a number of reasons as
discussed below. Leéfl denote vector addition. Let;, v,
andv 3 be three possible outcomes of adddwg, anddvg
to the original valu@ of the velocityv.

Vi = (VO O 6VA) O 6VB

Vo= (VO O 6VB) O 6VA

V3=Vp O (6VA O 6VB)

Serialization has been chosen as a policy for resolving The parentheses show the order in which the interactions
interactions in database systems because it satisfies clientdake effectv, andv, are computed by serializing the two

expectations of isolation
transactions [16] [5].

yet permits concurrent
Isolation assumes that client

interactions, whereas; is computed by combining the two
interactions before applying them to Mathematically,

interactions are not predicated on one another, i.e., they ar&/1 =V, =V3. However, when executing a model, the
independent of one another. Serialization isolates clientresults of these orderings can differ. For example, and

interactions.

dvg may be so small that adding them g individually

Some researchers have proposed policies that relax ofloes not change. However,0v 5 anddvg combined may

extend serialization yet maintain isolation [6] [3]. Some of

be sufficient to change. In such a casej; =v, Z V3. As

these policies require semantic analysis in order to increasednother examplejv 5 anddvg may overcome the inertia

concurrence [9] [20] [2]. In general, serialization is

of the entity with velocityv when combined, but not

considered correct but too strict, and alternative criteria individually. Finally, suppose a display process P
relax or extend serialization in order to permit increased continuously plots the trajectory of the ball with velocity

concurrence [4] [13] [14] [12] [1§] Moreover, isolation of

If v changes tw; or v,, P will plot two changes, whereas

transactions is considered a desirable property of databasé v changes t3, P will plot only one change. The former
systems. Next, we discuss situations where isolation maychange causes P andto be temporally inconsistent.,

be undesirable.

4. Abandoning Isolation

For some applications, the system must not isolate

and v, are computed by serialization, wheresas is
computed by combination. Here, combination is a more
meaningful policy than serialization.

In a model of an autonomous agem, could be a

concurrent interactions since they may be dependent orplanner that pre-determines the steps to fulfill the agent's
one another. Serialization and alternative policies that relaxgoal, B could be a perception/action (PA) system that
or extend serialization isolate interactions. Therefore, they Observes and acts on the agent’s environmentyacould

cannot be correct policies for resolving the effects of

dependent concurrent interactions. Correct policies forbe A.write(v, yes)

these interactions must not isolate the interactions.
In the following examplesot isolating concurrent

be the visibility of an obstacle. The two interactions could
and B.write(v, no) ,
implying that the planner reports that the obstacle can be
seen, whereas the PA system reports that the obstacle is

interactions, i.e., abandoning isolation, enables reso|\/inghidden. Serializing these interactions causes the final value

their dependent effects correctly. Consider entiiendB
that change an attributer. Consider two concurrent
interactions:A.write(v, ...) and B.write(v, ...)

A sequential order for these interactions could be
A.write(v, ...) followed by B.write(v, ...) or
B.write(v, ...) followed byA.write(v, ...)

In a model of a billiards tableA and B could be ball
entities andv could be the velocity of a ball. The two
interactions could be A.write(v, ovp) and
B.write(v, ovg) , wheredv , is a change irv caused
by A anddvg is a change irv caused byB. The correct
policy to resolve these two interactions is to changey

A detailed analysis of each correctness criterion and policy
presented for databases would take up too much time and space.
Over 100,000 pages of new material are published every year in
databases alone [[7]].

of v to be eithelyes or no arbitrarily. However, applying
B's interaction and ignorind\s interaction may be a more
reasonable, if pessimistic, policy to resolve these
interactions. Alternatively, applying®s interaction and
ignoring B’'s interaction may be a reasonable, if optimistic,
policy. Another reasonable policy may be assigning
weights to the two interactions based on a belief system to
produce a multi-modal value for

In a model of a chemical reactioA, could be an acid
entity, B a catalyst entity, and the volume of a by-product
retrieved from the reaction. The two interactions could be
A.write(v, ov,) and B.write(v, Ovg), Where
oV andodvg are increases in the value wiwhenA andB
are added. In chemical reactions, it is well-known that
adding a catalyst can increase the rate of a reaction
tremendously. As a result, the final changevirmay be
more thamdv 5 + 0vg. Serializing the interactions does not

capture the cooperative nature of these interactions. If the
interactions must be serialized, then either the model's
representation must be augmented with an attribute that
keeps track of whether the acid or catalyst has been added
previously, or the model must capture the effects of adding
a catalyst — an increase in the surface area of the reaction
— at a finer level of detail. Alternatively, a special policy
must be formulated to increase appropriately if these

concurrent interactions occur. FIGURE 2: State Transition Diagram
In the above examples, serializing concurrent)

interactions produces unintended effects. Isolating them5.2. Constrained System _,

from one another produces effects that are semantically Typically, systems are N

incorrect. Since serialization and other correctness criteriaconstrained; their components

that relax or extend serialization isolate interactions, noneare related. Accordingly, we B

of them is a correct policy for resolving them. These add a constraint to Ol FIGURE 3: Constraints
interactions are dependent particularly because they aréwitches: If § and $ are both

concurrent. Therefore, these interactions requireon, then @ must be on. In other words,
correctness criteria that abandon isolation. The correctnes¢S1=1) U(S;=1)0 (Sp=1). As a result of this
criteria for dependent concurrent interactions are constraint, the switches are no longer independent.
application-specific. Next, with the help of an abstract Figure 3 shows the new version of the switches application
application, we show how resolving the effects of With the constraint depicted by arrows between the
dependent concurrent interactions by abandoning isolationswitches. The arrows merely depict a dependency between

makes the design of an application complex. switches without outlining the nature of the dependency.
The new set of valid states for the system is a subset of the
5. Switches — A Simple System old set of valid states. Figure 4 shows the new set of valid

We use a simple system of switches as an abstraction fostates. The crossed-out state does not exist in the new
models with concurrent interactions. We add constraints toSystem.

the initial model, explaining the effort required to design ~ Usually, constraints reduce the s s s,

the corresponding system. Next, we introduce dependeniPossible states of a system. Al o o o0

concurrent interactions and show how designing such atransitions going into those states 0 ? é

simple system becomes complex. We argue that the effectgnust be redirected elsewhere. The

of dependent concurrent interactions must be resolved inimplications of the reductioninthe 1 o o

an organized manner. set of valid states on the state 1 0 1
transition diagram are shown in i 1 2

5.1. Unconstrained System Figure 5. The arrows from the _

We start with an states [010]and [001]to[01 ;JFlGURE 4: States

unconstrained system on which have been redirected to [11 1] in accordance with the

we perform subsequent “ constraint. However, the constraint does not indicate which
analyses. Consider tt FIGURE 1: Switches state to transition from [1 1 1] if only Sis turned off. In
switches @, S and S in theory, it is possible to transition to any of the seven states

Figure 1, each with two states: on (or 1) and off (or 0). A (or a hitherto absent state) in such a situation. However, let
client may turn a switch on or off by an interaction (shown us abide by the constraint as far as possible. The following
by an arrow). The state of the system is an ordered triplet,are re-statements of the constraint.

individual triplet elements being the states gf, S; and S
respectively. In the state transition diagram in Figure 2, an
oval is a possible state of the system, a solid arrow is a state
transition caused by turning one switch on, and a dashed
arrow is a state transition caused by turning one switch off.
Transitions that cause the system to begin and end in the
same state, for example, turning &f in the state [0 0 0],

are not shown in Figure 2 to reduce clutter. Since the
switches are independent, all possible states are present ir FIGURE 5: Constrained State Transition Diagram
the state diagram. (,=1)0(=1)0 (Sa=1)

-((S1=1)0(S$,=1)0(Sy=1) [Implication rule] 5.4. Complexity

=($=1)0-(5=1)0(Sa=1) [DeMorgan’s laws] We desire systems to behave predictably no matter what
(5,=0)0(5=0)0(Sp=1) [Switch states] interactions occur and how they occur. Accordingly,
(Sa=1)0(5=0)0(5,=0) [Re-arrangement] singly-occurring interactions as well as concurrent
=2(Sp=1)0 (5,=0)0(S,=0) [Implication rule] interactions must have predictable results. A brute-force
(Sa=0)0 (5,=0)0(S,=0) [Switch states] approach to resolving the effects of all possible concurrent

The last statement suggests what to do whgnisS interactions can be overwhelming. Therefore, a means of
turned off while § and $ are on. In order to keep encoding dependencies among interactions is necessary.
transitions deterministic, we choose [0 0 1] arbitrarily as For the switches system in §5.2, given the six kinds of
the state to transition from [1 1 1] in casg & turned off, interactions (turning one of the switches on or off) and the
i.e., we turn $off. seven different states, an exponential number of transitions

State transition diagrams describe a model effectively are possible on concurrent interactions. In the worst case,
when sequences of interactions occur. The effects of eaclthe total number of transitions for the switches application
interaction are captured by appropriate transitions. Since ais; (2"Umber ofinteraction types 1) x number of states (26 -
state transition diagram can never put the system in an1)x7 = 441. This calculation assumes that concurrent
inconsistent state, every interaction can take effect withoutinteractions of the same kind can be serialized without
violating any constraint. Concurrent interactions, whether changing their effect. In other words, concurrent multiple
dependent or not, introduce problems with state transitionoccurrences of the interaction to turp &f, for example,

diagrams, as we show next. can be serialized. Nevertheless, even in our simple system,
. the number of transitions that must be considered is large.
5.3. Dependent Concurrent Interactions Applications with more attributes, some non-Boolean, are

In order to demonstrate the effects of dependent|iely to have many more states than our simple system.
concurrent interactions that cannot be serialized, we addConsequentIy, the number of transitions to be considered
new transitions. Consider the switch system from 85.2, can grow further. However, a number of mitigating factors
with two concurrent interactions. Let the system be in the can reduce the number of state transitions for a system. In
state [0 0 1], and let the two interactions be turningd the switch system, in order to reduce the number of

and turning 3 on. If we serialize them, turning,Soff possible transitions, we stated that multiple occurrences of
before turning $ on results in the transitions [001} the same interaction can be serialized. Another reasonable
[001] - [11 1], while turning § on before turning §off a5sumption is that a switch client will not send concurrent

results in the transitions [00 1} [111] ~ s[001]. The on and off interactions to its switches. This assumption
order in which the concurrent interactions are serialized rgquces the number of transitions to the product of the
determines the final state of the system. If the final state ispymper of states and the number of all possible concurrent
immaterial as long as the system stays in a valid state, i.e.jnteractions. The latter number is the sum of concurrent
a state present in the state transition diagram, thenjnteractions occurring in all combinations of threes, twos
serialization is correct but non-deterministic. and ones. Therefore, the total number of transitions is:
For deterministic behavior, we add other state 3 POy 2'x7 = 182. This number of transitions
| =

transitions that capture the effects of concurrent WN'iS an upper-bound, because we assume that no set of
interactions. In Figure 6, we add a transition between sgncurrent interactions is serializable.

[00 1] and [0 1 0]. The semantics of this transition could Applications must exhibit predictable behavior when
be, for example, that if Sis turned off and $is turned on concurrent interactions occur. Serialization is an example
concurrentlyin the state [0 0 1], then transition directly to ¢ predictability. However, as we have seen in §4,
state [0 1 0]. The fact that the interactions were concurrentgerialization fails to resolve dependent concurrent

caused this transition, and the final state of the transition isjnteractions correctly, because it assumes that the
different from that if the two interactions were serialized. jnteractions can be isolated. Another example of

predictability is commutativity [18], wherein the effects of
commutable interactions are the same regardless of the
order in which they are applied. Since commutativity also
assumes that interactions can be isolated, it cannot resolve
the effects of dependent concurrent interactions correctly.
When dependent concurrent interactions occur,
predictability can be gained by encoding transitions in
— i rigorous formulee. In such an approach, the behavior of the
FIGURE 6: Transitions on Concurrent Interactions system when any set of concurrent interactions occur must

be encodeda priori. Such an encoding is similar to latter a request interaction. Likewise, if an officer entity
specifying transitions in a state diagram for every possible orders a soldier entity to fire, the former sends the latter a
set of concurrent interactions. As we have shown with our request interaction. Response interactions are concerned
simple switches system, specifying all possible transitions with an entity responding to a request from another or an
can become a complex task. interaction generated in response to a modeling event.
We encode semantic information in interactions in our Responses may not be solicited explicitly, i.e., a response
technique for predictable behavior when dependentmay not have a request associated with it. For example, a
concurrent interactions occur. Our technique does notstatus update is a response interaction. Likewise, billiard
isolate interactions, and does not incur the complexity costball entities may send one another response interactions

of specifying all transitions. generated because of a collision.
_ The distinction between request and response
6. A Taxonomy of Interactions interactions is temporal. A request interaction is made

The effects of dependent concurrent interactions areregarding a future action. A response interaction is made
application-specific. Specifying policies for resolving the regarding an action in the past. An interaction may be a
effects of every set of interactions that may occur request or a response, but not both.
concurrently is a complex design task. However, specifying « RequestAn interaction concerned with eliciting future
policies for resolving the effects alassesof interactions behavior from an entity.
can be less complex. We discuss the properties of a good *« ResponseAn interaction concerned with the effects of
taxonomy of interactions. MRM designers may classify an action in the past.
their interactions into any taxonomy that exhibits these Certain and Uncertain: Interactions may or may not
properties. We present and justify one such taxonomyhave the desired outcomes. Certain interactions have
consisting of four classes of interactions. Our taxonomy is predictable outcomes. For example, when billiard ball
based on semantic characteristics of interactions weentities collide, the outcome of their interaction is
encountered often in models. Also, we present policies for predictable because of physical laws. Likewise, when an
resolving the effects of classes of concurrent interactions. acid entity is added to an alkali entity, the outcome of their

interaction is predictable because of chemical laws.

6.1. Properties of a Taxonomy of Interactions Uncertain interactions are those whose outcomes are not
A good taxonomy exhibits the properties below [1] [11]: predictable. For example, a request for information may
« mutually exclusiveclasses do not overlap not always be satisfied, or satisfied truthfully. Likewise, a

exhaustiveclasses jointly cover all possible members request to perform an action may not be satisfied.

» unambiguousclassification not dependent on classifier Uncertainty in interactions may be defined along a

* repeatable subsequent trials lead to same classification continuum. For example, interactions may be distinguished

acceptedlogical and intuitive classes on a scale with completely certain interactions at one end
» useful must lead to insights in particular field and increasingly uncertain interactions further away from

MRM designers may choose any taxonomy of thatend. In such a case, the uncertainty of an interaction is

interactions as long as it exhibits the above properties.a measure of its distance from the completely-certain end

Traditional taxonomies of interactions, for example, reads of the scale. Priorities may be viewed as an example of

versuswrites or serializablesersusnon-serializable, may such a continuum. High-priority interactions always take

not exhibit these properties [15]. effect preferentially over lower-priority interactions.

« Certain An interaction whose outcome is predictable.

e Uncertain An interaction whose outcome is

6.2. Interaction Characteristics and Classes
We show how to classify interactions based on semantic unpredictable.

characteristics. We identify four high-level semantic Combining Characteristics ~Combining these

characteristics of interactions. These characteristics ar&naracteristics gives us four classes of interactions, which
application-independent. The characteristics themselvequ name Type 0, 1, 2 and 3. We list the four classes below
are well-known; however, using them to classify ziong with the conjunction of characteristics that defines
interactions is novel. We identify four interaction classes o5-h class. Also. we present an example interaction for
from these characteristics of interactions. each class. We depict the four classes in Figure 7.

~Request and Response Interactions may be 1y,e 0. ResponsélCertain e.g., physical events
distinguished as being requests or responses. RequestTyloe 1: ResponsélUncertain e.g., updates
interactions are concerned with an entity soliciting some Type 2: Request [Certain e.g., reads

behgvior from another entity. For gxample, when an entity Type 3: Request [Uncertain e.g., orders
gueries the status of another entity, the former sends the

Certain interactions are independent, then they may be serialized.
The following properties enable designers to determine
whether concurrent interactions are independent.

Q Property 1: If the concurrent occurrence of
= interactions is indistinguishable from a sequential
& occurrence, the interactions are independent.
Argument: Assume the interactions are dependent.
Therefore, they are related by either cause-effect or
_ concurrence. If they are related by cause-effect, they
Uncertain cannot occur concurrently, since cause precedes effect. If
FIGURE 7: Classes of Interactions they are related by concurrence, no sequential occurrence
. of the interactions can have the same effect as the
6.3. Evaluating the Taxonomy concurrent occurrence. Since the interactions do not

Our taxonomy of interactions exhibits the properties of gepend on one another by either cause-effect or
a good taxonomy. Our four interaction classes are mutually concurrence, the initial assumption is false.

exclluswtg smfceh no ttwot. of Othertn POSSESS thﬁ satlme Property 2: If concurrent interactions affect disjoint
ct:)onjunc |otrr1]ofc ara_\ctens |tps. lljr axonomy 1S eli(aus '\é? sets of attributes, they are independent.
ecause the four interaction classes cover all possibie Argument: If concurrent interactions affect disjoint

ct:)o;nblnatlons of the four mtebr.actlon characteg:stu_:s. _We sets of attributes, their effects can be applied sequentially.
elieve our taxonomy Is unambiguous, repeatable, IntultlVeTherefore, the concurrent occurrence of these interactions

g?d u;s_eful. bOltJr. tchar?cterlst;:s . c;aptu:g semar;)tlc is indistinguishable from their sequential occurrence. By
information about interactions. An interaction can be p.; ey 1 they are independent.

classified into our four classes according semantic . . L
If concurrent interactions affect non-disjoint sets of

information, (i.e., its expected effect on its sender and tributes. thenterfere but be d dent
receiver), rather than non-semantic information (e.g., its atiributes, theynteriere but may not be dependent.

syntax, the variables it reads or writes, its size, the time ~ Property 3: Concurrent response and request
taken to transmit it). We assume model designers caninteractions are independent. _ _ _
identify the semantics of an interaction and determine its ~Argument: Consider the interactions occurring during
characteristics subsequently. Determining the type of an@ time-step §, ti,;] (see Figure 8). Response interactions
interaction from its characteristics is unambiguous and reéceived during this time-step refer to behavior prior to
repeatable. Our classes are logical combinations offime . Request interactions received during this time-step
orthogonal interaction characteristics. The classes are/€fer to behavior after timg. ;. Let there be a timé such
intuitive because they are derived from well-known thatt <t"<t,;. Re-arrange the interactions such that all
characteristics of interactions. All of the interactions we '€Sponse interactions occur during the time-stgp’], and
have encountered exhibit these characteristics. Next, wedll request interactions occur during the time-steptf,,].

will demonstrate the usefulness of our taxonomy by This re-arrangement does not alter the semantics of any

showing how concurrent interactions can be resolved. interaction because all of the response interactions
continue to refer to behavior prior to timgand all of the

6.4. Resolving Effects of Concurrent Interactions request interactions continue to refer to behavior after time

We show how to resolve the effects of concurrent tj.1. All of the response interactions can occur before all of
interactions based on two sets of characteristics ofthe request interactions. Therefore, the concurrent
interactions: responseersusrequest and certaiversus ~ occurrence of response and request interactions is
uncertain. Independent interactions are those whoseindistinguishable from a sequential occurrence, namely,
concurrent occurrence is indistinguishable from their responses before requests. By Property 1, responses and
sequential occurrence. If we can determine that concurrentequests are independent.

[t o] ﬁM\ S :
t

tiv1 —» Response

i
P A a %\\ S — Request
[tiit]! [t !ti+l] I
t t

tivq

Type O Type 2

Response

Type 1 Type 3

FIGURE 8: Independent Concurrent Response and Request Interactions

When two interactions interfere, but one of them has a Combining Cooperatively or Competitively: Some
certain outcome and the other has an uncertain outcomedependent concurrent interactions may be resolved by
then the former takes effect preferentially over the latter. enhancing or diminishing the effects of the individual
Interactions with certain outcommsusttake effect, whereas interactions. The effects of such interactions may be
interactions with uncertain outcome may be ignored, resolved by applying the effects of the individual
delayed or permitted to take partial effect. A partial effect interactions as well as compensatory interactions that
for an interaction is the effect of the interaction on some account for cooperative or competitive effects.
attributes but not others, or a fractional effect of the
interaction as opposed to the complete effect. If certainty 7. Constructing an Interaction Resolver
or uncertainty of interaction outcomes is multi-modal (e.g., An Interaction Resolve(IR) for an entity must resolve
as in priorities), then interactions with higher degrees of the effects of concurrent interactions received by the entity.
certainty take effect preferentially over those with lower Resolving interactions involves determining the class of
degrees of certainty. each interaction, determining if interactions of the same

When two interactions are resolved, either one of them type interfere, propagating the effects of interactions and
takes effect preferentially over another, or they are resolving the effects at each attribute using application-
combined. In the former case, the preferred interaction specific policies. The IR for an entity may be a single
retains its type. In the latter case, the resultant interactioncomponent or a number of components distributed over the
has the same type as the original interactions. If attributes in the entity. Conceptually, the distinction is
interactions of the same type interfere, they must be unimportant; during implementation, the distributed view
resolved by application-specific policies. For example, if may be more efficient.
two Type O interactions interfere, then they must be)
combined by a policy that reflects domain-specific laws. If 7-1. Operation of an IR
the interactions cannot be combined, then the model must The operation of an IR involves encoding and
be re-designed to avoid such paradoxical interactions.implementing policies for resolving the effects of classes
When the effect of the combination of some interactions is Or types of concurrent interactions.
greater than the combination of effects of the individual At design time, a designer encodes the type of each
interactions, the interactions amoperative When the interaction and policies for resolving types of concurrent
effect of the combination of some interactions is less than interactions. Encoding the type enables the IR to classify
the combination of effects of the individual interactions, interactions, while encoding the policies enables the IR to
the interactions arecompetitive If cooperative or resolve interactions. For example, when Type 1 and Type O
competitive effects exist and the original interactions are interactions interfere, the former are discarded. The
serialized, new interactions must be added to account fordesigner must specify a policy for discarding the Type 1
these effects. interactions, for example by ignoring or delaying them.

The choice of policies may be dynamic, i.e., varying during
6.5. Policies for Resolving Effects of Interactions run-time. However, designers must specify conditions

We present policies to resolve the effects of dependentunder which the appropriate policy is chosen.
concurrent interactions based on the characteristics of At run time, an entity sends and receives concurrent
interactions. Designers of multiple models may choose interactions. An IR for the entity must determine the type
from these or similar policies to resolve the effects of of each interaction and group the interactions according to
dependent concurrent interactions. We present thesdheir type. Initially, the effect of each interaction on the set
policies in detail elsewhere [15]. of attributes in all the representations is determined

Serializing: If the concurrent effects of some assuming that the interaction occurred in isolation. The
interactions cannot be distinguished from their sequential semantics of an interaction determine how members in its
effects, the interactions are independent (Property 1).affectsset are changed. For each attribute, a list of potential
Therefore, the effects of independent concurrent changes caused by the interactions is constructed. Not all
interactions may be applied by ordering the interactions of these changes will be applied to the attribute. From its
and permitting them to take effect one after another. encoded policies, the IR must determine which changes

Ignoring: The effects of some sets of dependent must be applied.
concurrent interactions can be resolved meaningfully by The IR must resolve the changes caused by all
ignoring some of the interactions. interactions by considering the types of the interactions

Delaying: The effects of some sets of dependent and policies that eliminate conflicts among types of
concurrent interactions can be resolved meaningfully by interactions. Based on our classification of interactions, the
delaying some of the interactions. IR must consider the changes to each attribute in the order

Type O, 1, 2 and 3. This order preserves dependencies
among interactions.

Below, we present an algorithm for an IR. The IR must [4]
determine the effects of all concurrent interactions by
referring to policies encoded by the designer. In this
algorithm, we apply the effects of interactions after all
dependent interactions have been resolved.

For each time-step
List L = sort interactions by type
For each interaction | in L
Determine effects of | on each attribute
For each attribute a
If cooperative/competitive effects exist
Insert compensatory effects in L
If Type 0 and 1 interactions interfere
Discard Type 1 changes
If Type 2 and 3 interactions interfere
Discard Type 3 changes
For each attribut_e_a [9]
Apply remaining changes

When all these changes have been applied, the entity
will be consistent. The IR enforces policies meaningful for 10]
dependent concurrent interactions. Since the specified[
policies for dependent concurrent interactions do not
isolate the interactions, the effects of these interactions car11]
be resolved meaningfully. Consequently, the entity
interacts at multiple representational levels concurrently
and consistently. We present an example IR elsewhere [15][12]

[5]

[6]
[7]

(8]

8. Summary

Concurrent interactions may have effects that are [13]
dependent on one another. Resolving the effects of such
interactions by serializing them is generally incorrect since [14]
serialization isolates the interactions. We present some
characteristics of interactions — request, response, certain
and uncertain — and four classes of interactions based or15]
combinations of these characteristics — Types 0, 1, 2 and
3. The classes distinguish semantic types of interactions
encountered commonly in modeling and simulation. Based[16]
on these intrinsic characteristics of interactions, we
presented policies for resolving the effects of their
concurrent occurrence. We showed how to construct an
Interaction Resolver (IR) for an entity. An IR encodes
policies for resolving the effects of dependent concurrent
interactions at run-time. By designing an IR, a designer can 18]
ensure that an entity’s behavior is meaningful when it
interacts concurrently.

[17]

[19]
9. References
[1] Amoroso, E. D., Fundamentals of Computer Security
Technology Prentice Hall PTR, ISBN 0-13-108929-3,
1994,
Badrinath, B. R., Ramamritham, K.Semantics-Based
Concurrency Control: Beyond CommutatiyityACM
Transactions on Database Systems, 17(1), March 1992.
Barghouti, N. S., Kaiser, G. EConcurrency Control in

[20]

(2]

(3]

Advanced Database ApplicatignsACM Computing
Surveys, 23(3), September 1991.

Bernstein, P. A., Goodman, NConcurrency Control in
Distributed Database System&CM Computing Surveys,
13(2), June 1981.

Bernstein, P. A., Hadzilacos, V., Goodman, N.,
Concurrency Control and Recovery in Database Systems
Addison Wesley Publishing Company Inc., ISBN 0-201-
10715-5, 1987.

Brahmadathan, K., Ramarao, K. V. 8n the Management
of Long-Living Transactionslournal of Systems Software,
11, 1990.

Date, C. J.,An Introduction to Database Systems (Sixth
Edition), Addison Wesley Publishing Company Inc., ISBN
0-201-54329-X, 1995.

DIS Steering CommitteeThe DIS Vision, A Map to the
Future of Distributed SimulatigfComment Draft, October
1993.

Garcia-Molina, H., Using Semantic Knowledge for
Transaction Processing in a Distributed DatabageCM
Transactions on Database Systems, 8(2), June 1983.
Haerder, T., Reuter, ARrinciples of Transaction-Oriented
Database RecoveryACM Computing Surveys, 15(4),
December 1983.

Howard, J. D.,An Analysis of Security Incidents on the
Internet 1989-1995Ph.D. Dissertation, Engineering and
Public Policy, Carnegie Mellon University, 1997.

Korth, H. F., Speegle, G. DFormal Model of Correctness
without Serializability ACM SIGMOD Record, 17(3),
September 1988.

Lynch, N. A., Multilevel atomicity: a new correctness
criterion for database concurrency control ACM
Transactions on Database Systems, 8(4), December 1983.
Munson, J., Dewan, PA Concurrency Control Framework
for Collaborative System#\CM Conference on Computer
Supported Cooperative Work, 1996.

Natrajan, A., Consistency Maintenance in Concurrent
Representations Ph.D. Dissertation, Department of
Computer Science, University of Virginia, January 2000.
Papadimitriou, C. H.The Theory of Database Concurrency
Control, Computer Science Press, ISBN 0-88175-027-1,
1986.

Reynolds Jr., P. F., Natrajan, A., Srinivasan,Gnsistency
Maintenance in Multi-Resolution SimulatignsACM
Transactions on Modeling and Computer Simulation, 7(3),
July 1997.

Rosser, J. B.Highlights of the history of the lambda-
calculus Conference Record of 1982 ACM Symposium on
Lisp and Functional Programming, 1992.

Thomasin, A., Concurrency Control: Methods,
Performances and AnalysisACM Computing Surveys,
30(1), March 1998.

Weihl, W. E., Commutativity-Based Concurrency Control
for Abstract Data TypedEEE Transactions on Computers,
37(12), December 1988.

	Resolving Concurrent Interactions
	1. Introduction
	2. Interactions
	3. Serialization
	4. Abandoning Isolation
	5. Switches — A Simple System
	5.1. Unconstrained System
	FIGURE 1: Switches
	FIGURE 2: State Transition Diagram

	5.2. Constrained System
	FIGURE 3: Constraints
	FIGURE 4: States
	FIGURE 5: Constrained State Transition Diagram

	5.3. Dependent Concurrent Interactions
	FIGURE 6: Transitions on Concurrent Interactions

	5.4. Complexity

	6. A Taxonomy of Interactions
	6.1. Properties of a Taxonomy of Interactions
	6.2. Interaction Characteristics and Classes
	FIGURE 7: Classes of Interactions

	6.3. Evaluating the Taxonomy
	6.4. Resolving Effects of Concurrent Interactions
	FIGURE 8: Independent Concurrent Response and Request Interactions

	6.5. Policies for Resolving Effects of Interactions

	7. Constructing an Interaction Resolver
	7.1. Operation of an IR

	8. Summary
	9. References
	[1] Amoroso, E. D., Fundamentals of Computer Security Technology, Prentice Hall PTR, ISBN 0-13-10...
	[2] Badrinath, B. R., Ramamritham, K., Semantics-Based Concurrency Control: Beyond Commutativity,...
	[3] Barghouti, N. S., Kaiser, G. E., Concurrency Control in Advanced Database Applications, ACM C...
	[4] Bernstein, P. A., Goodman, N., Concurrency Control in Distributed Database Systems, ACM Compu...
	[5] Bernstein, P. A., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in Database S...
	[6] Brahmadathan, K., Ramarao, K. V. S., On the Management of Long-Living Transactions, Journal o...
	[7] Date, C. J., An Introduction to Database Systems (Sixth Edition), Addison Wesley Publishing C...
	[8] DIS Steering Committee, The DIS Vision, A Map to the Future of Distributed Simulation, Commen...
	[9] Garcia-Molina, H., Using Semantic Knowledge for Transaction Processing in a Distributed Datab...
	[10] Haerder, T., Reuter, A., Principles of Transaction-Oriented Database Recovery, ACM Computing...
	[11] Howard, J. D., An Analysis of Security Incidents on the Internet 1989-1995, Ph.D. Dissertati...
	[12] Korth, H. F., Speegle, G. D., Formal Model of Correctness without Serializability, ACM SIGMO...
	[13] Lynch, N. A., Multilevel atomicity: a new correctness criterion for database concurrency con...
	[14] Munson, J., Dewan, P., A Concurrency Control Framework for Collaborative Systems, ACM Confer...
	[15] Natrajan, A., Consistency Maintenance in Concurrent Representations, Ph.D. Dissertation, Dep...
	[16] Papadimitriou, C. H., The Theory of Database Concurrency Control, Computer Science Press, IS...
	[17] Reynolds Jr., P. F., Natrajan, A., Srinivasan, S., Consistency Maintenance in Multi-Resoluti...
	[18] Rosser, J. B., Highlights of the history of the lambda- calculus, Conference Record of 1982 ...
	[19] Thomasin, A., Concurrency Control: Methods, Performances and Analysis, ACM Computing Surveys...
	[20] Weihl, W. E., Commutativity-Based Concurrency Control for Abstract Data Types, IEEE Transact...

