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One often hears of writers that rise and swell with their subject, though it
may seem but an ordinary one. How, then, with me, writing of this Leviathan?

Unconsciously my chirography expands into placard capitals.
Give me a condor’s quill! Give me Vesuvius’ crater for an inkstand!

Friends, hold my arms! For in the mere act of penning my thoughts of this
Leviathan, they weary me, and make me faint with their out-reaching

comprehensiveness of sweep, as if to include the whole circle of the sciences,
and all the generations of whales, and men, and mastodons, past, present,

and to come, with all the revolving panoramas of empire on earth,
and throughout the whole universe, not excluding its suburbs. Such, and so

magnifying, is the virtue of a large and liberal theme! We expand to its bulk.
To produce a mighty book, you must choose a mighty theme.

No great and enduring volume can ever be written on the flea,
though many there be who have tried it.

— Herman Melville,Moby-Dick
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Abstract

Multi-Representation Modeling (MRM) involves executing multiple models of the
same phenomenon jointly. MRM is a technique in modeling and simulation for capturing
the combined semantics of multiple models. Previous MRM approaches, such as selective
viewing and aggregation-disaggregation, have encountered problems such as chain
disaggregation, temporal inconsistency and mapping inconsistency. Eliminating these
problems has been a difficult task for MRM designers. We eliminate these problems by
showing how to achieve MRM effectively, i.e., correctly, consistently and inexpensively.
Our thesis is that MRM can be effective. Maintaining consistency among the concurrent
representations of jointly-executing models is our approach for effective MRM.

We developed a framework,UNIFY, to achieve effective MRM.UNIFY satisfies three
MRM requirements: multi-representation interaction, multi-representation consistency
and cost-effectiveness.I t enables designers to construct solutions for application-specific
multiple models.UNIFY is based on four fundamental observations that reduce the
problem of joint execution to the problem of maintaining consistency among the
representations of multiple models when dependent concurrent interactions occur.UNIFY
consists of processes and techniques such as Multiple Representation Entities (MREs),
Attribute Dependency Graphs (ADGs) and a taxonomy of interactions. An MRE
maintains concurrent representations. An ADG captures relationships among attributes in
concurrent representations. An ADG and application-specific mapping functions that
translate attributes across representations constitute a Consistency Enforcer that maintains
internal consistency within an MRE. Our taxonomy of interactions provides a way to
classify interactions based on their semantic characteristics. This classification presents
policies that can be encoded in an Interaction Resolver for resolving the effects of
dependent concurrent interactions on an MRE.

UNIFY contributes to the practice of modeling and simulation. We show how
designers can apply techniques inUNIFY. We present guidelines for maintaining
consistency among concurrent representations.UNIFY is the first known general
framework for achieving effective MRM.
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Integrating multiple, independently-developed models of overlapping phenome
the crux of multi-model design. Experience shows that this integration is a hard pro
because of semantic mismatches between the models, and because current app
make sub-optimal trade-offs between run-time performance and consistency o
models. Current practice involves employing one of two basic approaches: sele
viewing, which may compromise performance for consistency, and aggrega
disaggregation, which may compromise consistency for run-time performance. Often
precise conditions under which integration can be done effectively are not entirely c
This dissertation addresses the integration of independently-developed models
manner that reconciles demands for run-time performance and consistency of the m
when concurrent interactions occur.

In this dissertation, we present a new approach,UNIFY, for integrating multiple
models. The main contributions of this work are two-fold. First, we show thatUNIFY
improves on the run-time performance of selective viewing while simultaneou
improving on the consistency provided by aggregation-disaggregation. In other wor
achieves a better balance of these competing concerns than either of the two approa
use today. Our thesis is that multiple models can be integrated such that their
execution is as consistent as selective viewing but with lower costs than selective vie
or aggregation-disaggregation. An approach that satisfies our thesis achieves “effe
joint execution. In this dissertation, we present requirements for effective joint execu
and show how current approaches fail to satisfy them. We define concu
representations as the representations of jointly-executing models. We define maint
consistency as ensuring that the states of representations do not conflict. Effective
execution of multiple models can be achieved by maintaining consistency among
representations. Consistency maintenance among concurrent representations
cornerstone ofUNIFY.

The second contribution of this work is identifying the conditions under wh
multiple, independently-developed models can be integrated. This knowledge en
1
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designers to produce models that can be composed later into a multi-model. Our
shows that existing models can be integrated only to the extent that they satisfy
conditions. The extent to which existing models do meet these conditions is not kn
but the difficulty that designers experience in practice suggests that there is room
improvement. We present four fundamental observations about jointly-executing mo
which form the basis of the techniques and processes that are part ofUNIFY. We apply
UNIFY to existing models and present guidelines for multi-model designers.

1.1 Background
Modelling is a method to study a phenomenon without involving the phenome

itself. A model captures essential parts of a phenomenon, such as its constituent pro
and interacting objects, which are called entities. Typically, models have represent
which is a means of describing objects and processes within a model. Simulation
technique to execute models, typically on a computer. Modelling and simulation pro
the opportunity to study a phenomenon relatively inexpensively, reproducibly and
reducing the number of controlling factors, at a convenient level of abstraction.

Multiple models executing jointly may capture combined semantics that canno
captured by any one model alone. Multiple models may be constructed in order to
different parts of a phenomenon. The multiple models together constitute a multi-m
When the multiple models execute at overlapping times and exchange information
one another, they are said to execute jointly. Davis and other researchers advocate
executing multiple models of a phenomenon [DAVIS93]. Constructing and maintaining a
new model for every combination of semantics may involve high cost and effort on
part of designers. In contrast, simple and well-designed models executing jointly ma
able to capture such semantics. Effective joint execution of well-designed models can
to a multi-model that satisfies its users’ requirements. Constructing well-designed m
is an important task; however, we restrict our work to the effectiveness of joint execu
Multi-representation modelling (MRM) is the joint execution of multiple models of t
same phenomenon.

Currently, two basic approaches exist for executing multiple models jointly: selec
viewing and aggregation-disaggregation. We explain these approaches with a
example. Consider a chemical reaction for which two models exist: a molecular m
ModelA, and an atomic model,ModelB. Since the reaction can be studied from bo
perspectives, it may be required for the models to execute jointly. In the selective vie
approach, the more detailed model of the two, in this caseModelB, is executed alone. The
execution ofModelA is emulated by selecting a view, i.e., filtering information, from th
state ofModelB when necessary. Since onlyModelB is executed, maintaining consistenc
between the two models is straightforward. However, sinceModelB is more detailed,
executing it entails higher resource consumption thanModelA. Moreover, sinceModelA is
not executed, selective viewing does not capture the combined semantics of th
models. In the aggregation-disaggregation approach, as far as possible, the less d
model of the two, in this caseModelA, is executed alone. When more detail is required, t
execution ofModelA is suspended andModelB is executed. Subsequently, when detail
not required, the execution ofModelB may be suspended and the execution ofModelA

resumed. SinceModelA is less detailed, executing it entails lower resource consump
2
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cost thanModelB. Since the currently-executing model may change at different tim
maintaining consistency between the models is important for maintaining sem
continuity. However, for reasons that we will explain in §4.1, maintaining consistenc
this manner is hard, i.e., it can be error-prone and resource-intensive. More
aggregation-disaggregation does not capture the combined semantics of the two m
because at any given time only one of the models is executed.

Both these approaches are based on sound principles; however, we show that th
fail to achieve effective MRM in many instances [REYN97]. Selective viewing is based on
the principle that high detail is more important than performance or abstrac
Aggregation-disaggregation is based on the principle that performance and abstracti
be gained by providing high detail infrequently. Rigidly adhering to one principle or
other has caused MRM to become ineffective in many instances. With our appro
UNIFY, we show how to balance these competing principles, thus eliminating prob
inherent in alternative approaches.

1.2 UNIFY — An Overview
UNIFY is a framework for maintaining consistency among representations of join

executing models. It is based on four fundamental observations that capture ge
characteristics of jointly-executing models [REYN97]. Current MRM approaches
encounter a number of problems because they have failed to appreciate
characteristics. The fundamental observations indicate that consistent MRM ca
achieved at a lower cost than other approaches by maintaining consistency a
multiple representations when concurrent interactions occur.

When multiple models of the same phenomenon execute jointly, significant prob
can arise if the models conflict. Eliminating or avoiding these conflicts has been a
problem for MRM designers. Some multi-models may satisfy their users’ requirem
despite such conflicts. However, we believe that maintaining consistency among
representations of a multi-model is a systematic and disciplined approach for constru
multi-models that satisfy their users’ requirements. This approach benefits multi-mo
that require consistency, as we will show in the rest of this dissertation. This appr
benefits multi-models that tolerate relaxed or no consistency as well, because it show
other requirements for effective joint execution can be satisfied.

We avoid problems encountered in current approaches by making mul
representations of an entity co-exist at all times within a Multiple Representation E
(MRE). For example, in Figure 1, E1 is an MRE for an entity in multiple models,ModelA

andModelB. An MRE is a contrast to selective viewing and aggregation-disaggrega
wherein either the entity inModelA or the entity inModelB, but not both, would exist at
any given time. As we will show in §2.1, designers in many domains, such as m
resolution graphical models, hierarchical autonomous agents and molecular mod
have adopted approaches similar to creating MREs. MREs, a part ofUNIFY, maintain the
representations of multiple models at all times.

An MRE permits concurrent changes to any of its representations. Changes to sta
representations occur as a result of interactions among objects and processes. Inter
are means by which objects and processes communicate or try to influence the beh
of one another. Interactions may change multiple representations of objects or proce
3
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One challenge inUNIFY is maintaining consistency among multiple representatio
when the state of any representation changes. In Figure 1, when E1 interacts with either E2
or E3, the multiple representations within E1 must be consistent. A Consistency Enforc
(CE) maintains consistency among the multiple representations within an MRE
capturing relationships among parts of the representations. A CE consists of an Att
Dependency Graph (ADG) and mapping functions. An ADG captures depende
among representations. When the state of a representation changes, a CE trave
ADG to determine how the state of other representations must change. The CE per
the actual changes by invoking application-specific mapping functions that tran
changes in one attribute to changes in others. As part ofUNIFY, we show how to construct
an ADG, select mapping functions and construct a CE for an MRE.

Another challenge inUNIFY is ensuring that the effects of interactions that occur
overlapping simulation times are applied correctly. For example, in Figure 1,1’s
behaviour must be meaningful even when E2 and E3 interact with E1 concurrently.
Interactions occurring at overlapping times are called concurrent interactions. Concu
interactions may be dependent, i.e., have related effects, for example, precludi
enhancing one another. Traditionally, concurrent interactions have been serialized
applied one after another in some arbitrary order. However, serialization can c
incorrect behaviour because the effects of dependent concurrent interactions a
reflected meaningfully. For example, in a model of a chemical reaction, E1 may represent
some quantity of an acid, E2 may represent a reagent and E3 a catalyst. Adding a reagen
or catalyst is an interaction in this model. When both E2 and E3 are added to E1, the rate of
the reaction may increase more than the sum of the increases caused by adding eithe2 or
E3 alone. Serialization can capture the sum of the increases, but not the increase c
when both E2 and E3 are added. Therefore, in this model, serialization produces incor
results. As part ofUNIFY, we present a taxonomy of interactions that captures
semantic relations among concurrent interactions and presents mechanisms to r
them. Also, we show how to construct an Interaction Resolver (IR) for an MRE in orde
resolve the effects of dependent concurrent interactions.

MREs, ADGs, a taxonomy of interactions, and processes for constructing a CE a
IR are part ofUNIFY. Multi-model designers can achieve consistent MRM at lower c
than other approaches by applying these techniques and processes.

E3

E2
ModelA

ModelB

Multiple Representation Entity E1

Interactions

Interactions

Interaction
Resolver

ModelA Representation

ModelB Representation

FIGURE 1: Our Approach to MRM

Consistency
Enforcer
4
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1.3 Requirements for Effective MRM
In jointly-executing models, entities in all models must interact consistently and c

effectively. Although these requirements seem self-evident, alternative technique
MRM often fail to satisfy them. We measure the success of an MRM approach
analysing whether the approach satisfies these requirements.

Often, multi-models are unsatisfactory because they become inconsistent or expe
An effective MRM approach must satisfy at least the following reasonable requireme

R1: Multi-representation Interaction : Entities in each model may initiate and
receive interactions that may cause changes to the entities concurre
Dependent concurrent interactions must be permitted.

R2: Multi-representation Consistency: The representations of jointly-executin
models must be consistent with one another.Temporal consistencyrequires
that two entities interacting with a third entity at overlapping simulation tim
have consistent views of the third entity.Mapping consistencyrequires that
entity properties common to different models be translated such that repe
translations in a given period do not cause abnormal behaviour in the e
during that period. Multi-representation consistency is interesting only if
multiple models are related to one another.

R3: Cost-effectiveness: The costs of simulating multiple models and maintainin
consistency among them should be lower than alternative approaches.

These requirements represent the conditions under which multiple models ca
integrated effectively. We will evaluateUNIFY and alternative MRM approaches such a
aggregation-disaggregation and selective viewing with regard to these requirement
will consider an MRM approach sufficient only if it satisfies all three requirements.

1.4 Claims and Contributions
UNIFY benefits the practice of modelling and simulation because it enables desig

to build consistent multi-models with lower run-time costs than other approaches
have examined the problem of joint execution of multiple models in detail, and cre
general and useful techniques for consistency maintenance in concurrent represent
Rather than conceiving a detailed solution for every application we analysed,
concentrated on a process that MRM designers may modify for their applications.

We present a sufficient and practical framework for MRM. Our framework,UNIFY, is
a sufficient approach to MRM because it satisfies the three requirements for MRM
R2 and R3. Moreover,UNIFY is a practical approach to MRM because it can be applied
conjunction with a methodology for specifying models.

The major contributions of our work are the fundamental observations, MREs, AD
the taxonomy of interactions, a cost study and the guidelines for designers. All of t
contributions further the existing practice in modelling and simulation. The taxonom
interactions offers a spectrum of solution choices for resolving concurrent interactio
any domain. We expectUNIFY to be useful in a variety of domains, such as hierarchi
autonomous agents, climate modelling and graphical modelling.

A substantial benefit of our work to multi-model designers is a set of guidelines
consistency maintenance. The guidelines lead designers from their joint exec
5
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requirements to the design of consistent MREs. We augment Object Model Template
methodology for specifying objects and the interactions among them — w
specifications for concurrent interactions. IncorporatingUNIFY into an existing
specification methodology enables designers to understand our work in term
techniques already familiar to them. The guidelines provide designers with an
reference for incorporating consistency maintenance in their models.

Our work will benefit many modellers. Designers may incorporate consistency in
applications by following our guidelines. Analysts may examine the justification beh
the guidelines. Our analyses of MRM approaches cautions modellers entering the fi
MRM: joint execution is neither trivial nor easy. Finally, we have laid the foundation
future explorations and refinements.

1.5 Evaluation
In this dissertation, we show how multi-model designers can achieve consist

similar to selective viewing but at a lower cost than either selective viewing
aggregation-disaggregation. We show how designers can employ an ADG, ma
functions, a taxonomy of interactions and policies for concurrent interactions in ord
maintain consistency within an MRE when concurrent interactions occur. We measur
costs involved in executing multiple models jointly and show that these costs are low
UNIFY than in selective viewing and aggregation-disaggregation. We show howUNIFY
satisfies the requirements for effective MRM, R1, R2 and R3, while other approache
not even if they make similar assumptions as we do. We apply the techniques
processes inUNIFY to four multi-models in order to provide empirical evidence th
UNIFY is a practical framework. Finally, we show howUNIFY can be applied in
conjunction with Object Model Template, a methodology for specifying multi-models

The three MRM requirements, R1, R2 and R3, capture desirable goals for the
execution of multiple models. Satisfying these requirements supports our thesis t
multi-model can be constructed in a consistent manner and with reduced run-time
The requirements themselves do not outline an approach for effective MRM. In o
words, approaches other thanUNIFY for achieving effective MRM are possible. Finally
the requirements may be part of a larger set of requirements for the joint executio
multiple models. Identifying the members of the larger set is a topic for future work.

Our work presents a general approach for effective MRM. We do not address
effective MRM can be achieved for specific models. However, we do present
conditions under which such models may be executed jointly. We provide technique
processes that designers can employ to satisfy most of these conditions. We have
unable to provide techniques for achieving compatible time-steps (discussed in §3
Although this inability is a limitation of our work, we show how compatible time-ste
eliminate inconsistencies caused by time-step differentials, thus benefiting multi-m
designers. We regard our work as a preliminary step towards a detailed framewor
guides designers in the design of their multi-models. We expect thatUNIFY, with future
additions, will be that framework.

We envision designers routinely constructing simple models that can be integrate
jointly executed as a multi-model. A number of issues must be resolved before this v
becomes reality. For example, constructing models can be complex, verifying them c
6



. Our
. Our
w that
ds to

ining
dix A.
e not

ut
RM
about

Any
oach
ltiple

he first
e any
cts of
iques
ns.
e

ter 10
tion
difficult and reconciling the semantic differences between them can cause problems
work addresses only one of these important issues: the joint execution of the models
work focusses on consistency maintenance in concurrent representations. We sho
maintaining consistent representations for multiple models that execute jointly lea
effective MRM.

1.6 Outline
In Chapter 2, we briefly present applications that adopt the approach of mainta

concurrent representations. Detailed discussions of these applications are in Appen
We present alternative MRM approaches wherein concurrent representations ar
maintained. Also, we present work related to key concepts inUNIFY. In Chapter 3, we lay
the foundation forUNIFY by introducing and defining terms that we will use througho
this dissertation. Also, we discuss the criteria that we will use to evaluate M
approaches. In Chapter 4, we present and justify some fundamental observations
MRM. These observations arise from empirical studies of many MRM applications.
solution to the MRM problem must incorporate these observations. Our appr
recommends maintaining consistency among concurrent representations of mu
models. We present our framework-based approach to MRM,UNIFY, in Chapter 5 and
discuss the technical challenges with such an approach. In Chapter 6, we address t
challenge — keeping multiple representations consistent when interactions chang
representation. In Chapter 7, we address the second challenge — resolving the effe
concurrent interactions. In Chapter 8, we present a process for applying the techn
that are part ofUNIFY and present guidelines for designers of multi-model applicatio
In Chapter 9, we evaluateUNIFY and briefly present case studies of applying it. W
present the case studies in detail in Appendices B, C, D and E. We conclude in Chap
by discussing the contributions of our work to the practice of modelling and simula
and presenting some areas for future work.
7
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Multi-Representation Modelling (MRM) — the joint execution of different models
the same phenomenon — has been explored in applications in a number of domains
multi-resolution graphics and battlefield simulations to climate models and molec
models. In most of these domains, MRM has proven beneficial for some application
matter what MRM approach has been used. In §2.1, we present example application
employ multi-models. In §2.2, using examples from battlefield simulations, we desc
alternative MRM approaches, wherein all but one model may suspend execution. In
we describe work that has influenced our approach.

2.1 MRM Applications
We present a sampling of domains in which MRM in some form has been emplo

For these domains, MRM has been considered beneficial for many applications. A de
discussion of domains employing MRM is in Appendix A along with evaluations
whether the MRM approaches satisfy R1, R2 and R3.

2.1.1 Multi-Resolution Graphical Modelling
In multi-resolution graphical modelling, the system maintains multip

representations, orlevels of detail, of an object and renders the appropriate representa
depending on the object’s distance from the viewer [CLARK76]. Coarser levels of detail for
an object employ fewer polygons, thus reducing the time required to render the ob
Moreover, coarse levels of detail depict the object satisfactorily when the perceived s
the object relative to the viewing area is small, for example, when the object is dis
from the viewer. In multi-resolution graphical models, researchers concentrate
generating levels of detail automatically before run-time; at run-time, an appropriate
is selected for visually-appealing rendering [GAR95] [HECK94] [HECK97] [LUEBKE97]
[PUPPO97]. A few applications permit a user to change a level of detail at run-time, t
requiring re-generation of other levels of detail [BERM94] [LEE98] [ZORIN97].
8
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2.1.2 Hierarchical Autonomous Agents
Hierarchical autonomous agents jointly execute multiple layers (e.g., a deliber

layer [SACER74] and a reactive layer [AGRE87]) in order to utilise the capabilities of eac
layer [ALBUS97] [BON97] [FIRBY87] [GAT92] [HANKS90] [LAIRD91] [SIM94] [WAS98A].
Multiple layers enable an agent to pre-plan some of the steps required to fulfill its goa
exhibit robust behaviour when unexpected or urgent situations occur. Usually, each
maintains representation about the agent’s goal or surroundings [BROOKS86] [BRILL98].
Eliminating inconsistencies among dependent parts of the representations for mu
layers is an open issue.

2.1.3 Blackboard Systems
In blackboard systems such asHearsay-II , many processes write to and read fro

a single data structure, called a blackboard [ERMAN80]. Hearsay-II translates spoken
sentences into the corresponding alphabetic representation.Hearsay-II ’s blackboard is
a multi-model; each layer is a different model of a spoken sentence. Layers correspo
to sentence fragments such as phonemes, words and phrases execute jointly to p
multiple interpretations of one sentence. Each interpretation is a consistent view o
sentence. Multiple interpretations are ranked by a credibility metric; the most cred
interpretation is the best translation of the spoken sentence. However, mainta
multiple interpretations of a sentence is resource-intensive.

2.1.4 Cache Coherence
In a multi-processor configuration, each processor may access a fast local cac

order to reduce accesses to slow main memory. Processors may read and modify co
main memory data stored in their caches. Ensuring that processors access correct v
of cached data is the cache coherence problem [HENN96] [ARCH86]. The main memory
copy and each cache copy of a datum are concurrent representations of a va
Processes issue interactions in the form of read and write operations to any copy. C
and main memory copies bear simple relationships, such as equality, with one anoth

2.1.5 Abstract Data Types and Object Inheritance
In polymorphic languages, data may have multiple types [CARD85]. Some languages

supportad hocpolymorphism, wherein a datum may be defined multiply, e.g., a un
[KERN88] [STROU91] or a perspective [GOLD80] [STEFIK86]. Unions and perspectives
permit one representation of a datum to be viewed in different ways. Unions
perspectives are not expressive enough to capture relationships among mu
representations. Object-oriented languages such as Smalltalk-80 [BORN82], Simula-67
[DAHL66] [BIRT73] and C++ [STROU91] support inclusion polymorphism, wherein
datum may belong to different classes. The languages rely on the typing mechanism
the contexts in which the datum is used to determine its class. Object-oriented lang
capture limited relationships, such as inheritance, among parts of representations.
9
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2.1.6 Views in Databases and Integrated Environments
In relational database applications, data are abstracted into relations, which esse

are tables whose rows are tuples and columns are values for members of tuples [CODD70]
[ASTRA76] [STONE76] [LINTON84]. In object-oriented databases, data are abstracte
relationships among entities [CHEN76] [BALZER85]. A view in a database is derivative
i.e., the view is a set of relations derived from existing relations or relationsh
[CHAM75]. A view in an integrated environment is constructive, i.e., the databas
constructed from individual views [GAR87]. Changes to a view must be translated
changes in the database [BAN81] [HOR86].

2.1.7 Nested Climate Modelling
In nested climate modelling, Limited Area Models (LAMs), which predict region

climate, execute jointly with Global Circulation Models (GCMs), which predict wid
ranging climate changes. The joint execution produces more accurate predictions
weather than either alone [GIORGI90] [GIORGI91] [RISBEY96]. Typically, GCM data for
large geographic areas are translated to LAM input. LAMs supplied with this input
perform further computations to predict weather for small geographic areas. Ideally, L
data should be translated to GCM input as well in order to account for local factors
may influence global climate. However, translating GCM data for LAM input is comm
but the reverse translation is an open problem.

2.1.8 Integrated Molecular Modelling
When theoretical studies on the potential energy surfaces for chemical reaction

large system are carried out, low-computation low-detail models, such as mole
mechanics models, are used initially for most of the system, and high-computation
detail models, such as molecular orbital methods, are used subsequently for a small
the system [MATSU96] [SVEN96A] [HUMBEL96] [SVEN96B]. Such integrated models
enable researchers to study interesting aspects of a reaction in detail without incurrin
cost of modelling the entire reaction in detail. Integrated molecular models pe
interactions at multiple levels and are remarkably consistent with one another. A
reported resource consumption is low.

2.1.9 Multi-Level Computer Games
In a number of commercial computer games, players control characters inhabit

world displayed at multiple resolutions. Usually, a player interacts at the most det
resolution level, with the other resolution levels existing solely to provide the player w
wider or less-cluttered view of the game world. In a few games, the player may trans
to less-detailed resolution levels and interact at those resolution levels. Typically, pla
can interact at only one resolution level at a time. In most games, all processing
place at the most detailed resolution level.
10
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2.1.10 Battlefield Simulations
A number of battlefield simulations require the joint execution of multiple models,

example, training models and analysis models [AMG95] [DAVIS93] [DAVIS98] [DIS93]
[DOD94] [REYN94]. Typically, battlefield simulations employ an approach call
aggregation-disaggregation to ensure that entities interact at the same representatio
Aggregation-disaggregation enables many independently-designed simulations to e
jointly. However, aggregation-disaggregation scales poorly with large numbers of joi
executing models or interacting entities; it can preclude concurrent multi-represent
interactions, give rise to inconsistencies among the multiple representations, and inc
resource consumption.

2.1.11 MRM Applications Summary
In Table 1, we evaluate the MRM approaches employed in the above domains

regard to our MRM requirements of multi-representation interactions (R1), m
representation consistency (R2) and cost-effectiveness (R3). The evaluation h
intentionally brief; it is meant to highlight shortcomings of previous work. Detail
evaluations of these domains are in Appendix A. In Table 1, darkly-shaded cells sig
that a domain satisfies a requirement. Lightly-shaded cells signify that a domain satis
requirement poorly. Unshaded cells signify that a domain does not satisfy a require
An ideal MRM approach for each domain will have all three cells shaded darkly.

2.2 Multi-Model Execution
MRM approaches such as selective viewing and aggregation-disaggregation ex

only one model at a time. Inselective viewing, only the most detailed model is execute
In aggregation-disaggregation, at any given time, only one model is executed; depend

TABLE 1: Evaluation of Domains employing MRM

Domain R1 R2 R3

Multi-Resolution Graphical Modelling

Hierarchical Autonomous Agents

Blackboard Systems

Cache Coherence

Abstract Data Types and Object Inheritance

Views in Databases and Integrated Environments

Nested Climate Modelling

Integrated Molecular Modelling

Multi-Level Computer Games

Battlefield Simulations
11
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on the interactions among entities, the system may change the currently-executing
by transitioning among models. InVariable Resolution Modelling, processes are modelle
at different resolution levels. At any time, a user may choose to model processes o
processes at higher or lower detail. The system transitions among multiple process m
in order to satisfy the user’s request. In the following sections, we critique each appr
briefly. Most of the examples in these sections are from battlefield simulations becau
our experience and familiarity with that domain.

2.2.1 Selective Viewing
With selective viewing, only the most detailed model is executed, and all other mo

are emulated by selecting information, or views, from the representation of the
detailed model [DAVIS93]. Selective viewing is employed when modelling a phenomen
in detail at all times is considered necessary. Low-resolution views of a multi-mode
generated from the most detailed model. While this approach may be suitable for g
because available processing resources can execute the most detailed model at ne
time, for more complex models, selective viewing has many disadvantages.

First, executing the most detailed model incurs the highest resource usage
Proponents of selective viewing may argue that the smallest detail can affect the exe
of the complete model (e.g., a butterfly flapping its wings in Columbia can affect
weather of Western Europe). While this argument may be valid in some cases, for
models, most of the details can be abstracted reasonably in order to conserve resou

Second, the most detailed model is likely to be the most complex model. One o
main benefits of modelling is to make reasonable simplifications in order to stud
phenomenon efficiently. Executing the most detailed model adds complexity instea
reducing it.

Third, executing the most detailed model may limit the opportunities for perform
some types of analyses. Abstract models enable a user to make high-level dec
regarding the multi-model. These high-level decisions are likely to change the beha
of many entities, thus enabling broad analyses of the multi-model. Enabling equiv
analyses in a detailed model requires making corresponding low-level decisions. T
low-level decisions may not exist or may be difficult to make. Thus, the equiva
analyses in a detailed model may be impossible or infeasible.

Fourth, some multiple models may not bear hierarchical relationships with
another, i.e., none of them is the most detailed model. Selective viewing implies tha
most detailed model is a monolithic model. For non-hierarchical models, the monol
model must be created by capturing all the details of all the models. Such a mono
model requires additional design effort and is likely to be very complex.

The philosophical question of what is the most detailed model can entrap desig
into adding ever-increasing detail to a model by refining entities in the model increasi
However, even assuming a designer can escape this trap eventually, selective view
not suitable for the execution of a multi-model because of the above disadvantages.

2.2.2 Aggregation-Disaggregation
Inconsistencies can arise in a multi-model when a low resolution entity (LRE), e

corp, interacts with a high resolution entity (HRE), e.g., tank. A common MRM appro
12
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is to change the resolution of an entity dynamically to match the resolution of o
interacting entities. This dynamic change is calledaggregation (HREs→ LRE) or
disaggregation(LRE → HREs). Aggregation-disaggregation ensures that entities inte
with one another at the same level by forcibly changing their representation le
[SMITH94]. Typically, if an LRE interacts with an HRE, the LRE is disaggregated into
constituents, which interact at the HRE level. LRE-LRE interactions would be at the L
level. A disaggregated LRE may be re-aggregated so that it can interact subseque
the LRE level. We critique the variations on aggregation-disaggregation [NAT96].

2.2.2.1 Full Disaggregation
Full disaggregation involves disaggregating an LRE into its constituent HREs

Figure 2, LREs L1 and L2 are disaggregated when they interact with an HRE. Typica
full disaggregation occurs when an LRE establishes contact (e.g., sensor, line-of-
with an HRE. Full disaggregation ensures that all entities interact at the s
representation levels. However, full disaggregation is often too aggressive — alth
only some HREs that constitute an LRE may be involved in a particular interaction, al
constituent HREs will be disaggregated. Moreover, full disaggregation leads to c
disaggregation — cascading disaggregation of interacting LREs when one of
interacts with an HRE (e.g., the disaggregation of LRE L3). The large number of entities
instantiated in full disaggregation may place a high demand on system resou
Accordingly, full disaggregation is restricted to small-scale multi-models [CALD95A].

2.2.2.2 Partial Disaggregation
Partial disaggregation attempts to overcome the main limitations of full disaggreg

by disaggregating an LRE partly rather than entirely. As seen in Figure 3, a partitio
created inside LRE L2 such that only a part of L2 is disaggregated into HREs that intera
with the disaggregated constituents of LRE L1; the remaining part of L2 is left as an LRE
to interact with LRE L3. For example, in theBBS/SIMNET [HARDY94] [BURD95]
linkage, aBBS entity that engages aSIMNET entity is partitioned such that one par
disaggregates and fights a disaggregate-level battle in theSIMNETworld, while the other
part remains aggregated and fights aggregate-level battles in theBBS world.

As seen in Figure 3, partial disaggregation has the potential to control c
disaggregation. This potential depends on how easily a partition can be constructed
an LRE. The criteria for constructing the partition must be chosen carefully to pre
partial disaggregation from degenerating into full disaggregation.

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 2: Full Disaggregation

HRE LRE
LRE

LRE
L2L1L1 L2

L3L3
13



ined

e, a
are

to the
ties of
cally

en an

it to
of the

n in
are

Es of
hicle
in an
t be
since
HRE
2.2.2.3 Playboxes
A common aggregation-disaggregation variant is to demarcate a pre-determ

region of the simulated domain, called aplaybox, within which only HREs can participate
[KARR94]. Conceptually, the playbox may be defined in any domain, for exampl
spatial domain such as a simulated battlefield. Entities inside the playbox
disaggregated while those outside remain aggregated. An LRE that crosses in
playbox must be disaggregated; likewise, when all the disaggregated constituent enti
an LRE leave the playbox, they are aggregated into the LRE. The playbox is typi
static in terms of location and boundaries, although it can be dynamic.

Playboxes may force entities to disaggregate unnecessarily, for example, wh
entity enters a playbox but does not interact with others in the playbox (e.g., LRE L2 in
Figure 4). Furthermore, thrashing can occur when the trajectory of an entity causes
enter and leave the playbox rapidly. Cross-level interactions across the boundary
playbox (e.g., interactions between the disaggregated L2 and LRE L3 in Figure 4) must be
addressed separately. Additionally, static playboxes artificially constrain the regio
which LREs and HREs may interact meaningfully. Projects that use playboxes
Eagle/BDS-D  [STOBER95], Abacus/ModSAF  [COX95] andAIM [SEIDEL95].

2.2.2.4 Pseudo-Disaggregation
Consider a situation where an HRE requires the attributes of the constituent HR

an LRE but does not interact with them. For example, an Unmanned Airborne Ve
(UAV) may obtain aerial pictures that are processed for details of entities observed
area. Since LREs are a modelling abstraction, any LRE in the UAV picture mus
depicted as its constituent HREs. In this case, disaggregating the LRE is wasteful
only a perception of the constituent HREs is required. In pseudo-disaggregation, an
receives low-resolution information from LREs andinternally disaggregates the

LRE

LRE

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 3: Partial Disaggregation

HRE LRE
LRE

LRE

L2

L1L1
L2

L3L3

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 4: Playbox

HRE LRE
LRE

LRE

L2

L1L1
L2

L3L3

LRE
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information to obtain high-resolution information. For example, in Figure 5, the UAV is
HRE that pseudo-disaggregates LREs L1 and L2. Pseudo-disaggregation is applicab
when the interaction is unidirectional, i.e., L1 and L2 do not interact with the UAV. The
algorithms used by the UAV to disaggregate L1 and L2 locally must be similar to the ones
L1 and L2 would use to disaggregate themselves, if required. Each HRE must incorp
rules to disaggregate every LRE in the simulation. Pseudo-disaggregation is employ
JPSD CLCGF [CALD95B], TACSIM/CBS [SMITH95], Eagle/BDS-D [STOBER95],
ALSP [WEAT93] and others [ALLEN96].

2.2.3 Variable Resolution Modelling
In Davis’s Variable Resolution Modelling (VRM), designers construct families

models that support dynamic changes in resolution [DAVIS92] [DAVIS93]. For example, a
coarse model of weather prediction may include season and geographical locati
model at a finer resolution may include temperature variations, cloud patterns and
directions. A model at yet finer resolution may include rates of temperature changes,
of temperatures and so on. Designing with VRM in mind facilitates the constructio
models that can execute at any desired level of resolution.

VRM involves building tunable process hierarchies, while MRM involves mak
multiple models execute jointly. It is possible for a simulation to incorporate b
philosophies. For example, in a multi-resolution simulation, various aggregate-leve
disaggregate-level entities may interact with one another. Users may vary the resolut
which the simulation proceeds. There are two aspects to this variability: one,
interactions among entities, which is our focus, and two, the resolution of simula
processes, which is Davis’s focus. We address issues that arise when aggregat
entities interact with disaggregate-level entities. Davis addresses issues that arise
one wishes to observe phenomena such as invasions or stratagems at variable res
Designers may describe the movement of a single tank either by a very high-level pr
or by low-level sub-processes that involve factors like fine-grained terrain conditions
availability of fuel. Here, the motion of the tank is a VRM process, but the interaction
the tank with other tanks or platoons is an MRM issue.

VRM is related to MRM because a process at multiple resolution levels is likely
require multiple representations. Many VRM researchers argue for the existenc
multiple resolutions [DAVIS98] [HARSH92] [HILL 92A] [HILL 92B] [HORR92]. However, in
VRM, users are expected to transition among models during execution rather than ex
multiple models concurrently. VRM complements MRM; the relationships amo

LRELRE

FIGURE 5: Pseudo-disaggregation

HRE LRE
LRE

LRE
LRE

LRELRE

LRE
LRE

LRE
LRE

HRE

L1 L2 L1 L2
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hierarchical resolution levels for a process are mapping functions that translate attr
among multiple representations.

2.3 Maintaining Consistency among Concurrent
Representations

We presentUNIFY briefly in order to discuss work that has influenced our approach
MRM. UNIFY includes the concept of a Multiple Representation Entity (MRE) which i
technique to maintain concurrent representations based on four fundamental observ
about MRM [REYN97]. MREs are internally consistent and interact at multip
representation levels concurrently. A Consistency Enforcer (CE) consisting of an Attr
Dependency Graph (ADG) and application-specific mapping functions maint
consistency among multiple representations in an MRE. An Interaction Resolver
based on our taxonomy of interactions resolves the effects of dependent conc
interactions [NAT99]. MREs reduce simulation and consistency costs [NAT97].

Determining whether a multi-model is satisfactory is ultimately a form of the Tur
test [TURING50] because only end-users can determine whether the multi-model m
their requirements. Crucial to a multi-model is the effective joint execution of
constituent models. We believe effective joint execution can be achieved by mainta
consistency among concurrent representations. Consistent concurrent represen
enable consistent concurrent behaviour since behaviour is influenced by state [HOP79].
Approaches like Temporal Logic of Actions support the notion that behaviour
influenced by state [LAM94] [ABADI95]. The definition of consistency is application
dependent. For some applications, consistency may be bi-modal (i.e., the represen
are consistent or inconsistent), whereas for others it may be multi-modal (i.e.
representations are consistent to some degree). For yet other applications, consisten
be similar to determining the effectiveness of a real-time system that schedules
according to their deadlines and their expected values [BURNS98].

Dependency graphs similar to our ADGs have been used to capture cause-
relationships in Petri Nets [PETER77] [PETRI62], dataflow models [DENNIS80] [ACK82]
[DAVIS82] [GAJSKI82] [GRIM93], object-oriented design [RUM91] [SHLAER92] and
logical time systems [LAM78]. Since attribute relationships can be viewed as constra
[ALLEN92] [HILL 92A] [HORR92], a CE may be implemented as a constraint solv
Typically, a constraint solver operates in the Herbrand universe [JAFFAR94] [SARAS91].
Although constraint solving in the Herbrand universe can be complex [FRÜH92A]
[FRÜH92B] [V AN96], constraint solving in other domains can be simplified [MARR93]
[GARCÍA93] [FREE90] [JAFFAR92] [CORMEN89]. A CE may be implemented as a set o
mediators. The relationships among attributes at multiple representation levels m
realized by mediators, which capture behavioral relationships in complex sys
[SULL94]. A CE may be implemented as an attribute grammar, which is a mean
propagating changes among dependent attributes [KNUTH68] [KNUTH71] [REPS84]
[BESH85] [DEMERS85] [REPS86] [HOR86].

Interactions are common in many domains, for example, database transaction
operations [ESWA76]; processor interrupts; cache operations [HENN96]; reads and writes
to shared memory in parallel processing systems; operations, events and actions in
oriented and process modelling [RUM91] [SHLAER92] [ALHIR98]; method invocations and
16
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function calls in object-oriented systems; messages in distributed processing system
logical time systems [LAM78]; accesses to a blackboard [ERMAN80]; and exceptions in
programming languages [GOOD75] [BARNES80] [LISKOV79] [STROU91] [YEMINI85].
Resolving the effects of interactions, transactions, events or operations that overlap in
is a well-known problem. The effects of concurrent interactions in MRM are simila
race conditions. In both cases alaissez-faireapproach can lead to unpredictable, and oft
incorrect, effects. Many synchronisation primitives have been proposed to eliminate
conditions, such as locks, semaphores, barriers and monitors [MAD74] [SILB91]
[TANEN92] [BRINCH78]. These primitives lead to policies that resolve concurrence
curbing it, i.e., concurrent operations are transformed into non-concurrent operations
if they should not be transformed this way.

A traditional policy for resolving concurrent events, operations, transactions
interactions is serialization — imposing an order on them [ESWA76] [HAER83].
Serialization is often a valid policy when the concurrent events or transactions
logically independent. Traditionally, database systems serialize independent transa
[BERN81] [PAPA86] [BRAHMA90]. Cache coherence models also serialize independ
operations on cache blocks [HENN96] [ARCH86]. Object and process modelling
techniques either require that one action execute in a state at a time or recom
partitioning the states in which concurrent events can occur and then reflecting the e
of those events simultaneously [ALHIR98] [RUM91] [SHLAER92]. Either approach assume
the concurrent events are independent. In logical time systems such as Lampor
[LAM78], virtual time [JEFF85], vector clocks [MATT89], PDES [FUJI90] and isotach
systems [WILL 93], independence is tied to a notion of concurrence, i.e., two events
assumed independent if it cannot be determined that there exists a cause
relationship among them.

The effects of some concurrent interactions may not be captured by any serial o
For example, the semantics of one interaction may interfere with the semantics of an
interaction such that one or the other or both may be fully or partially excluded, igno
delayed or even enhanced. Some database schemes utilise semantic information
transactions to reorder concurrent transactions, possibly non-serializably [BADRI92]
[BARG91] [GARCIA83] [KORTH88] [LYNCH83] [MUNSON96] [WEIHL88] [THOM98].
However, even these approaches assume that the interactions are logically indepe
Some concurrent interactions may be logically dependent, i.e, theirconcurrentoccurrence
is a factor in determining their effects. We classify such interactions and evaluate
approach based on criteria for a good taxonomy [AMO94] [HOW97].

After considering specification methodologies such as DFDs, PERT charts, IDEF
UML [A LHIR98] [FOWLER97] [TEXEL97], OOA [SHLAER92] and Rumbaugh’s Object
Modelling Techniques [RUM91], we chose the High Level Architecture’s Object Mod
Template (OMT) [OMT98] as a base for presenting our techniques in a manner use
designers of multi-models. OMT permits designers to specify object classes
interactions [JPSD97] [JTFP97] [RPR97].

2.4 Chapter Summary
A number of domains employ some form of multi-representation modelling (MR

with varying degrees of success. We presented some MRM applications and summ
17
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their strengths and deficiencies using the metrics of multi-representation interactions
multi-representation consistency (R2) and cost-effectiveness (R3). Common appro
for MRM involve executing the most detailed model or transitioning from one mode
another. These approaches can make the multiple models inconsistent and incu
costs. Maintaining consistent representations of multiple models can be more effe
than alternative approaches to MRM. We explore that thought in subsequent chapte
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Multi-Representation Modelling (MRM) is a means of capturing the combin
semantics of jointly-executing models. The joint execution of multiple models brings
issues of conceptual and representational differences among the models. MRM inv
the resolution of such differences. MRM includes but is not restricted to models tha
executed as computer programs, called simulations. In this chapter, we lay the found
for discussing our framework,UNIFY, by defining key concepts such as mode
representation and interactions. We state and justify assumptions we make in our wo
describe our evaluation strategy.

3.1 Model
Modelling is a way to study a phenomenon without undertaking the phenome

itself. A modelcaptures the semantics of selected concepts, objects and processe
phenomenon in terms of other well-defined concepts, objects and processes. Objec
processes in a phenomenon are calledentitiesin a model. Therepresentationof an entity
is a means of describing the entity and its properties. The representation of a model
union of the representations of entities. Anything that is not part of the model is part o
model’s environment. An attribute is an element of the representation of an entity th
captures a property of the entity. Arelationshipbetween two attributes indicates how th
value of one attribute changes when the value of the other attribute changes. In a va
consistent model, the relationships among attributeshold, i.e, the values of attributes
change in accordance with the relationships among them. Therefore, for each relatio
there must exist functions that translate changes in one attribute to changes in other r
attributes. At a given instant of time, the values of the attributes and the relations
among the attributes reflect the phenomenon being modelled.

A model may change over time when the phenomenon it models changes. The st
a model is a set of values such that each member is a well-defined value assigned
attribute. When the state of a model changes, the values assigned to its attribute
19
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change, although the relationships among attributes continue to hold. Changes in at
values are caused by interactions. Aninteractionis a communication between entities. A
interaction is initiated by an entity called thesender, and directed towards an entity calle
the receiver. The sender and receiver may be part of the same model, in which cas
interaction is internal. Either the sender or the receiver may be part of the environme
another model, in which case the interaction is external. We do not need to differen
between internal and external interactions. Theeffectsof an interaction are the change
caused by the interaction to the sender and receiver — typically, to their attributes
define interactions more rigorously in §3.2.

The preceding informal notions are characteristic of what model designers rout
assume. Now, we take a more formal view based on Object Modelling Techn
[RUM91], Object Oriented Analysis [SHLAER92], Object Model Template [OMT98] and
Unified Modelling Language [ALHIR98] [FOWLER97]. Let Repbe the set of all attributes
of all entities in a model. LetRelbe the set of all relationships that hold in the model. Ea
relationship r ∈ Rel is a mapping between sets of attributes belonging toRep, i.e.,
r: P → Q, whereP, Q ⊆ Rep. Let Int be the set of interactions whose sender, receiver
both are part of the model. We define a model as a tuple of representations, relation
and interactions.

Our model is similar to an object model in Object Modelling Technique (OMTR)*. In
OMTR, the object model describes the structure of objects in the system: their ide
attributes, mutual relationships and operations.Repcorresponds to the set of identities an
attributes of OMTR objects.Rel corresponds to the set of relationships among OMR
objects. Int corresponds to the union of operations, events and actions as define
OMTR. An OMTR object operation refers to an interaction for which the receiver is
same OMTR object that defines the operation. In OMTR, a dynamic model is a state
diagram describing those aspects of the system concerned with time and the sequen
operations. External stimuli that may change the model are called events in OMTR. In
other words, OMTR events are interactions for which either the sender or receive
outside the model. Finally, in OMTR, a functional model describes changes within ea
state of the state diagram in the dynamic model. The changes within a state are
actions in OMTR. OMTR actions are interactions for which the sender and receiver m
not be defined in terms of OMTR objects; the sender and receiver both are the “system

Our model is similar to an information model in Object Oriented Analysis (OOA).
OOA, the information model consists of objects, object attributes and relationships am
objects.Repcorresponds to the set of OOA objects and their attributes.Relcorresponds to
the set of relationships among OOA objects. An OOA state model is a state diagra
which a transition from one state to another is caused by an OOA event. A process m
in OOA describes changes within each state of the state diagram in the state model.
changes are called actions, and are interactions for which the sender and receiver b
the “system”.Int corresponds to the union of events and actions as defined in OOA.

* Rumbaughet al use the acronym OMT for Object Modelling Technique. To resolve a name
conflict with the High Level Architecture Object Model Template, we refer to Rumbaugh’s
Object Modelling Technique as OMTR and the HLA Object Model Template as OMT.

Model Rep Rel Int, ,〈 〉=
20
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In the High Level Architecture [AMG95], models are specified using the Obj
Model Template (OMT). OMT enables a designer to specify class hierarchies for obj
attributes of classes, interactions and parameters of interactions.Repcorresponds to the
set of OMT object instances along with their attributes. OMT enables specify
interactions for which the sender and receiver are distinct OMT object instances, bu
interactions for which either the sender or the receiver is outside the model or interac
for which the sender and receiver are the same OMT object instance.Int includes all these
interactions, and hence is a superset of the set of OMT interactions. OMT does not in
specifications for relationships among objects.

Our model is similar to a model in Unified Modelling Language (UML). In UML,
model consists of entities, relationships among entities and interactions among en
Repcorresponds to the set of UML objects and their attributes.Relcorresponds to the se
of links and associations among UML objects.Int corresponds to the union of scenario
interactions and object operations as defined in UML. A structural model in U
describes the static behaviour of a model, whereas a behavioral model describ
dynamic behaviour of the model.

All of the above models, including ours, assume thatRep≠ ∅. If Rep= ∅, then
Rel= ∅ as well. Rep≠ ∅ indicates that representation exists for a model. IfRep≠ ∅,
Rel= ∅ describes a model in which attributes are unrelated.

When a modelexecutes, it simulates the progress of the phenomenon being model
implying the passage of time. Accordingly, when a model executes, time become
integral part of the model. We define a model at a particular timet as:

As a model executes, its state and the relationships among attributes may ch
These changes may happen continuously; however, for most practical executio
models, these changes happen at discrete times. Discretizing time is a common tec
in model execution. Accordingly, there exists a sequence of timesT = (t0, t1, t2, …), such
that at eachti, the representation and relationships inModel are defined. At other times,
i.e.,∀tj ∉ T, Model(tj) may be undefined or may be the same asModel(ti) whereti ∈ T and
ti is the largest instant inT such thatti < tj. The individual times inT may be regarded as
observation times at which the model may be verified for consistency.T is monotonically
increasing. The interval between two consecutive times is atime-step, denoted by [ti, ti+1],
where ti, ti+1 ∈ T. The durations of time-steps in a particular model may vary, i
∀ti, ti+1, tj, tj+1 ∈ T, i ≠ j, it is not guaranteed thatti+1 − ti = tj+1 − tj.

The execution of a model on a computer is called asimulation. A simulation is a tuple
of the representation, relationships, interactions and observation times for that mode

We define representation and relationships for model execution.RepSeqandRelSeq
are the sequences of states and relationships that hold during model execution.

Rep(t) is a set of values assigned to attributes inRepat timet, i.e.,Rep(t) is the state of
the model at timet. Rel(t) is the set of relationships that hold at timet. A relationship

Model t( ) Rep t( ) Rel t( ) Int t( ), ,〈 〉=

Simulation Rep Rel Int T, , ,〈 〉=

RepSeq Rep t0( ) Rep t1( ) Rep t2( ) …, , ,( )=

RelSeq Rel t0( ) Rel t1( ) Rel t2( ) …, , ,( )=
21
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r ∈ Rel, r: P → Q, P, Q ⊆ Repholds at all observation times, i.e.,∀t ∈ T, P(t) → Q(t),
whereP(t), Q(t) ⊆ Rep(t). A dependencyis an indicator of a relationship between tw
attributes. Thebehaviour of a modelis the sequence of states of that model [ABADI95]
[LAM94] [HOP79]. Consider two modelsA and B that have the same representatio
relationships and interactions. If attributes inA andB have different sequences of values o
the same sequences of values but at different times, thenA and B have different
behaviours. The sequence of states for an entity is a subset of the sequence of sta
model, i.e., thebehaviour of an entity is a subset of the behaviour of the model.

3.2 Interactions
In most models, entities and the environment exchange information with one an

or influence one another. Models do not execute in isolation; typically, stimuli from
environment may influence behaviour of a model, and conversely, a model may gen
stimuli that affect the environment. Aninteraction is a communication that causes
change in the behaviour of its sender or receiver or both.

Entities cause a change in the behaviour of one another by means of interactio
other words, interactions cause a change in the sequence of states of entities. We
interactions with one sender and multiple receivers as multiple instances of an intera
from one sender to one receiver. An interaction that causes a change in the state
receiver changes the receiver’s behaviour. Moreover, an interaction that does not c
its receiver’s state may well cause a change in behaviour. A receiver must eva
whether the interaction affects it or not and apply the changes caused by the interac
necessary. The evaluation and consequent action of the receiver take a finite, no
amount of time. Thus, the behaviour of the entity given the occurrence of an interacti
different from the behaviour of the entity if that interaction never occurred. An interac
that changes only the relationships in a model will cause the state of the model to ch
as well because of the changed relationships. We do not differentiate between intera
that change the state and interactions that change the relationships in a model.

Interactions may cause changes to the values of attributes. The semantics
interaction and the dependencies among attributes determine the effects of an inter
When the changes caused by an interaction are applied to individual attributes
interaction takes effect. For an interactionI, I.affectsis the set of tuples of attributes an
changes to values of attributes caused by the semantics ofI. If I causes only a read to an
attribute value, the attribute is not inI.affects. If I causes a write to an attribute value, th
attribute and its changes are inI.affects. I.affects+ is the set of tuples of attributes an
changes to attributes dependent on the attributes inI.affects. I.affects∗ is the set of
attributes transitively changed byI, i.e.,I.affects∗ = I.affects∪ I.affects+.

Concurrent interactionsare those interactions that occur during overlappi
simulation time intervals. Interactions that occur one after another, i.e., do not overl
time, aresequentialinteractions. In logical time systems, two interactions are concurren
one does not “happen-before” the other [LAM78]. However, by this definition, interactions
that occur at different times may be concurrent. In applications involving databa
caches and shared resources, two interactions are concurrent if they occur at overl
times. We consider interactions as concurrent if they occur during the same time-step
definition of concurrence may exclude some concurrent interactions of logical
22
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systems, but includes concurrent interactions in databases and caches. Interactio
occur at the same real time are simultaneous. In practical models, time is discret
continuous. Therefore, while real time-steps are of zero duration, time-steps in pra
models are of non-zero duration. Thus, many interactions that are not simultaneou
happen to occur during the same time-step will be considered concurrent. The “
simultaneity” introduced by concurrent interactions may be reduced by a finer granu
of time within a model.

Concurrent interactions may be dependent. Adependent interactionis one whose
effects are predicated on the occurrence of another interaction. Anindependent interaction
is one that is not dependent on any other interaction. For example, two interactions m
related by cause and effect, i.e., one interaction causes the other. In such a case, the
interaction is independent of the latter, but the latter is dependent on the for
Concurrent interactions may be dependent solely on account of their concurrence,
the interactions were not concurrent, they would be independent.

With our definition of interactions, we defineIntSeq as a sequence of sets o
concurrent interactions. Each set contains interactions that occurred during one time
Int(ti) is the set of interactions that occur in time-stepti. Int(ti)k is thekth interaction that
occurs in the time-stepti. No ordering is implied byk; it is used solely to distinguish one
interaction from another in that time-step.∀ti ∀k, Int(ti)k ∈ Int. Int(ti) consists ofni+1
interactions, i.e.,Int(ti) = ni+1. I • J indicates thatI andJ are concurrent interactions.

Concurrent interactions may cause concurrent changes to entities. Let the effect
interactionInt(ti)k on a state of a model be the changeE(Int(ti)k). E(Int(ti)k) is the set of
changes inInt(ti)k.affects∗. Applying the effect of an interaction is equivalent to computin
changes to attribute values caused by the interaction, i.e., applying the effect of intera
Int(ti)k on the representationRep(ti) is equivalent to computing a function
F(Rep(ti), E(Int(ti)k)). Applying the combined effects of all the interactions in one tim
step results in the state of the model at the next time-step.

Applying the effects of concurrent, possibly dependent, interactions is calledresolving
the effects of the interactions. LetE(I • J) denote the concurrent effects of interactionsI
and J, and E(I) ◊ E(J) denote their sequential effects. Concurrent interactions can
resolved in different ways including, but not limited to, applying the effects of interacti
in an arbitrary order. When interactions are independent, their effects when concurre
indistinguishable from their effects when sequential.

The effects of concurrent independent interactions can be resolved by applyin
effects of individual interactions one after another. This policy for resolving the effect
concurrent interactions is calledserialization. If it can be determined that at all time-step
concurrent interactions are independent, then serialization is a valid policy for reso
the effects of concurrent interactions. When interactions are dependent, their effects
concurrent may not be the same as their effects when sequential. The effects of dep

Int ti( ) Int ti( )0 Int ti( )1• …• Int ti( )ni
•{ }=

IntSeq Int t0( ) Int t1( ) Int t2( ) …, , ,( )=

Rep ti 1+( ) F Rep ti( ) E Int ti( )( ),( )=

E Int ti( )0 Int ti( )1• …• Int ti( )ni
•( ) E Int ti( )0( ) E Int ti( )1( ) … E Int ti( )ni

( )◊ ◊ ◊=
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concurrent interactions may be predicated on the occurrence of one another durin
same time-step. In such cases, serialization may resolve the effects of such intera
incorrectly; other policies for resolving the effects are necessary.

3.3 Multi-models
Multiple models of the same phenomenon may execute jointly with one ano

Simple, well-designed models executing jointly may capture all the facets required
particular study of a phenomenon without a designer having to construct one mode
captures exactly those facets. Given that the multiple models are simplifications o
same phenomenon, entities common to the models must be correlated or made con
However, correlating the entities can become a very significant problem if the mo
make different assumptions about the processes, objects, environment, the rate of pr
of the phenomenon and the accuracy at which the phenomenon is mod
Inconsistencies among models may undermine the reasons for executing them joint

We use the termrepresentation levelto describe the level of abstraction of a model.
some models are compositions/decompositions or abstractions/refinements of one a
their representation levels are also calledresolution levelsor resolutions. An aggregate
model is a relatively low-resolution (high-abstraction, low-decomposition) mod
whereas a disaggregate model is a relatively high-resolution (low-abstraction,
decomposition) model. AHigh Resolution Entity(HRE) is an entity at a low level of
abstraction (high decomposition), and aLow Resolution Entity(LRE) is an entity at a high
level of abstraction (low decomposition). Classification of an entity as an HRE or L
depends on its resolution level relative to other relevant entities. The resolution levels
a hierarchy, with the highest level being the most abstract or most aggregate one, a
lowest level being the most refined or most disaggregate one.Aggregation is the
composition of a collection of HREs into a single LRE, anddisaggregationis the
decomposition of an LRE into its constituent HREs.

Multi-representation modelling(MRM) is the joint execution of multiple models of
the same phenomenon. We call the union of several models of the same phenome
multi-model. A multi-model may consist of several models; however, for ease
exposition, we will consider an example multi-model consisting of two models. IfModelA

and ModelB are two models of the same phenomenon, then a multi-modelModelM

constructed from them is defined as:

RepA andRepB are calledconcurrent representations. We constructRepM by including
all of the attributes inRepA andRepB, after disambiguating name conflicts. For an attribu
a, a ∈ RepA ∨ a ∈ RepB ≡ a ∈ RepM.

ModelM RepM RelM IntM, ,〈 〉=

RepM RepA RepB∪=

RelM RelA RelB Relcross model–∪ ∪=

IntM IntA IntB∪=
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3.3.1 Cross-model Relationships
Relcross-modelis the set of relationships required in order to make the multiple mod

consistent with one another. SinceModelA andModelB model the same phenomenon, the
may represent overlapping sets of objects or processes. In such a case,RepA and RepB

must be correlated. Correlating the representations in a multi-model is calledconsistency
maintenance. If Relcross-model= ∅, thenModelA andModelB are independent of each othe
because their representations are not related to each other. Then, consistency main
reduces to ensuring that the individual models are self-consistent. IfRelcross-model≠ ∅, the
representations of the models are related. A cross-model relationshipr ∈ Relcross-modelis a
mapping r: P → Q such that P ⊆ RepA ∧ Q ⊆ RepB ∨ P ⊆ RepB ∧ Q ⊆ RepA. We
constructRelM by including all of the relationships inRelA, RelB andRelcross-model, i.e., for
a relationshipr, r ∈ RelA ∨ r ∈ RelB ∨ r ∈ Relcross-model≡ r ∈ RelM.

3.3.2 Mapping Functions
A mapping functionassociated with a relationship among attributes translates

changes in one attribute to changes in related attributes in such a manner th
relationship continues to hold. We assume that designers can construct appro
mapping functions for each relationship inRelcross-model. Mapping functions encode
application-specific semantics about the relationships among representations. Ma
functions are necessary for any MRM approach, including ours.

A requirement for mapping functions is that at every observation time, they m
ensure that a relationship holds by translating value spaces or changes in valu
attributes, as necessary.∀r ∈ Relcross-model, r: P → Q, P, Q ⊆ RepM, a mapping functionf
may exist such that, ifP(ti) → Q(ti) holds, thenP(ti+1) → Q(ti+1) holds. For example,f
may be of the form∀ti, ti+1, Q(ti+1) = f(Q(ti), P(ti), ∆P(ti)), where ∆P(ti) is the set of
changes to values inP(ti). Since f ensures thatr holds ∀ti ∈ TM, f must complete its
computation within a time-step. In other words, a lower-bound value for an observa
time ti+1 is the sum of the value ofti and the time taken forf to complete.

All mapping functions must becomposable. If mapping functionsf and g translate
attribute setsP to Q andQ to R respectively, invokingf andg in succession must translat
P to R. Attribute relationships are transitive, i.e.,P → Q ∧ Q → R ⇒ P → R. Composable
mapping functions capture transitive dependencies among attributes. If mapping fun
are composable, the effects of an interaction propagate to all dependent attributes.

Mapping functions must bereversible. Consider mapping functionsf and g:
∀ti, ti+1, ti+2, Q(ti+1) = f(Q(ti), P(ti), ∆P(ti)) andP(ti+2) = g(P(ti+1), Q(ti+1), ∆Q(ti+1)). If no
interactions occur during the time-steps [ti, ti+1] and [ti+1, ti+2], then invokingf andg in
succession must result inP(ti+2) = P(ti) within tolerable approximation. Reversibility is
desirable for mapping functions because it ensures that a change does not propaga
to an attribute. Therefore, ifQ changes as a result of a change toP, then reversible
mapping functions ensure thatP does not change again as a result of the change toQ.

3.3.3 Time-Steps
We assume that the time-steps ofModelA and ModelB are compatible.Compatible

time-stepsmeans that ifTA, TB andTM are the sequences of times associated withModelA,
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ModelB andModelM respectively, thenModelA andModelB are defined for all times inTM.
TM is constructed by interleavingTA andTB. Accordingly, times that are common to bot
TA andTB (albeit labelled differently) are included inTM only once. IfTM = TA ∪ TB, then
ModelA must be defined for all times inTB andModelB must be defined for all times inTA.
If TM = TA ∩ TB, thenModelA andModelB are defined for allt ∈ TM. Figure 6 shows two
ways to constructTM.

No matter howTM is constructed, some interactions in each ofIntA andIntB must be
re-organised as if occurring in time-steps defined by times inTM. For example, let
t0

A, t1
A, t2

A ∈ TA. If t1
A ∉ TM, then interactions occurring in the time-step [t1

A, t2
A] must

be re-organised as if occurring in [t0
A, t2

A]. This re-organisation increases “fals
simultaneity”. In like fashion, lett0

A, t1
A ∈ TA, and t0

B ∈ TB such thatt0
A < t0

B < t1
A. If

t0
A, t1

A, t0
B ∈ TM, then interactions occurring in [t0

A, t1
A] must be re-organised into two

sets, one occurring in [t0
A, t0

B], and the other occurring in [t0
B, t1

A]. This re-organisation
decreases “false simultaneity”. IfTM = TA = TB:

3.4 Evaluation
In this dissertation we will show howUNIFY, our approach for consistency

maintenance among concurrent representations satisfies R1, R2 and R3, our requir
for effective MRM.

A model must satisfy its users’ requirements. Examples of user requirements ar
accuracy of the model, the detail captured by the model and the rate at which the m
progresses. The most accurate model of a phenomenon is the phenomenon itself; pr
models are simplifications that may fail to imitate the phenomenon in some respects
Turing test [TURING50] for a model is whether end-users are satisfied that the mo

TA

FIGURE 6: Possible compatible time-steps

TB

t0
B t2

Bt1
B t3

B …

t0
A t2

At1
A t3

A …

TM = TA ∪ TB

t0
M t3

Mt1
M t4

M …

TM = TA ∩ TB

t0
M t2

Mt1
M …

RepSeqM ti TM∈∀ RepA RepB∪( ) ti( )( )=

RelSeqM ti TM∈∀ RelA ti( ) RelB ti( )∪( )( )=

IntSeqM ti TM∈∀ IntA ti( ) IntB ti( )•( )( )=
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captures the facets required for study. Likewise, for a multi-model, end-users
determine whether it meets their requirements. A multi-model can satisfy its us
requirements if its constituent models satisfy the users’ requirements and the
execution of the multiple models is effective.

Satisfactory multi-model⇒ Satisfactory models+ Effective joint execution
Our work concentrates on effective joint execution of multiple models. In contrast, OMR,
OOA and UML guide a designer in constructing a model to meet users’ requirement

Requirements for models and multi-models must indicate how users can be sat
For training models, training experts may indicate satisfaction by assessing how we
model reflects reality. A term used often in the training community isfair fight, which
signifies an engagement in which no party can deduce and utilize information abou
training system (that they could not deduce in a real situation) to gain an unfair advan
For example, due to an artifact of simulation, an aircraft may be perceived for some
after having been destroyed. This artifact could be employed to draw additional fire
thus force consumption of ammunition without sustaining losses. Similarly, crews in
simulators have been reported to identify other tanks as being controlled by comp
generated forces rather than by humans by tracking their movements. The fair
concept is relevant to modelling since models approximate reality and there is poten
exploit knowledge of these approximations. In MRM, where a basic theory is
developing, arbitrary design choices may violate the fair-fight concept.

It is important to understand the difference between an unfair fight and what mili
analysts call thefog of war. The fog of war refers to circumstances — typically larg
numbers of concurrent events — that make it difficult to maintain a coherent picture o
battle, leading to unexpected events. Unfair fights, on the other hand, result
shortcomings in the design of a system and have no counterparts in a rea
phenomenon. Often, inconsistencies in a model are assessed incorrectly as being a
the fog of war. While creating simulations that pass the Turing test is difficult,
important goal of designers should be to reduce the discrepancies that cause a sim
to fail the test [PETTY94].

Our work concentrates on the effectiveness of joint execution of multiple models.
approach, calledUNIFY, is meant to guide designers towards effective MRM. Whether
MRM approach is effective or not can be evaluated on the basis of how well it meets
requirements, listed in §1.3 and below:

• Multi-representation Interaction (R1) : The multi-model must permit concurrent
interactions at multiple representation levels.

The interactions that occur inModelM must be the interactions that could occur eith
in ModelA or in ModelB, i.e., IntM must beIntA ∪ IntB. If IntM meets this condition, it
means that the joint execution of both models does not restrict the execution of e
model. Effective joint execution of multiple models requires that entities at differ
representation levels initiate and receive interactions that may cause their behavio
change. Many MRM approaches do not satisfy R1. For example, in selective viewin
ModelB is the most detailed model, then the only interactions permitted inIntM are the
ones inIntB. In aggregation-disaggregation, in each time-step ofTM, either interactions in
IntA or interactions inIntB, but not both are permitted. In Chapter 7, we presen
taxonomy for resolving the effects of concurrent interactions in order to accommo
multi-representation interaction.
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• Multi-representation Consistency (R2): The multiple representations must be
consistent with one another.

RelM must hold at all observed times in the multi-model. Moreover, it must be the c
thatRelcross-model≠ ∅, or else consistency maintenance and joint execution are too tr
to be interesting. In Chapter 6, we present a technique for maintaining consistency a
multi-models by showing how to constructRelcross-model. Application-specific mapping
functions associated with each relationship inRelcross-modelmust be supplied by the
designer. The mapping functions are required for consistency among mu
representations. Consistent representations are necessary for the consistent behavi
multi-model since the state of an entity influences its behaviour [LAM94]. Motivating the
choice of finite automata for designing systems, Hopcroftet al. say [HOP79]:

The state of the system summarizes the information
concerning past inputs that is needed to determine the
behaviour of the system on subsequent inputs.

The inputs and state of a finite automaton are interactions and representation
model. Since the multiple representations in a multi-model determine the behaviour o
multi-model, maintaining consistency among the representations is required for effe
joint execution.

• Cost-effectiveness (R3): The costs of simulation and consistency maintenanc
must be low.

Simulation costs and consistency costs tend to be trade-offs, as we will se
Chapter 9. Simulation cost is the expenditure of resources in order to simulate en
possibly at multiple representation levels. Consistency cost is the expenditure of reso
in order to ensure that the multiple models meet consistency requirements. The res
expended may be computational, network or memory. In selective viewing, simula
costs are high whereas consistency costs are low since only the most detailed mo
executed at all times. In aggregation-disaggregation, simulation costs are relativel
whereas consistency costs are high since the representations must be kept consiste
transitioning among models. We measure simulation cost and consistency cost forUNIFY,
selective viewing and aggregation-disaggregation, and show howUNIFY reduces the total
cost of simulation and consistency maintenance.

3.5 Assumptions and Rationale
Our approach for effective MRM,UNIFY, makes some assumptions about jointl

executing models. We have presented these assumptions in context earlier in this ch
we discuss them in detail here.

Existence of representations: A representation exists for an entity and can influence
the behaviour of the entity.

Typical models have representations; most designers consider representing entiti
model natural and intuitive. In some contexts, researchers claim that entities must no
a representation at all. For example, Brooks’s description of subsumptive behavio
autonomous agents involves agents maintaining no representation [BROOKS86]. However,
a representation is beneficial towards an agent’s operation [BRILL96]. Generally, entity
state influences entity behaviour [ABADI95] [LAM94] [HOP79]. Therefore, our assumption
about the existence and influence of representation is reasonable. We have not inves
28
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in any detail the consequences of eliminating this assumption. Davis’s work on vari
resolution process models is closer to a non-representational approach than our
[DAVIS92] [DAVIS98].

Existence of satisfactory models: Individual models meet their users’ requirements.
The problem of linking independently-designed components into a composite sy

is hard enough without the additional complexity of the components falling shor
meeting their individual requirements [ALLEN98]. Simply put, a bad model cannot b
improved by jointly executing it with other models. Accordingly, we limit the scope of o
work to the joint execution of models that meet their users’ requirements.

Existence of mapping functions: There exist mapping functions to translate the
representation of one model to the representation of other models.

Mapping functions are application-specific methods that capture the semanti
relationships among representations. Since capturing these semantics is essen
consistency of a multi-model, mapping functions are necessary for any approach to M
Since mapping functions are application-specific, instead of specifying their sema
we derive requirements for their use from example multi-representation models. Map
functions must translate attribute values and changes to attribute values from
representation to another. Additionally, they must complete their translations in a t
bound manner so that the multiple models appear consistent at all observed times
specifications of consistency and observed times depend on the application.

Existence of policies for concurrent interactions: There exist policies for resolving
the effects of dependent concurrent interactions.

Designers must resolve the intertwined semantics of interactions in order to be a
relate them to one another. Concurrent interactions that are dependent on one anoth
have effects that cannot be captured by serialization or any other straightforward p
Designers must decide beforehand how the effects of dependent concurrent intera
must be resolved and subsequently applied. Without a clear understanding o
semantics of interactions, designers cannot expect any MRM approach to be effe
Therefore, similar policies are necessary for any approach to MRM.

Existence of compatible time-steps: The time-steps at which the models execute ar
compatible.

When multiple models execute jointly, the multiple simulation times must
compatible. Simulation time is a fundamental property of most models. Simulation tim
tied to the progress of the phenomenon being modelled. Simulation time may or ma
be real, logical, linearly-increasing, monotonic or uni-dimensional. If the multiple mod
adopt the same sequences of times, they are likely to be compatible and may be ex
to execute jointly with few problems. However, the greater the variance between
sequences of times among the multiple models, the greater the difficulty of ens
effective joint execution.

Alternative approaches, such as selective viewing and aggregation-disaggreg
cannot guarantee effective MRM even if they make similar assumptions as above be
they continue to violate R1, R2 or R3. Therefore, we believe that our assumption
reasonable for a framework for effective MRM.
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3.6 Chapter Summary
MRM, the joint execution of multi-models, presents users with combined seman

that may not be captured by the independent execution of the multiple models. M
requires designers to invest effort to ensure that the combined semantics meet
expectations. In particular, ensuring that representations of multi-models are cons
when concurrent interactions may occur is crucial for effective MRM.

UNIFY is a framework for designers who require multi-models for their applicatio
Even if designers are capable of constructing individual models that meet their u
requirements, they can find constructing multi-models difficult. Designers can cons
multi-models by ensuring that the joint execution of the multiple models is effective.
approach for effective MRM must satisfy the requirements of multi-representa
interaction, consistency and cost-effectiveness.

In the next chapter, we identify problems with aggregation-disaggregation, a po
approach to MRM. After analyzing why these problems occur, we make some ge
observations about MRM.
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but if he will be content to begin with doubts, he shall end in certaint

— Francis Bacon
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We present four fundamental observations regarding Multi-Representation Mode
(MRM). These fundamental observations are the first of their kind relating to MRM; t
support a framework for addressing MRM issues.

Often, characteristics of models make joint execution difficult. One model may be
lower resolution because its entities are very abstract, whereas another may be at a
resolution because its entities are very refined. Assumptions about objects, e
interactions and environment may be different. The fundamental processes in the m
may have different algorithms because of differences in resolution. The models
progress with different systems of simulation time: discrete-event, time-steppe
continuous. Also, the time-steps at which the models progress may be vastly differe

Often, current approaches to MRM either place too many restrictions on the mode
introduce new problems. For example, selective viewing is too restrictive becau
requires that all representation, relationships and interactions be expressed at the h
resolution level. Aggregation-disaggregation introduces many problems, as we see in

In this chapter, we explore problems in current approaches, and present
substantiate four fundamental observations about MRM. The fundamental observa
we present here are exactly that,observations. Although they are presented informally, w
present strong arguments for their existence. We arrived at these observations
analysing the causes of ineffectiveness in many models. Our observations are funda
because any general solution to the MRM problemmust take them into account. They
address the general ineffectiveness of joint execution of multiple models, the necess
maintaining consistency among concurrent representations of the same entity
dependence among concurrent interactions and temporal consistency. These obser
focus the problem of joint execution to the core problem of how to maintain consisten
the multiple representation levels of a single entity. Our framework,UNIFY, is based on
these fundamental observations.
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4.1 Problems with Aggregation-Disaggregation
Aggregation-disaggregation, a common approach to MRM, ensures that en

interact with one another at the same representation level by forcing one entity
transformed to the level of the other. Typically, if a Low Resolution Entity (LRE) intera
with a High Resolution Entity (HRE), the LRE is disaggregated, i.e., decomposed int
constituents. LRE-LRE interactions would be at the LRE level. A disaggregated LRE
be aggregated so that it can interact subsequently at the LRE level. Aggrega
disaggregation causes simulations to incur considerable resource costs, thus violati
Problems such as chain disaggregation, network flooding and transition latency
unacceptable burdens on the resources needed to run a simulation. Moreover, aggre
disaggregation can cause mapping inconsistencies between levels, thus violatin
[NAT95] [NRC97]. Finally, in most variants of aggregation-disaggregation, the mult
models do not execute truly jointly since the system transitions among models as req
In the following sub-sections, we discuss problems with aggregation-disaggregation

4.1.1 Mapping Inconsistency
Mapping inconsistency occurs when an entity undergoes a sequence of trans

between representation levels resulting in a state it could not have achieved i
simulated time spanned by that sequence. Any scheme in which entities transition be
representation levels (e.g., aggregation-disaggregation) must translate attributes be
levels consistently. The translation should not lead to incorrect or unintended chang
the attributes. Poor translation strategies cause discontinuities or “jumps” in the sta
entities. In Figure 7, when entity L is aggregated to interact with an LRE, the position
its constituent HREs are lost. Subsequently, when L is disaggregated to interact w
HRE, a standard algorithm or doctrine reconstructs the positions of the HREs [CLARK94]
[FRANCE93] [DAVIS93]. However, the reconstructed positions may result in “jumps” in t
constituents of L. In general, mapping inconsistencies arise if the translation strat
utilise outdated, inaccurate or insufficient attribute information.

4.1.2 Chain Disaggregation
Chain disaggregation occurs when a number of entities are forced to disaggr

because a disaggregate-level entity interacts with an aggregate-level entity. Consi
HRE H interacting with an LRE L. Typically, L would be disaggregated to interact with
at the disaggregate level. However, other LREs interacting with L may have
disaggregate, possibly leading to further disaggregations. Figure 8 illustrates the pro

LRE
HRE

LRE

L

HRE

FIGURE 7: Mapping Inconsistency

L
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The interaction between can H and L force all LREs to disaggregate in order to be a
interact at the same level. The forced disaggregation caused by the initial contact is
chain disaggregation or spreading disaggregation [ALLEN96] [CALD95B] [PETTY95]
[STOBER95]. Chain disaggregation causes the number of simulated entities to inc
rapidly. The increased cost of simulating these entities translates to increased lo
processors and the network.

4.1.3 Transition Latency
Aggregation and disaggregation incur time overheads while performing the va

steps involved when entities transition between levels. Examples of these steps are
generation of disaggregate values from aggregate values and initiation of protoco
adjust disaggregate values for specific situations. Transition latency, the time tak
effect an aggregation or disaggregation, can be unacceptably high if these step
complex [ROBKIN92]. High transition latencies are incompatible with real-tim
constraints, for example, in human-in-the-loop simulations, because they may c
perceptual or conceptual inconsistencies. An entity that does not change position du
transition period, and then suddenly undergoes a large displacement at the end
transition period causes a perceptual inconsistency. A conceptual inconsistency m
caused when it takes so long for an entity to disaggregate in order to comply with a re
made by another entity that the request becomes obsolete.

4.1.4 Thrashing
When an entity undergoes rapid and repeated transitions from one level to anot

thrashes. For example, an LRE, L, may disaggregate on commencing interactions w
HRE, H. When H moves out of range, L may revert to the aggregate level. However
varying proximity to L may cause L to change levels frequently, thus incurring
overheads associated with making a level change and raising the costs of simulatio
consistency maintenance. Thrashing depends on the policy that triggers a change o
Thrashing must be addressed by any MRM approach. High transition latencies comp
the problems caused by thrashing because they cause some entities to spend cons
amounts of time just changing levels.

4.1.5 Network Flooding
The network is projected to be a bottleneck in distributed simulations, especially w

models consist of large numbers of entities [PULLEN95] [REDDY95] [HOFER95]. Network

HRE LRE
LRE

LRE
LRE

LRE

H

L

HRE H

L

FIGURE 8: Chain Disaggregation
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resources may be strained by aggregation and disaggregation. Each entity created
disaggregation could be a sender/receiver of messages, thus increasing network
Also, aggregation and disaggregation typically requires the exchange of many co
messages — an overhead that must be incurred every time a change of level occurs
messages can reduce the effective throughput of the network. Frequent changes o
and large numbers of entities may put an unacceptable burden on the network.

4.1.6 Cross-Level Interactions
In many systems, some interactions may span multiple representation levels

example, two entities at different representation levels could engage in combat indir
(as in long-range artillery fire). Disaggregation is not triggered because of the ind
nature of the engagement*. Therefore, the sender and receiver of the interaction are
different representation levels. We refer to such interactions as cross-level interac
Since the participants in cross-level interactions are entities at different represen
levels, it is difficult to reconcile the effects of such interactions. Cross-level interact
occur when requirement R1 is not satisfied.

4.1.7 Summary of Problems with Aggregation-Disaggregation
Often, problems with aggregation-disaggregation occur because designers

convenient rather than correct decisions about the joint execution of multiple mo
Examples of such decisions are: permitting cross-level interactions, permi
interactions only within a playbox and pseudo-disaggregating. When a multi-model g
in terms of the number of its constituent models, the kinds of interactions that entities
receive, or the different scenarios under which the models execute, such decisions ca
to ineffective joint execution. For example, cross-level interactions are difficult
reconcile, playboxes lead to thrashing and pseudo-disaggregation leads to a con
where entities must be able to disaggregate all entities in the model.

An approach for joint execution of multiple models based on correct decision
necessary. Such an approach will avoid the pitfalls of merely convenient decisions
satisfy three basic requirements for MRM: multi-representation interaction, m
representation consistency and cost-effectiveness. This approach must be bas
fundamental characteristics of joint execution. In §4.2, we present four fundam
observations about MRM. These observations highlight fundamental characteristi
joint execution. In Chapter 9, we show how our framework for MRM,UNIFY, satisfies the
three basic requirements for MRM and avoids the pitfalls of other approaches.

4.2 Fundamental Observations
After analysing the causes for ineffectiveness in a number of multi-models, we m

four fundamental observations about the joint execution of multiple models. Th
observations focus on entity interactions, effects of concurrent interactions, depende
among concurrent interactions and time-step differentials. The fundamental observ

* Forcing a disaggregation could lead to chain disaggregation, and is therefore undesirable.
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influence our choice of the techniques that are part ofUNIFY: Multiple Representation
Entities, Attribute Dependency Graphs and a taxonomy of interactions.

4.2.1 Fundamental Observation 1
Two entities must interact at a representation level common to both so tha

semantics of their interactions are meaningful to both. Therefore, the objects
processes corresponding to each entity must be modelled at all the representation le
which the entity can interact. When entities interact at common representation levels
avoid cross-level interactions.

FO-1: For effective joint execution, objects or processes should be modelled a
representation levels at which they can interact.

Consider the joint execution of two models with entities, EA and EB, at different
representation levels LA and LB respectively, as shown in Figure 9. Essentially, FO
states that for most applications, in order to interact with each other, either EA must be
represented at LB or EB must be represented at LA. In other words, for effective joint
execution, a combination of vertical and horizontal links must be followed.

To see why this observation is true, consider a military training simulation. HereA
may be a division of tanks being modelled in a low-resolution simulation while EB may be
a single, self-contained (manned) tank simulator. Typically, division-level engagem
are simulated by equations that take the relative strengths of the engaging partie
account; actual firing of weapons and destruction of individual tanks are not simulate
contrast, individual tank engagements are simulated on the basis of actions taken
parties involved in the engagement (e.g., the human crew of the tank). These in
simulation of detailed actions such as sighting, target acquisition, firing, detonation
damage assessment.

In general, models at different representation levels are designed for different pur
and consequently, have different foci. What is relevant at one level may not be relev
another, therefore may not be modelled there. The crew members inside an individua
simulator expect to see individual targets through their sensors. Presenting them w
aggregated view of a tank division will be ineffective (if visual fidelity of the engagem
is an effectiveness criterion).

Similar incompatibilities arise in other dimensions of resolution such as time
space. Time-steps vary from nanoseconds to minutes. When two models with disp
time-steps are executed jointly, the one with the smaller time-step may interpret a la
response from the other as inaction when in fact, the other will report its action only a
end of its larger time-step. Likewise, terrain representation may vary between mode
simple mathematical mapping function may suffice to translate terrain coordin
between systems. However, sometimes such functions do not exist or are inadequat

EA

EB

LA

LB

FIGURE 9: Fundamental Observation 1
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when one model executes in two-dimensional space while the other executes in
dimensional space). Further, the difference in resolution (e.g., meters versus kilom
can lead to inconsistencies similar to those observed with time-step differentials.

A technique used to resolve these incompatibilities is to providebridges between
representation levels. In the two-level case of Figure 9, a bridge is a diagonal link.
bridges are useful only in special cases; they are not general techniques for effective
execution of multiple models. Pseudo-disaggregation can be such a bridge. For exam
perceiver of an aggregate entity could apply a local translation function to obta
disaggregated view of the aggregate entity. This technique works well as lon
perception is the only interaction — it fails if the perceiver also engages the perceiv
combat since the perceived units do not respond to events (e.g., attack, defend, retre
achieve a completely realistic engagement, the perceived units must respond as
were being modelled as individual entities themselves. Thus, while bridges may suffic
joint execution in some cases, in general, entities must be modelled at the appro
representation levels to achieve the required effectiveness.

Interactions may occur at any level at any time. In order to satisfy FO-1, entities m
either (i) maintain representations at all levels at all times, or (ii) dynamically transitio
the appropriate level as required. We take the first approach. The second app
aggregation-disaggregation, has high associated overheads, as noted in §4.1.

4.2.2 Fundamental Observation 2
The high cost of dynamic transitions between representation levels can be reduc

reducing (i) the cost associated with a single transition, and (ii) the number of transit
The cost associated with a single transition is application-specific. Here, we focu
reducing the number of transitions. Limiting the propagation of transitions, for exam
by controlling chain disaggregation, results in significant reductions in overhead. Idea
transition should be restricted to a single entity and not propagate at all. Restri
transitions implies that entities must be able to resolve concurrent interactions
interactions occurring within simulated periods that overlap) at multiple levels. Resol
concurrent interactions means that the effects of these interactions must be com
without compromising effectiveness.

FO-2: The effects of concurrent interactions at multiple representation levels
must be combined consistently.

In Figure 10, entity EC must resolve concurrent interactions with entities EB and ED in
order to limit the propagation of the transition. Concurrent interactions could be serial
i.e., processed sequentially and atomically. This approach fails in the context of real
interactions whichmust appear to take effect concurrently. Serializing the interactio
removes the appearance of concurrence.

Alternatively, interactions could be processed in parallel and their results comb
Although apparently reasonable, this approach has several pitfalls as well. The sub
of these pitfalls are best explained by an example. Consider the following sce
(Figure 11): LRE1 and LRE2 are two platoons of tanks, engaged in battle. At the sa
time, LRE2 is engaged by two individual tanks — HRE1 and HRE2. The battle between
LRE1 and LRE2 is simulated at the aggregate level while the battle between LRE1, HRE1
and HRE2 is simulated at the disaggregate level. During a particular time-step, L1
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inflicts 50% attrition on LRE2. The 50% attrition may be interpreted as the destruction
two of the four tanks in LRE2. During the same time-step, HRE1 and HRE2 destroy two
tanks in LRE2

†. How should these two results be combined? Depending on the amou
overlap in the two interactions, the final result could be a reduction in LRE2’s strength by
50% (complete overlap), 75% (partial overlap) or 100% (no overlap). For the most
this choice must be made arbitrarily and the result assumed to be realistic. Unfortun
apparently reasonable choices may lead to an unfair fight. The no-overlap choice do
account for the case where LRE1, HRE1 and HRE2 may have fired at the same tanks i
LRE1, whereas the complete overlap choice penalises any co-ordination between L1,
HRE1 and HRE2 in picking targets from LRE2. As another example, consider a time-ste
during which LRE2 expends 75% of its ammunition fighting LRE1. HRE1 and HRE2 also
engage LRE2 during this time-step, causing LRE2 to expend 40% of its ammunition. At
the end of the time-step, LRE2 will have expended 115% of its ammunition!

The problems above occur because the effects of an interaction are com
assuming that the interaction is isolated, i.e., it is the only interaction that occurs in a
step. For some concurrent interactions, assuming they occur in isolation causes
combined effects to be computed incorrectly, leading to ineffective joint execution.

† Typically, platoon-level engagements are specified in terms of percentage attrition, wherea
tank-level engagements are specified in number of tanks lost.

Chain Disaggregation Eliminating Chain Disaggregation

EA EB EC

ED

EA EB

EC

ED

FIGURE 10: Reducing transition overheads by limiting propagation of transitions

LRE1

LRE2

HRE1

Aggregate

Disaggregate

FIGURE 11: Concurrent multi-level interactions

HRE2

level

level
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4.2.3 Fundamental Observation 3
Often, consistency problems

arise during joint execution because
a key property of interactions is
ignored when the interactions are
isolated. That property isinteraction
dependence — an interaction’s
existence or effects depend on
another interaction. Consider the
more detailed view of Figure 11
shown in Figure 12. In a time-step
durationτ, LRE2 interacts with LRE1, reducing the ammunition of a constituent tank (P
by 25%. In effect, P fires at LRE1 duringτ. Also, in τ, LRE2 interacts with HRE1 because
P fires at HRE1. Both interactions involve the firing of a weapon by Pin the same time-
step. Clearly, this is physically impossible (indicated in Figure 12 by tank P having
turrets). By permitting such an outcome, the simulation permits an unfair engageme

The problem arises because two interactions that occur at overlapping simul
times involve a common entity, thus affecting each other’s outcome. The two interac
of interest, the aggregate-level interaction between LRE1 and LRE2, I1, and the
disaggregate-level interaction between tank P in LRE2 and HRE1, I2, both involve tank P
firing. Since P can fire only once,I1 andI2 are dependent. Therefore, the results genera
by applying their effects independently are incorrect.

FO-3: Concurrent interactions may be dependent.

Interactions that overlap in (i) simulation time, and (ii) the set of interacting entit
may be dependent because they can affect the outcome of one another. For exam
Figure 12, one interaction precludes the other. If two interactions that are depende
executed independently, effectiveness will be compromised when the results of
interactions are combined.

4.2.4 Fundamental Observation 4
In §4.2.3, we have shown that the fundamental issue underlying consi

combination of concurrent interactions is dependence among interactions. Time
differentials aggravate the inconsistencies created due to dependency issues
interactions can be dependent if they overlap in time. The greater this overlap, the h
the potential for inconsistency.

FO-4: Time differentials may cause inconsistencies.

We elaborate on the problem of time differentials with a simple example. Let E1 and
E2 be two entities that can change an attributev. For this discussion it does not matte
whether or not E1 and E2 are entities that describe the same object or process. During
time-steps, E1 and E2 send interactions that causev to change; the changes may depend
the previous value ofv. Thus, during each time-step, each entity readsv, performs some
computation and writes tov.

Let the models for E1 and E2 both execute initially with time-steps of equal duratio
i.e., TS(E1) = TS(E2) = τ. Furthermore, we synchronise the executions of E1 and E2 so that

LRE1
LRE2

HRE1

HRE2

P

FIGURE 12: Dependency considerations
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all time-step boundaries for these entities occur at the same time. In Figure 13, eac
represents a time-line for one of the entities. Vertical breaks in the bar denote time
boundaries. It is simple to ensure that E1 and E2 are temporally consistent, i.e., they hav
the same view ofv. At the end of each time-step, we reconcile the changes tov by
computing some function of the effects of E1 and E2. At the start of the next time-step
both E1 and E2 read thesame valueof v, no matter how we resolve the concurrent chang
of the previous time-step.

Now let us assume that we neglected to synchronise the time-steps of E1 and E2. The
shaded areas in Figure 14 denote times when E1 and E2 are temporally inconsistent. The
inconsistency arises because E1 (which lags in terms of time-steps) continues to comput
change tov based on the value read at thestart of E1’s time-step, whereas E2 may have
changedv at the end of E2’s time-step, which occurred before the end of E1’s time-step.
The implications of temporal inconsistency can be different for different applications1
may write a new value forv at the end of its time-step, thus causing E2’s computation to
become “stale”. E1 may discard its computation and read the new value ofv; however, E1
may be forced to do so at the end of every time-step, thus rendering it redundant.

Temporal inconsistency is exacerbated if the durations of E1 and E2’s time-steps are
different. In Figure 15, E2’s time-step duration isτ/5, whereas E1’s time-step duration
remainsτ. At the end of each of its time-steps, E2 writes tov, therefore, for most of its
time-step, E1 uses outdated values ofv. The increase in temporal inconsistency can be se
by the increase in the length of the shaded regions.

If E1 and E2 have equal time-step durations, they can be temporally consis
However, this requirement unnecessarily forces the time-step duration of E2 to beτ, or the
time-step duration of E1 to be τ/5. If a difference in E1 and E2’s views of v at an
observation time changes the behaviour of neither E1 nor E2, then the temporal
inconsistency istolerable. Let δv be a tolerable variance in the value ofv during the time-
step [t0, t5] for E1 (Figure 16). At the end of each time-step [t0, t1], [t1, t2], …, [t4, t5] for
E2, if the value ofv changes by less than±δv, then E1 and E2 are temporally consistent

TS(E1) = τ

FIGURE 13: Time-steps — Equal and In-phase

TS(E2) = τ

TS(E1) = τ

FIGURE 14: Time-steps — Equal but not In-phase

TS(E2) = τ

TS(E1) = τ

FIGURE 15: Time-steps — Unequal and not In-phase

TS(E2) = τ/5
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with respect tov. If during all time-steps E1 and E2 are temporally consistent, then E1 and
E2 execute atcompatible time-steps.

Even if time-steps are made equal, temporal inconsistency may arise if the entiti
not read the same value ofv at the start of each time-step. Consider Figure 17, in wh
some time-steps have been labelled. Suppose E1 modifiesv during the time-step between
t1 andt2 without readingv beforehand. In effect, E1 executes with the value ofv read in the
previous time-step. That value may have been changed by E2 subsequently. Therefore
during the time-step betweent1 andt2, E1 and E2 may be temporally inconsistent.

While proper design of models can remedy temporal inconsistency caused by
such as the last one, temporal inconsistency caused by the previous cases may und
the joint execution of multiple well-designed models. When executing legacy simulat
such as AWSIM/ModSAF, Eagle/BDS-D and BBS/SIMNET jointly, time-step
differentials are common. Low-resolution simulations typically use equations w
coefficients derived from historical data aggregated over periods ranging from se
minutes to days [KARR83] [EPST85]. Hence, time-steps of several minutes to a few ho
are typical for such simulations. On the other hand, high-resolution simulations suc
CCTT/SIMNET tanks execute at the millisecond time-step level [MILLER95]. Resolving
time-step differentials may be a very difficult problem, especially for legacy syste
FO-4 indicates that we must direct future simulation efforts towards solving this prob
if we are to achieve effective multi-representation modelling.

4.3 Chapter Summary
The fundamental observations highlight the basic issues that must be addressed

general, scalable approach to multi-representation modelling (MRM). These observa
are a foundation for a successful approach to effective MRM. The fundame
observations address the issue of how models may interact, how dependent conc
interactions may cause inconsistency and why resolving time differentials is impor
These observations arise from the experience of analysing many models and determ
why joint execution of these models becomes ineffective.

The key to multi-representation modelling is employing a holistic approach tha
designed to solve issues of consistency. In the rest of this dissertation, we present on
approach,UNIFY, based on the fundamental observations.

TS(ModelA) = τ

FIGURE 16: Compatible Time-steps

TS(ModelB) = τ/5

t0 t2t1 t3 …t6t4 t5

TS(E1) = τ/5

FIGURE 17: Eliminating time-step differentials

TS(E2) = τ/5

t0 t2t1 t3 …
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All for one, one for all!
— Alexandre Dumas,The Three Musketeers
Chapter 5
Multiple Representation Entities
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A Multiple Representation Entity(MRE) incorporates concurrent representations
multiple models. MREs are a part ofUNIFY, our framework for effective MRM. The
viability of an MRE rests on three key assumptions: (i) the presence of mapping func
that translate attributes from one representation to another, (ii) the presence of polic
resolve the effects of dependent concurrent interactions and (iii) compatible time-s
Similar assumptions are not sufficient to make alternative approaches viable for effe
MRM because the approaches continue to violate R1, R2 and R3. We believe tha
assumptions are reasonable because without them the semantics of multi-models
clear, andno MRM approach can be effective.

Our thesis is that MRM can be effective. Effective MRM can be achieved
maintaining consistency among concurrent representations. Traditional approach
MRM, such as aggregation-disaggregation and selective viewing, violate R1 becaus
simulate only one model at any given time. Typically, attributes in the representation o
simulated model are updated as a result of interactions, but attributes in representati
other models areghosted, i.e., updated only in response to updates in the simulated mo
Ghosting violates R1 because it constrains the kinds of interactions among entities w
models by disallowing interactions with non-simulated models. Entities must be cap
of interacting at multiple levels (R1), and must be represented at all levels at which
interact (FO-1). Therefore, for effective joint execution of multiple models,
representation of each model must exist at all times. We call representations that e
all times and permit interactions at all levels concurrent representations. Mainta
concurrent representations means preserving the representations, as opposed to dis
or ghosting them. MREs are our technique for maintaining concurrent representation

Maintaininginternal consistency— consistency among concurrent representations
within an MRE when concurrent multi-representation interactions occur is a key chall
in UNIFY. For concurrent representations to be consistent with one another, chang
one representation must propagate to the other representations. We assume the pre
appropriate mapping functions to translate changes from one representation to an
41
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The effects of concurrent multi-representation interactions must be resolved and app
the representations. We assume that a designer can construct policies to resol
intertwined semantics of such interactions. Lastly, we assume that the time-steps at
multiple models execute are compatible. Provided a designer can satisfy
assumptions, we show how to maintain internal consistency within an MRE.

In §5.1, we describe MREs. In §5.2, we present challenges with MREs. In §5.3
discuss why our assumptions are necessary and sufficient forUNIFY, but insufficient for
other MRM approaches. In §5.4, we describe the execution of an MRE broadly, defe
detailed descriptions to Chapters 6 and 7. In §5.5 and §5.6, we present the benefi
limitations of MREs. We summarise in §5.7 with a table that compares MRM approac

5.1 Description of an MRE
A Multiple Representation Entitymaintains

concurrent representations. The representation of
each model in a multi-model exists within an MRE
at all times. Consider a multi-model,ModelM,
consisting of two models,ModelA and ModelB

(Figure 18).RepM is an MRE.RepM(ti) is the state
of ModelM at time ti, i.e., it is a meaningful
assignment of values to each attribute inRepA and
RepB at timeti. RepSeqM is a sequence of states for
ModelM.

Figure 18 shows an MRE for the representations ofModelA andModelB. Recall from
§3.1 that the representation of an entity is a subset of the complete representatio
model. An MRE may maintain a subset ofRepA and RepB to describe one object or
process present in both models. For example, in Figure 19, P is an entity that describ

ModelA
MRE

Representation

FIGURE 18: An MRE

ModelB

Representation

RepM RepA RepB∪=

ti∀ TM∈ RepM ti( ), RepA RepB∪( ) ti( )=

RepSeqM RepM t0( ) RepM t1( ) RepM t2( ) …, , ,( )=

T4T3T2T1

E2

E3

LevelA

LevelB

Multiple Representation Entity E1

P

FIGURE 19: Multi-representation Interaction

LevelB

LevelA
interactions

interactions
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object inModelA and T1-4 are entities that describe the same object inModelB. E1 is an
MRE consisting of the representations of P and T1-4, thus describing the same object a
multiple representation levels.

Each MRE either maintains or efficiently furnishes the state at all des
representation levels. Moreover, an MRE permits interactions at all representation lev
all times. By definition, an MRE satisfies R1. An entity in either model interacts w
another entity at a representation level common to both. Let the representation leve
ModelA andModelB beLevelA andLevelB respectively. Let E2 be aLevelA entity and E3 be
a LevelB entity (see Figure 19). E2 and E1 interact atLevelA, which means that E2 and P
interact. Likewise, E3 and E1 interact atLevelB, which means that E3 and T1-4 interact.
MREs disallow cross-level interactions (see §4.1.6). For example, E2 cannot interact
directly with T1-4. Likewise, E3 cannot interact directly with P.

5.2 Challenges
The challenge with MREs is maintaining consistency among representations w

concurrent interactions occur (R2). This challenge can be divided into three issues:
1. How must internal consistency be maintained when a representation change
2. How must the changes caused by concurrent interactions be resolved?
3. How must time-step differentials be addressed?
The representations of jointly-executing models must be consistent at all observ

times. In Figure 19, for E1 to be internally consistent, any change to the representatio
P must affect the representations of T1-4 as well andvice versa. An interaction between E2
and E1 may result in a change to the representation of P. This change must propag
T1-4, i.e., the interaction must affect the representations of T1-4 as well. Likewise, an
interaction between E3 and E1 may result in changes to the representations of T1-4. These
changes must propagate to P. Propagating changes requires a technique for ca
relations among attributes, and functions that translate changes to attributes.

An MRE must remain consistent at all observed times even when concu
interactions occur. In Figure 19, if E2 and E3 interact with E1 concurrently, the
representations of P and T1-4 may change concurrently. It may be extremely difficult
reconcile these concurrent changes when they propagate to the other representatio
For example, an interaction between E2 and E1 (or P) may preclude an interaction betwee
E3 and E1 (or T1-4). As another example, the effects of interactions between E2 and E1 (or
P) and between E3 and E1 (or T1-4) may be enhanced when the interactions occ
concurrently. In both these cases, the naïve solution of “adding up” the effects of t
interactions is incorrect because the interactions are dependent on one another.

Temporal inconsistency caused by time-step differentials must be eliminated. I
time-steps forModelA and ModelB in Figure 19 are different, it becomes difficult to
determine whether two interactions at different representation levels are concurrent o
Consequently, the effects of these interactions are hard to resolve. While equal a
phase time-steps may eliminate temporal inconsistency, requiring that all jointly-exec
models progress at equal time-step durations is overly restrictive. Accordingly, we as
that the time-steps of multiple models arecompatible, not necessarilyequal.
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5.3 Rationale
We made three assumptions in order to overcome the challenge of consis

maintenance among concurrent representations: (i) the presence of mapping functio
the presence of policies for concurrent interactions and (iii) the presence of compa
time-steps. As we show in §5.4, these assumptions are necessary and sufficient to m
consistency within an MRE when concurrent interactions occur. We make two argum
for the reasonableness of these assumptions.

First, without any of these assumptions, the semantics of multi-models are not ev
These assumptions require designers to incorporate application-specific knowledg
the joint execution of multiple models. Alternative approaches to MRM make sim
assumptions. For instance, selective viewing requires mapping functions to tran
attributes from one representation to another. These mapping functions are invoked
once — when constructing the representation for the most detailed level. Likew
aggregation-disaggregation requires mapping functions to translate attributes from
representation to another during aggregation and disaggregation. Concurrent intera
may be dependent whether they are at the same or different representation
Therefore, selective viewing and aggregation-disaggregation require policies for reso
the effects of dependent concurrent interactions. In selective viewing, since only the
detailed model is executed at all times, time-steps are trivially compatible. Similarl
aggregation-disaggregation, only one model is executed at all times. Therefore, a
instant, time-steps are trivially compatible.

Second, alternative approaches cannot guarantee effective MRM despite m
similar assumptions. For effective MRM, an approach must satisfy the requiremen
multi-representation interaction (R1), multi-representation consistency (R2) and
effectiveness (R3). Despite making assumptions about the presence of mapping fun
policies for resolving effects of interactions and compatible time-steps, selective vie
and aggregation-disaggregation cannot guarantee effective MRM. Since selective vi
and aggregation-disaggregation execute only one model at a time, they disallow m
representation interactions, thus violating R1. Selective viewing satisfies R2 triv
because consistency must be maintained within the representation of only one m
Aggregation-disaggregation can violate R2 because of mapping inconsistencies amo
representations of multiple models. In aggregation-disaggregation, when one mo
executed, attributes in the representations of other models are lost or ghosted.
attributes are lost, then transitioning representation levels may cause discontinuities
values of attributes even if mapping functions exist. Finally, selective viewing
aggregation-disaggregation result in high costs. Since selective viewing invo
simulating the most detailed model at all times, simulation cost is expectedly h
Aggregation-disaggregation reduces simulation costs by transitioning to a low-d
model whenever possible. However, aggregation-disaggregation incurs high consis
cost. The high costs in either case violate R3.

Table 2 summarises the assumptions made by various MRM approaches.
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5.4 Execution of an MRE
An MRE permits concurrent interactions at multiple representation levels

maintains consistency among the multiple representations. Execution of the MRE e
applying the effects of any interaction consistently to attributes at all levels of the M
Therefore, during each time-step, the effects of interactions at multiple represent
levels must be resolved and applied to the concurrent representations in an
Recalling our definitions from Chapter 3 and §5.1:

A Consistency Enforcer and an Interaction Resolver are responsible for mainta
consistency among concurrent representations (Figure 20). AnInteraction Resolver(IR)
for an MRE is a module that determinesE(IntA(ti) • IntB(ti)), ∀ti ∈ TM, i.e., it resolves the
effects of concurrent interactions. AConsistency Enforcer(CE) for an MRE is a module
that generatesRepM(ti+1), ∀ti ∈ TM, i.e., it maps the effects of interactions from one lev
to another. For example, if E1 receives concurrent interactions from E2 and E3, the IR
resolves their effects. The resolved interactions may change the representation of P o1-4
or both subsequently. When an interaction changes attributes in one representation,
changes related attributes in the other representation appropriately. Subsequently, if2 and
E3 view E1 concurrently, they receive consistent views of E1 from the representations of P
and T1-4. A CE and an IR have application-specific and application-independ
components; in our work, we present the latter.

5.4.1 Maintaining Consistency
A CE maintains internal consistency in an MRE. In effect, a CE ensures that an M

exhibits temporal consistency and mapping consistency. In the following sub-section
show how an MRE exhibits consistency.

5.4.1.1 Temporal Consistency
An MRE exhibits temporal consistency if the changes caused by interactions

applied consistently to all representation levels. If the multiple representations withi

TABLE 2: Summary of Assumptions made by MRM approaches

Assumptions
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Mapping functions
Required
initially

Required Required

Policies for resolving
concurrent interactions

Required Required Required

Compatible time-steps Trivial Trivial Required

RepM ti 1+( ) F RepM ti( ) E IntM ti( )( ),( )=

RepM ti 1+( )∴ F RepA RepB∪( ) ti( ) E IntA ti( ) IntB ti( )•( ),( )=
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MRE are mutually consistent, the MRE is temporally consistent. Entities viewin
temporally consistent MRE at overlapping times receive consistent views of the MRE

For a valid and consistent model,∀ti ∈ TM, RelM(ti) must hold. Let there be a
relationshipr ∈ RelM(ti) such thatr: P(ti) → Q(ti), where P(ti), Q(ti) ⊆ Rep(ti). Let an
interaction IntM(ti)k occur. Suppose P(ti) ⊆ attributes in IntM(ti)k.affects∗ and
∆P(ti) ⊆ changes inIntM(ti)k.affects∗ such that applying∆P(ti) to P(ti) results inP(ti+1).
For r to hold, mapping functions must generate∆Q(ti) such that applying∆Q(ti) results in
Q(ti+1) eventually. Consequently,r holds at observation timeti+1, i.e.,r ∈ RelM(ti+1).

Mapping functions are necessary for translating the
attributes in one representation to the attributes in
another. Translating attributes means translatingvalue
spaces, changes in valuesor typesof attributes from
one representation to another. For example, consider
the T-joint in Figure 21. One model may represent the
T-joint with attributes such as connectedness, position
and orientation. Another model may represent it as a
pair of boards and a nail, each with attributes such as
position and orientation. A mapping function must translate the positions of the boar
the position of the T-joint. Likewise, another mapping function must perform the rev
translation — from the position of the T-joint to the positions of the boards. Such map
functions must take the values of some attributes and change them to the values o
attributes. Another pair of mapping functions must translate the orientation of the T-
to the orientations of the boards andvice versa. These translations may be computationa
less complex if the changes in orientations rather than the values of orientation
translated. Finally, consider the attribute of connectedness for a T-joint. Assume
system can infer that a T-joint is connected if the positions of two boards and a
overlap*. A mapping function that translates the positions of the boards and nail to

* Naturally, if the boards and nail happen to lie in those positions without the boards having bee
nailed, the system may infer incorrectly that the T-joint is connected. Resolving this issue is ou
of the scope of our work, and for the purposes of this discussion, irrelevant.
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connectedness of the T-joint must translate the types of the attributes as well as the v
Finally, translations by mapping functions must complete before the time-step ends.

5.4.1.2 Mapping Consistency
An MRE exhibits mapping consistency if mapping functions are reversible (

§3.3.2). An interaction initiates translations caused by mapping functions. Sequenc
interactions initiate repeated translations. Repeated translations must not
discontinuities or “jumps” in concurrent representations (see §4.1.1). Reversible ma
functions ensure that repeated translations do not cause such discontinuities.

An MRE supports the design of reversible mapping functions. For the T-join
Figure 21, letf translate the board positions to the T-joint position, andg translate the
T-joint position to the board positions. Provided no interactions occur, iff translates the
current values of the board positions to a value for the T-joint position, theng translates
the value of the T-joint position to new values for the board positions, the new
previous values for the board positions must be within tolerable error. If either func
could have generated a number of possible values for the resultant attributes, the pr
values of the resultant attributes may be taken into account in order to generate th
values. For example, if the T-joint is rotated by 180o, invoking f on the values of the board
positions may result in the original T-joint position. Subsequently, invokingg may result
in board positions corresponding to no rotation, thus resulting in an intolerable chan
the board positions. In contrast, ifg took the orientation attribute or the previous values f
the board positions into account, then the new positions would correspond correctly
rotated T-joint position. Irrespective of the details,f andg must be reversible for the MRE
to exhibit mapping consistency.

5.4.2 Resolving Concurrent Interactions
Dependent concurrent interactions may occur because an approach satisfies R

MRE permits concurrent interactions at multiple representation levels. Entities at
representation level may initiate and receive interactions that change the appro
representation. If entities at different representation levels interact, the effect
concurrent interactions at multiple levels must be resolved, i.e., the effects of t
interactions must be applied to all levels consistently (FO-2). However, concur
interactions may be dependent (FO-3). The effects of dependent concurrent intera
must be resolved in a meaningful manner, i.e., in a manner consistent with requirem

An IR is responsible for resolving the effects of concurrent interactions in an M
We assume that designers understand the semantics of interactions in their applic
well enough to classify them and specify policies for resolving their dependent eff
Without such an understanding, arbitrary policies such as serialization must be cho
resolve the effects of interactions. Arbitrary policies often fail to resolve the effect
dependent concurrent interactions meaningfully. In Chapter 7, we show how designe
construct an IR for an MRE.

5.4.3 Storing Attributes in a Core
Since an MRE incorporates concurrent representations, it makes a high dema

resources such as memory to store representations. Although conceptually
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straightforward to think of MREs as using memory for each representation, memory
be conserved by storing a small set of attributes at all times and generating other attr
on demand. In Figure 22, the MRE stores a set of attributes at all times from which i
generate all attributes at all desired levels in a timely manner on demand. This s
attributes, thecore setor core, may be updated on every interaction to keep the MR
internally consistent. Attributes in the core must be chosen such that they are sufficie
generating all the attributes in the MRE. The core set must be stored at all times i
simulation, but the other attributes may be discarded when they are no longer neces

For some applications, a core set of attributes that is smaller than the set o
attributes at all representations can exist. For example, if a molecular and atomic mo
a compound execute jointly, the position and orientation attributes in the molecular m
may determine the position attributes in the atomic model uniquely andvice versa.
Therefore, storing either the molecular position and orientation or the atomic positio
a core may be sufficient to maintain internal consistency in an MRE for that compo
Since the core is a subset of all the attributes at all levels, we develop criteria that ide
attributes that should be in the core. We have identified four such criteria: reversib
decreasing validity with time, cost ratio and frequency of access. These criteria
independent but may conflict with one another. In such a case, appropriate weights
be assigned to the criteria to aid selection of the core attributes.

Reversibility: For many attributes, it is important that reversible mapping functio
translate the values at one level to the values at another level. However, in many
reversible mapping functions may be hard to find or encode. In such cases, whe
attributes require reversibility but reversible mapping functions cannot be found,
attributes must be included at all representation levels in the core. Consider an appli
for which the position attribute requires reversibility but reversible mapping functi
cannot be found. The position of the aggregate may be computed by averagin
position of the disaggregate entities. Likewise, a doctrine or template may be appli
the aggregate position to determine disaggregate positions. However, these translati
relevant only when the entities are not perturbed by other interactions. If the positio
the disaggregate entities change by small amounts because of disaggregat
interactions, then it is not possible to generate those new positions from the aggr
position. Since perfectly reversible mapping functions cannot be found, the pos
attributes at both levels must be stored in the core.
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FIGURE 22: Core attributes
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Decreasing validity with time: Another criterion is whether the attribute’s validity
decreases or not with time. The attribute could be stored in the core when it is usefu
when its validity goes below a threshold it could be removed from the core.

Cost ratio: Cost ratio is the ratio of the cost of maintaining the attribute to the cos
generating it. If the cost of maintaining the attribute is measured by the amount of me
it consumes and the cost of generating it is measured by the time it takes to gener
then this criterion reduces to a space-time trade-off. If the cost of maintaining the attr
is measured by the amount of time required to change its value, the compariso
between the time to effect a change and the time to generate the attribute. Wheth
attribute should be stored in the core or not depends on the cost ratio being larger
smaller than or equal to one.

Frequency of access: Our fourth criterion is the frequency with which the attribute
accessed. If the frequency is high, then it may be judicious to store the attribute in the

5.4.4 Comparing against Alternative Approaches
We compare the execution of an MRE against alternative MRM approaches.

5.4.4.1 Comparing against aggregation-disaggregation
Are MREs a variant of aggregation-disaggregation? During aggregation, map

functions translate disaggregate attributes to aggregate attributes. During disaggre
the translation occurs in reverse, i.e., mapping functions translate aggregate attribu
disaggregate attributes. Similar translations occur in an MRE. The translation du
aggregation loses information that must be re-generated during disaggregation. Th
generation is a common source of mapping inconsistency. The question is wheth
translations in an MRE can cause mapping inconsistency similarly.

MREs maintain attributes at all representation levels at all times. In aggrega
disaggregation, attributes are either discarded or ghosted after a translation. In an
attributes atall levels are retained after a translation. Consequently, mapping functions
utilise previous values of attributes in order to generate new values, thus avoiding ma
inconsistency. Moreover, an MRE permits interactions at all representation levels
times, and incurs lower consistency costs than aggregation-disaggregation.

5.4.4.2 Comparing against selective viewing
Are MREs a variant of selective viewing? In selective viewing, only the most deta

model is executed at all times. Attributes in the multiple representations within an M
may be construed as the attributes in the representation of the detailed model in se
viewing. The question is whether an MRE is a modular variant of selective viewing.

An MRE does not incur unnecessary simulation costs. For example, suppose a p
model executes jointly with a model of its constituent tanks. In selective viewing, only
tank model executes. Platoon-level interactions must be translated to possibly many
level interactions, each possibly changing the representations of the corresponding
In an MRE, platoon-level interactions change the representation of the platoon. Cha
to the platoon representation propagate to the tank representations. Therefo
compared to selective viewing, an MRE incurs a lower simulation cost at the expens
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higher consistency cost. In addition, an MRE permits interactions at all represent
levels at all times.

5.5 Benefits of MREs
Consistent concurrent representations can eliminate or reduce many of the pro

with other MRM approaches. In §5.4.1, we showed how MREs eliminate temporal
mapping inconsistencies. Now, we show how MREs eliminate or reduce the rema
MRM problems discussed in §4.1. Recall that LRE stands for a Low Resolution E
and HRE stands for High Resolution Entity.

Eliminating Chain Disaggregation: MREs eliminate chain disaggregation. An MR
does not disaggregate, and does not force other entities to disaggregate. Theref
Figure 23 shows, MREs do not cause chain disaggregation.

Eliminating Transition Latency : MREs eliminate transition latencies encountered
aggregation-disaggregation. MREs do not transition among representation levels, i.e
do not aggregate or disaggregate. Therefore, they do not require protocols for init
aggregation or disaggregation. Consequently, transition latency is not an issue with M

Eliminating Thrashing : MREs eliminate thrashing because they do not transit
representation levels. Thrashing occurs when an entity aggregates and disaggr
repeatedly in a short period of time because it moves in and out of a playbox or inte
with entities at different representation levels. Thrashing causes the entity to con
significant processing resources just transitioning levels. Since MREs interact at diff
representation levels without effecting a transition, MREs do not thrash.

TABLE 3: Comparison among MRM approaches

Requirements
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

R1: Multi-representation
Interaction

No No Yes

R2: Multi-representation
Consistency

Trivially Possible Possible

R3: Cost-Effectiveness
(see Chapter 9)

High Cost of
Simulation

High Cost of
Consistency

Low Costs

MRE

HRE HRE

FIGURE 23: Eliminating Chain Disaggregation

LRE
LRE

LRE
LRE
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Reducing Network Flooding: MREs reduce network flooding. Selective viewin
introduces a large number of entities in the simulation. Likewise, a disaggregated LR
aggregation-disaggregation introduces a large number of entities in the simulatio
Figure 24 shows, increasing the number of entities in the simulation increases the nu
of interactions among entities. Since interactions are implemented often as message
network, aggregation-disaggregation causes network flooding. MREs capture a ben
aggregation — introducing fewer entities — thus reducing network flooding.

Eliminating Cross-level Interactions: MREs eliminate cross-level interactions b
permitting interactions among entities at all representation levels. With MREs, aLevelA

entity never interacts with aLevelB entity; LevelA entities interact with one another, an
LevelB entities interact with one another. Since entities interact at representation l
common to them, MREs eliminate cross-level interactions. Entities must negotiate
representation level at which they will interact beforehand. If entities interact at more
one level at a time, “double-interactions” can occur. For example, if an MRE A inter
with an MRE B atLevelA as well asLevelB, then a double-interaction occurs when
sends two distinct sets of interactions, one at each level, for the same event. If A a
interact at one level but not both, double-interactions are prevented.

Summary of Benefits: Table 4 summarises the benefits of MREs by comparing h
various MRM approaches address the above issues.

TABLE 4: Summary of Benefits of MREs

Benefits
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Temporal Inconsistency Absent Present Eliminated

Mapping Inconsistency Absent Present Eliminated

Chain Disaggregation Inherent Possible Eliminated

Transition Latency Non-existent Possible Eliminated

Thrashing Non-existent Possible Eliminated

Network Flooding High Possibly high Reduced

Cross-level Interactions Non-existent Possible Eliminated

MRE

FIGURE 24: Reducing Network Flooding

MRE
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5.6 Limitations of MREs
MREs are a technique for capturing the combined semantics of jointly-execu

models. An MRE does not show how to design a better model. In the context of an M
approach, this limitation is not serious; we show that MREs are no worse than altern
approaches. However, without addressing this limitation, a multi-model cannot satis
users’ requirements even if the MRM approach is effective. MREs can support solu
for many of the following issues; however, MREs do not inherently resolve these iss

Identifying Representations and Relationships: An MRE does not identify the
representation at any level nor relationships between representations. Ident
representations and relationships are the responsibility of a designer. No approa
MRM frees a designer of this responsibility.

Capturing Whole-Greater-than-the-Sum-of-Parts Relationships: Aggregate and
disaggregate entities bear the relationship of being whole and parts of one anothe
whole-and-parts relationship occurs frequently in battlefield simulations where a nu
of tanks may be considered as parts of a platoon, or a number of regiments m
considered as parts of a division. Likewise, in multi-resolution graphics, a numbe
triangles may be considered as parts of an entire surface, or in molecular mod
number of atoms may be considered as parts of a molecule.

A valid concern when aggregate and disaggregate models execute jointly is tha
values of some aggregate attributes may be greater than the sum of the valu
corresponding disaggregate attributes, i.e., the whole is greater than the sum of its
This concern has been called emergent behaviour problem [WIM86] or the configuration
problem [HORR92]. For example, tanks may fight with greater strength when configu
as a platoon. This increase in strength may be attributable to the presence of a comm
who coordinates and guides activities (as is common in the case of military units) o
one of many other similar reasons. As another example, weak forces in atomic m
may be ignored since their effect on the position of atoms may be negligible. Howeve
molecular models, these forces may add up to influence the positions of a
significantly. The precise relationships between the platoon’s strength and the t
strength and the atomic forces and the molecular forces must be captured by ma
functions that translate attributes among representations.

Selective viewing does not capture whole-greater-than-the-sum-of-parts relations
In selective viewing, only the model for the parts is executed. Therefore, whole-gre
than-the-sum-of-parts relationships may not be captured unless information outsid
attributes of each part is present. Typically, an entity maintains attributes relevant on
its own execution. Therefore, the behaviour of an entity when it executes as part
whole is not distinct from its behaviour when it executes individually. Consequen
information not present in the entity must be used to distinguish these behavi
Maintaining such information is tantamount to executing multiple models.

Aggregation-disaggregation captures whole-greater-than-the-sum-of-
relationships, but introduces mapping inconsistency because information is lost d
transitions. For example, tanks in a platoon may have manœuvred into a favo
position, thus causing the strength of the platoon to be greater than the sum o
strengths of the tanks. At this point, transitioning to the platoon model and back to the
model may cause the tanks to be placed in doctrinal formation (since the tanks’ pre
52
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positions are lost). This placement may result in a platoon strength that is the sum o
strengths of the tanks. Thus, the transitions reduced the strength of the platoon.

MREs aid in the construction of mapping functions that capture whole-greater-t
the-sum-of-parts. Since an MRE incorporates concurrent representations, attributes
levels are present for the design of mapping functions that avoid inconsistency. Alth
MREs can capture whole-greater-than-the-sum-of-parts relationships better
alternative approaches, MREs do not aid identification of attributes that bear
relationships. It is the responsibility of the designer to identify and encode s
relationships within mapping functions.

Resolving Conflicting Results: The multiple models in a multi-model may emplo
different algorithms to compute similar effects at different representation levels.
example, in battlefield simulations, Lanchester equations are used to compute attrit
loss of strength for aggregate-level forces. These equations are differential equ
parameterised by coefficients based on historical data [KARR83]. Typically, Lanchester
equations compute the results of battles involving large forces, such as divisions, bri
and corps. Also, the coefficients based on historical data are collected for battles las
few hours. The coefficients can be “smoothed” over small time-step granularities, s
ten minutes or so but not finer. As a result, models employing Lanchester equations
have time-steps of at least ten minutes, or else the attrition computed by the Lanc
equations cannot be claimed to be valid. In contrast, for battles involving disaggre
level forces, such as tanks and artillery, attrition is computed by applying historical hit
probabilities for each engagement. Briefly, when a tank fires a shell at an enemy, the
has a certain probability of hitting the target. Kill probabilities are conditioned on
probabilities. Since attrition using hit-kill probabilities is computed on a per engagem
basis, it can be applied to simulated battles with millisecond time-steps.

A multi-model that involves models employing different algorithms encounters
problems: temporal inconsistency and conflicting results. Temporal inconsistency
arise if the multiple algorithms make different assumptions about time at the mul
levels, as Lanchester equations and hit-kill probabilities do. Temporal consistency ca
by time-step differentials must be eliminated; we do so by assuming compatible t
steps. Conflicting results arise if the algorithms predict different outcomes for the sam
of inputs. Selective viewing avoids the problem of conflicting results by executing only
detailed model. Aggregation-disaggregation encounters the problem of conflicting re
depending on the level at which a multi-model is executed, the results of an outcome
vary [HILL 92B].

MREs do not address the problem of conflicting results. Designers of multi-mo
must resolve conflicting results caused by different algorithms at multiple levels. J
execution of multiple models captures the combined semantics of the models, no m
what the semantics of the individual models are.

Summary of Limitations : The limitations above are expected of any approach t
focusses on MRM alone. Designers must address these limitations in order to con
useful multi-models. However, addressing these limitations is outside the scope o
MRM approach, includingUNIFY. Table 5 summarises the limitations of MREs b
comparing how various MRM approaches address the above issues.
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5.7 Chapter Summary
A Multiple Representation Entity is a technique for maintaining concurr

representations in order to achieve effective MRM. A key challenge with an MRE
maintaining consistency among its concurrent representations in the presen
dependent concurrent interactions. We assume the existence of appropriate ma
functions for translating attributes from one representation to another, policies
resolving the effects of dependent concurrent interactions and compatible time-s
These assumptions do not make MRM trivial, because alternative approaches conti
exhibit problems even if they make similar assumptions.

MREs satisfy the MRM requirements of multi-representation interaction a
consistency among the representations. MREs eliminate many problems with pre
MRM approaches. We comparedUNIFY with alternative approaches to MRM in terms o
the requirements that each approach satisfies, the assumptions made towards sa
those requirements, and the benefits and limitations of each approach. We depict
comparisons concisely in Table 6.

MREs and techniques for maintaining internal consistency among MREs cons
UNIFY. A Consistency Enforcer and an Interaction Resolver for an MRE main
consistency among the concurrent representations and resolve the effects of conc
interactions respectively. In Chapters 6 and 7, we describe a CE and an IR in detail.

TABLE 5: Summary of Limitations of MREs

Limitations
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Identifying Attributes and
Dependencies in
Representations

Not
addressed

Not addressed
Not

addressed

Capturing Whole-Greater-
than-the-Sum-of-Parts
Relationships

Not
supported

Possible Possible

Resolving Conflicting
Results

Not
necessary

Required Required
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TABLE 6: Comparison among MRM approaches

Selective
Viewing

Aggregation-
Disaggregation

UNIFY
R

eq
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ts

R1: Multi-representation
Interaction

No No Yes

R2: Multi-representation
Consistency

Trivially Possible Possible

R3: Cost-Effectiveness
(see Chapter 9)

High Cost of
Simulation

High Cost of
Consistency

Balanced
Costs

A
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ee

 §
5.

3)

Mapping functions
Required
initially

Required Required

Policies for resolving
concurrent interactions

Required Required Required

Compatible time-steps Trivial Trivial Required
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Temporal Inconsistency Absent Present Eliminated

Mapping Inconsistency Absent Present Eliminated

Chain Disaggregation Inherent Possible Eliminated

Transition Latency Non-existent Possible Eliminated

Thrashing Non-existent Possible Eliminated

Network Flooding High Possibly high Reduced

Cross-level Interactions Non-existent Possible Eliminated
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§5
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) Identifying Attributes and
Dependencies in
Representations

Not
addressed

Not addressed
Not

addressed

Capturing Whole-Greater-
than-the-Sum-of-Parts
Relationships

Not
supported

Possible Possible

Resolving Conflicting
Results

Not
necessary

Required Required
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you know something is wrong
— Douglas Hofstadter,Gödel, Escher, Bach
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For effective MRM, jointly-executing multiple models must be consistent with o
another (requirement R2). In Chapter 5, we presented Multiple Representation En
(MREs) which incorporate concurrent representations of multiple models. AConsistency
Enforcer (CE) is a component of an MRE that maintains consistency among concu
representations. A CE consists of an Attribute Dependency Graph (ADG) that cap
dependencies among representations, and application-specific mapping function
translate attributes. An ADG and mapping functions ensure that the relationships
MRE hold at all observation times. In this chapter, we present ADGs, discuss
mapping functions relate to them and demonstrate the construction of a CE.

When an interaction changes the value of attributes, a CE ensures that the conc
representations in an MRE are consistent. The operation of a CE involves traversi
ADG and invoking mapping functions to compute the changes to relevant attributes. A
maintains internal consistency within an MRE. Constructing a CE involves:

1. Constructing an Attribute Dependency Graph
a. Assigning Nodes to Attributes
b. Assigning Arcs to Dependencies
c. Assigning Semantics to Dependencies

2. Selecting Mapping Functions
In §6.1, we describe ADGs and introduce an example in order to demonstrate s

Also, we introduce four classes of dependencies: cumulative, distributive, modelling
interaction. In §6.2, we discuss the mapping functions that designers must provid
their multi-models (step 2). In §6.3, we describe how a CE can enforce consistency a
multiple representations by traversing an ADG and propagating the effects o
interaction. In §6.4, we present various implementation strategies for Consist
Enforcers such as spreadsheets, attribute grammars, mediators and constraint sol
this chapter, we assume concurrent interactions are independent, i.e., their effects
resolved by serialization. We make this assumption in order to explain the operation
Consistency Enforcer alone. We address dependent concurrent interactions in Chap
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6.1 Constructing an Attribute
Dependency Graph

An Attribute Dependency Graphcaptures dependencies
among attributes in concurrent representations. When multiple models execute join
change to an attribute may cause other dependent attributes to change. A depen
graph is a natural technique to capture such cause-effect dependencies among att
In an ADG, nodes correspond to attributes in a multi-model and arcs correspon
dependencies among the attributes. In the simple ADG shown in Figure 25, the left
corresponds to an attributea, and the right node corresponds to an attributeb. The arc
connecting the two nodes shows thatb depends ona, or a affectsb. If the value ofa
changes, the value ofb may change. If the value ofb changes, there is no requirement fo
the value ofa to change. For the relationship in the figure,a is the independent attribute
andb is the dependent attribute. The ADG in Figure 25 does not showhow bmust change
when a changes. A mapping function must encode howb changes whena changes.
Dependency graphs such as ADGs capture cause-effect relationships in a num
contexts, for example, task execution sequences in Petri nets [PETER77], data
dependencies in dataflow models [DENNIS80], method invocation in object-oriented
design [RUM91] [SHLAER92], and causal relationships in logical time systems [LAM78].

Let ModelA be a low-resolution model andModelB be a high-resolution model.
Recalling our definitions from Chapter 3, inUNIFY, a multi-modelModelM is:

ModelM is consistent ifRelM, and in turn,Relcross-modelhold ∀t ∈ TM. Previous MRM
approaches do not capture complex cross-model relationships that may hold at dif
times. In selective viewing,∀t ∈ TM, ModelM(t) = ModelB(t) and Relcross-model= ∅. In
aggregation-disaggregation, at timeti ∈ TM, ModelM(ti) = ModelA(ti), and at timetj ∈ TM,
ti ≠ tj, ModelM(tj) = ModelB(tj). Relcross-model≠ ∅ only when a representation level i
transitioned, i.e.,ti, ti+1 ∈ TM, ModelM(ti) = ModelA(ti) ∧ ModelM(ti+1) = ModelB(ti+1) ∨
ModelM(ti) = ModelB(ti) ∧ ModelM(ti+1) = ModelA(ti+1).

In UNIFY, an ADG has a node for each attributea ∈ RepM, and an arc for each
relationshipr ∈ RelM. Recall thatRelcross-modelis defined as a set of relationships suc
that ∀r: P → Q, P ⊆ RepA ∧ Q ⊆ RepB ∨ P ⊆ RepB ∧ Q ⊆ RepA. An ADG has an arc for
every r ∈ Relcross-model becauseRelcross-model⊆ RelM. An ADG is a technique for
describing attributes in concurrent representations, relationships among those attr
and the semantics of the relationships.

In the following sub-sections, we show how to construct an ADG for an example M
from jointly-executing battlefield models. Our example is derived from specification
actual battlefield models [JPSD97] [JTFP97] [RPR97]. The choice of models reflects ou
familiarity with the domain, not a restriction on the kind of multiple models for whi
ADGs are relevant. LetModelA be a platoon model,ModelB be a tank model, andModelM

be a multi-model incorporating these two models. A platoon inModelA has attributes for
position (Pos), velocity (Vel), firepower (Fire), strength (Str), appearance (App)

a

FIGURE 25: Simple ADG

b

ModelM RepM RelM IntM, ,〈 〉=

RepM RepA RepB∪=

RelM RelA RelB Relcross model–∪ ∪=
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formation (Form). A tank inModelB has attributes for position (Pos), velocity (Vel), hit
(Hits), ammunition (Ammo), damage status (Dam) and fuel level (Fuel). Our MRE,
Platoon-Tanks MRE in Figure 26, is a platoon represented at two levels: the platoon

and the tank level. Therefore, this MRE has attributes for a platoon and its consti
tanks. For ease of exposition, we assume that our platoon can be represented at th
level by just two tanks. Attributes App, Form, Pos, Vel, Fire, Str∈ RelA, and attributes
Dam1, Fuel1, Pos1, Vel1, Ammo1, Hits1, Dam2, Fuel2, Pos2, Vel2, Ammo2, Hits2 ∈ RelB.
We will demonstrate the construction of an ADG for this MRE.

6.1.1 Assigning Nodes to Attributes
The first step in constructing an ADG is assigning nodes to attributes. In princip

designer may assign a node to any set of attributesP such thatP ⊆ RepA ∨ P ⊆ RepB. A
node can be assigned to any set of attributes that enables a designer to
straightforward decisions about applying the effects of interactions. For example
designer may assign a node to the set of attributes of a tank. However, such an assig
does not aid the designer substantially in applying the effects of interactions. In pra
since interactions affectattributes, we expect the designer to assign nodes to attribu
such as position and appearance. In a multi-model involving atoms and molecules,
could be assigned to atom-level attributes such as orientation and charge, and mo
level attributes, such as orientation and valence. In a hierarchical autonomous
model, nodes could be assigned to planner-level attributes such as absolute locatio
connectedness, and perception-action-level attributes such as relative location, colo
visibility. In our example, we assign a node in the ADG to every attribute in the concur
representations ofModelM, i.e., every attributea ∈ RepM. In Figure 27, we show all the
attributes as nodes labelled with unsubscripted or appropriately-subscripted names.

FIGURE 26: Platoon-Tanks MRE

Platoon: App, Form, Pos, Vel, Fire, Str

Tank1: Dam1, Fuel1, Pos1, Vel1, Ammo1, Hits1

Tank2: Dam2, Fuel2, Pos2, Vel2, Ammo2, Hits2

Platoon Level

Tank Level

Platoon-Tanks MRE
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6.1.2 Assigning Arcs to Dependencies
The second step in constructing an ADG is assigning arcs to dependencies. A

connecting two nodes represents a dependency between attributes corresponding
nodes. Since a dependency between two attributes indicates that they are related, ar
ADG correspond to each relationshipr ∈ RelM. In Figure 28, we show dependencies fo
our Platoon-Tanks example. The platoon position depends on each tank position anvice
versa. The tank positions are unrelated because each tank may move independent
identify similar dependencies among platoon and tank velocities. The firepower o
platoon depends on the ammunition levels of the tanks, and the strength of the pl
depends on the number of hits each tank has received. Likewise, the appearance
platoon depends on the damage state of each tank andvice versa. The fuel level of the
individual tanks is not represented at the platoon level. Unless the platoon model bas
decisions on the fuel level of the platoon, it is not necessary that the tank fuel leve
represented at the platoon level. The platoon has a formation attribute that captur
relative positions of the tanks. The formation depends on tank positions andvice versa.
Suppose moving out of formation may cause the platoon to appear weak. Therefor
formation affects the appearance of the platoon. Lastly, the current positions of the pl
or tanks depend on the current values of the respective velocities.

6.1.3 Assigning Semantics to Dependencies
The third step in constructing an ADG is to assign semantics to dependen

Assigning semantics to dependencies enables the construction of appropriate ma
functions for them. One way to assign semantics is to classify dependencies. Ma
functions associated with classes of dependencies have common requirem
Dependencies may be classified according to characteristics specific to an applicatio
classify dependencies in an application-independent manner into four categ

FIGURE 27: Nodes in the ADG for the Platoon-Tanks MRE

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

Ammo1 Hits1Vel1Pos1Fuel1Dam1

Ammo2 Hits2Vel2Pos2Fuel2Dam2

Fire StrVelPosFormApp
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cumulative, distributive, interaction and modelling. Binary weights, fractional weights
interaction classes are other techniques for capturing semantics of depende
Assigning weights to cumulative and distributive dependencies can capture how ch
to an attribute contribute or distribute to other attributes. Modelling dependencies alr
capture semantic information, hence we do not associate any additional sem
information with them. The semantics we associate with interaction dependencies a
classes of interactions (discussed in Chapter 7). The semantics assigned to depen
vary with applications.

6.1.3.1 Cumulative and Distributive Dependencies
Whole-to-parts and parts-to-whole relationships are common in models, for exam

aggregation associations among objects in UML [ALHIR98] and OMTR [RUM91], and
relationships among objects such as part-whole, consists-of, composition, has-pa
contains in other modelling methodologies [FOWLER97]. These associations an
relationships usually are bidirectional, i.e., a relationship betweenP andQ implies another
relationship betweenQ andP. These associations and relationships capture whole-to-p
and parts-to-whole relationships among objects; we capture similar relationships be
attributes with cumulative and distributive dependencies.

Cumulative and distributive dependencies capture parts-to-whole and whole-to-
relationships among attributes respectively.Cumulative dependenciesare dependencies in
which the value of a single attribute is influenced jointly by the value of many ot
attributes. For a relationshipr ∈ RelM, r: P → Q, P, Q ⊆ RepM, whereQ = 1, ∀a ∈ P
and b ∈ Q, a cumulative dependency exists froma to b. Distributive dependenciesare
dependencies in which the value of a single attribute influences the value of many
attributes jointly. For a relationshipr ∈ RelM, r: P → Q, P, Q ⊆ RepM, whereP = 1,
a ∈ P and∀b ∈ Q, a distributive dependency exists froma to b. In hierarchical models,
cumulative dependencies capture relationships from disaggregate attributes to agg

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

FIGURE 28: Dependencies in the ADG for the Platoon-Tanks MRE

Ammo1 Hits1Vel1Pos1Fuel1Dam1

Ammo2 Hits2Vel2Pos2Fuel2Dam2

Fire StrVelPosFormApp
60



tes to

ction.

ect

ent in
iently

ave a

-whole
hole
r type.
or
s are

that

ribute
ncies
attributes, and distributive dependencies capture relationships from aggregate attribu
disaggregate attributes.

6.1.3.2 Interaction and Modelling Dependencies
Interactions cause changes to attributes.Interaction dependenciesare dependencies

between the sender of an interaction and the attributes changed directly by the intera
An interactionI ∈ IntM, may be viewed as a relationshipr: P → Q, whereQ ⊆ RepM, but
it is not necessary thatP ⊆ RepM. An interaction dependency captures a cause-eff
relationship from attributes of a sender to attributes of a receiver.

Other relationships may exist among attributes. These relationships may be inher
the nature of the object or process being modelled, and may not be captured conven
by cumulative, distributive or interaction dependencies.Modelling dependenciesare
dependencies that are not cumulative, distributive or interaction.

6.1.3.3 Selecting Dependencies
If a pair of attributes has a cumulative dependency between them, they may h

distributive dependency as well. A change to a part may affect the whole andvice versa.
Let attributesa, a1, a2, …, an, b, b1, b2, …, bm ∈ RepM. In Table 7, we list how
dependency classes can be assigned to combinations of whole-to-parts and parts-to
relationships. The first column lists combinations of whole-to-parts and parts-to-w
relationships. The second and third columns list the attribute dependencies and thei
For the relationship {a} → { b}, classifying the dependency as either cumulative
dependency is valid since the relationship is one-to-one. One-to-one relationship
degenerate cases of both, whole-to-parts and parts-to-whole relationships.

If an interaction can change an attribute, an interaction dependency exists to
attribute, i.e.,∀I ∈ IntM, if <a, δa> ∈ I.affects, whereδa is a change to attributea caused
by I, then an interaction dependency exists toa. Although many interaction types may
change an attribute, we associate only one interaction dependency with the att
because the identity of the independent attribute is irrelevant. Modelling depende
have application-dependent semantics.

TABLE 7: Assigning Cumulative and Distributive Dependencies

Relationship Dependency Class

{ a1, a2, …, an} → { b}
ai → b Cumulative

b → ai Distributive

{ a} → { b1, b2, …, bm}
a → bj Distributive

bj → a Cumulative

{ a} → { b}
a → b Cumulative/Distributive

b → a Distributive/Cumulative

{ a1, a2, …, an} → { b1, b2, …, bm}
ai → bj Cumulative

bj → ai Distributive
61



butive
h are
utside
s that

are
ncies.
thus
. For
pliers
oard

n be
ent

y and

plete
tank
erse

tive
, and
ity to
pture
lling
nks to
es the
tion
es or

cs of
ibute
n be
gning
6.1.3.4 Properties of Dependency Classes
Our dependency classes are complete and extensible. Cumulative and distri

dependencies capture whole-to-parts and parts-to-whole dependencies, whic
common in models. Interaction dependencies capture dependencies from entities o
to entities inside a model. By definition, modelling dependencies are all dependencie
are not cumulative, distributive or interaction. Although the dependency classes
complete, designers can extend them by identifying other classes of depende
Additional classes may refine cumulative, distributive or modelling dependencies,
enabling designers to specify requirements of mapping functions in greater detail
example, the boards of a T-joint are connected rigidly, whereas the arms of a pair of
are connected non-rigidly. Therefore, the cumulative dependencies from the b
positions to the T-joint position and from the arm positions to the pliers position ca
refined into two classes: rigidly cumulative and non-rigidly cumulative. This refinem
enables a designer to specify mapping functions that translate the positions in rigidl
non-rigidly cumulative dependencies differently.

6.1.3.5 Examples of Dependency Classes
By adding interaction dependencies to the ADG in Figure 28, we obtain the com

ADG shown in Figure 29. Cumulative dependencies capture the relationship from the
positions to the platoon position. Distributive dependencies capture the conv
relationship from the platoon position to the tank positions. Likewise, cumula
dependencies capture the relationship from the tank velocities to the platoon velocity
distributive dependencies capture the converse relationship from the platoon’s veloc
the tank velocities. In the same fashion, cumulative and distributive dependencies ca
the relationships among other platoon attributes and tank attributes. Mode
dependencies capture the relationships from the velocities of the platoon and the ta
the positions of the platoon and the tanks. Likewise, a modelling dependency captur
relationship from the platoon formation to the platoon appearance. An interac
dependency to each attribute captures the effects of interactions with other entiti
simulation actions of the platoon and the tanks.

6.1.3.6 Dependency Weights
Weighting dependencies with binary or fractional weights captures the semanti

contribution. The weight on a dependency indicates how much the independent attr
contributes to the dependent attribute. Although the assignment of weights ca
construed as part of a mapping function, we view weights as an example of assi
semantics to dependencies prior to the construction of a mapping function.
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Weights on Cumulative Dependencies: Weighting
cumulative dependencies captures the manner in which
many independent attributes affect one dependent
attribute. A cumulative dependency can be weighted
according to what fraction of the value of an
independent attribute contributes to the dependent
attribute. For example, the cumulative dependencies
from Hits1 and Hits2 to Str in Figure 29 could be
weighted one, indicating that all tanks contribute their
hits entirely to the platoon strength. This weighting
satisfies the semantic requirement that the platoon strength is the sum of the hits
tanks. In the case of firepower shown in Figure 30, the cumulative dependencies m
non-unity. If a tank, say Tank1, fights a disaggregate-level battle, then W1 = 0 indicates
that Tank1 expends all its ammunition in the disaggregate battle only. If Tank1 could fire at
both levels simultaneously (a physical impossibility, but assumed for exposition),
Tank1 allocated 50% of its total ammunition for each engagement, then W1 = 0.5.

29: Dependency Classes in the ADG for the Platoon-Tanks MRE

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

ative Dependency Interaction Dependency

butive Dependency Modelling Dependency

Ammo1 Hits1Vel1Pos1Fuel1

Ammo2 Hits2Vel2Pos2Fuel2

Fire StrVelPosForm

Ammo1

Ammo2

Fire

FIGURE 30: Cumulative Weights

W1 W2
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Weights on Distributive Dependencies: Weighting
distributive dependencies captures the manner in which
one independent attribute affects many dependent
attributes. A distributive dependency can be weighted
according to what fraction of the change to an
independent attribute propagates to the dependent
attribute. For example, the distributive dependencies
from the tank hits to the platoon strength in Figure 29
could be weighted as shown in Figure 31. If the platoon
strength is reduced, fractions of that change propagate
to the tank hits. In order to satisfy the semantic requirement that the platoon’s stren
the sum of the tank hits, the sum of the propagated fractions must sum to the reduct
the platoon strength. An independent attribute may not affect all its dependent attri
uniformly. For example, either W1 or W2 (but not both) may be zero, meaning that
change to Str does not change the corresponding Hits. This weight could reflect a sc
in which the unaffected tank is shielded from the firepower of the enemy becaus
barriers, entrenchments or good defensive position.

Assignment of Weights: The weights on cumulative and distributive dependenc
may change during a simulation. For a battlefield simulation, weights may be assigne
engagement. Thus, strength reductions from different enemies may propagate
different sets of weights because of the nature of the enemies’ firepower or their posi
In indiscriminate firing situations, weights may be assigned randomly to reflect the fo
war (see §3.4). Alternatively, weights may be assigned depending on the properties
constituents. For example, boolean attributes signifying the visibilities of disaggre
entities are not fractions of a boolean attribute signifying the visibility of t
corresponding aggregate entity. In such cases, boolean weights for distrib
dependencies are more appropriate, and the product, rather than the sum,
distributive weights must be one.

Interlinked Dependency Weights: The weights on distributive and cumulativ
dependencies are dependent on one another. The weights on these dependencies
assigned with due consideration to the meaning of the combination of weights.
example, suppose a designer specifies that a tank, say Tank1, does not fire in a platoon-
level battle. Therefore, Ammo1 does not contribute to Fire. Refining the specificatio
further, we can say: If Ammo1 does not contribute to Fire, then a change to Fire does
change Ammo1. For the refined specification, a weight of zero on the cumulat
dependency from Ammo1 to Fire captures theif-part, and a weight of zero on the
distributive dependency from Fire to Ammo1 captures thethen-part. Therefore, the
specification above can be re-stated as: A zero-weight cumulative dependency
Ammo1 to Fire ⇒ a zero-weight distributive dependency from Fire to Ammo1. If the
distributive dependency is zero and the cumulative dependency is non-zero it just m
that Tank1 contributed some of Ammo1 to Platoon, but Platoon did not use Ammo1 in this
engagement. Other combinations of weights for the cumulative and distribu
dependencies are possible for other attributes.

Hits1

Hits2

Str

W1 W2

FIGURE 31: Distributive Weights
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6.1.3.7 Interaction Semantics
Whether a change to an attribute occurs as a result of another entity’s interaction

a result of simulation activities performed by the MRE, the change originates f
interaction dependencies. Since different interactions may change an attribute, a cha
an attribute because of an interaction dependency can have different semantics. Alt
we associate only one interaction dependency per attribute, we say that the semantic
interaction dependency change with the semantics of interactions. We discuss inter
semantics in Chapter 7.

6.1.4 Summary of Attribute Dependency Graphs
ADGs capture relationships among attributes in concurrent representations. Des

construct an ADG by assigning nodes and arcs to attributes and relationships inRelM.
Next, they classify dependencies and assign semantics to them. In Figure 29, a cum
or distributive dependency exists∀r ∈ Relcross-modeland a modelling dependency exist
∀r ∈ RelA and∀r ∈ RelB. SinceRelM = RelA ∪ RelB ∪ Relcross-model, a dependency exists
in the ADG∀r ∈ RelM. For other MREs,RelA, RelB andRelcross-modelmay contain other
combinations of cumulative, distributive and modelling dependencies.

In addition to the relationships inRelM, the ADG captures interaction dependencie
Interaction dependencies are a starting point for applying the effects of interactions
discuss applying the effects of interactions in §6.3. After the ADG is constructed,
designer must choose appropriate mapping functions to perform the actual transl
among attributes for each dependency. Next, we show how to select these functions

6.2 Selecting Mapping Functions
Mapping functions translate value spaces or changes to values of attributes. An

indicateswhich attributes must change when an interaction occurs. Mapping funct
along with an ADG indicatehowthe attributes must change. Mapping functions determ
whether a relationship holds, i.e., whether the dependent attributes are consistent w
independent attributes. Determining whether attributes are consistent entails comp
them. The results of the comparison may be exact or within tolerable error.

Mapping functions translate value spaces or changes in the values of attributes.
an attribute changes as a result of an interaction, invoking appropriate mapping func
is necessary to ensure that dependent attributes change as well. Therefore, either t
value of an independent attribute or the change to its previous value must be transla
new values or changes to previous values of dependent attributes.
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A mapping function may translatevalue
spacesamong attributes, i.e., the function has
the form ∀ti, ti+1, Q(ti+1) = f(Q(ti), P(ti+1)),
where P(ti+1) is determined by applying the
changes∆P(ti) to P(ti). For example, a mapping
function f translates tank ammunitions to
platoon firepower. Here, Q = {Fire} and
P = {Ammo1, Ammo2}. An implementation off
is shown in Figure 32. Since cumulative
dependencies connect the ammunitions to the
firepower, a mapping function must include the
contributions of each tank ammunition to
compute the platoon firepower. Accordingly, the
mapping function must utilise the weights on the cumulative dependencies.

A mapping function may translatechanges
to valuesamong attributes, i.e., the function has
the form ∀ti, ∆Q(ti) = f(Q(ti), ∆P(ti)), where
Q(ti+1) is determined by applying the changes
∆Q(ti) to Q(ti). For example, a mapping
function g translates a change in platoon
strength to changes in tank hits. Here,
Q = {Hits1, Hits2} and P = {Str}. An
implementation ofg is shown in Figure 33.
Since distributive dependencies connect the
strength to the hits, a mapping function must
distribute the change in the platoon strength to
changes in each tank hits. Accordingly, the
mapping function must utilise the weights on
the distributive dependencies.

6.3 Traversing an ADG
After an ADG has been constructed and mapping functions selected, a CE

maintain consistency within an MRE by traversing the ADG and invoking the appropr
mapping functions. An interactionI may change the values of any attributes. The
changes must propagate to dependent attributes. By traversing an ADG, a CE prop
I.affects via interaction dependencies, andI.affects+ via cumulative, distributive and
modelling dependencies. For each arc traversed, a mapping function computes the c
to a dependent attribute as a result of a change to an independent attribute.

6.3.1 Algorithm for Traversing an ADG
Ensuring internal consistency within an MRE involves traversing an ADG whe

change to any attribute occurs. The effects of an interaction can be applied by trave
an ADG and invoking appropriate mapping functions. In OMTR, a similar concept is
called propagation [RUM91]. Initially, an MRE is internally consistent; all relationships i
RelM hold. When an interactionI occurs, a CE traverses an ADG starting from the nod

FIGURE 32: Mapping Value Spaces

Ammo1

Ammo2

Fire

W1 W2

Fire = f(Ammo1, Ammo2)

Fire = W1∗Ammo1+W2∗Ammo2

∆Hits1 = ∆Str∗W1÷(W1+W2)

(∆Hits1, ∆Hits2) = g(∆Str)

FIGURE 33: Mapping Changes in Values

∆Hits2 = ∆Str∗W2÷(W1+W2)

Hits1

Hits2

Str

W1 W2
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corresponding to the attributes inI.affects. I.affectsis computed from semantic knowledg
about the interaction. After the changes inI.affectsare applied, the MRE is temporarily
inconsistent. In order to regain the consistency of the MRE, its ADG must be trave
beginning from the nodes corresponding to the attributes inI.affects. For each arc
traversed, a mapping function must be invoked to change dependent attributes.

In Figure 34, we present an algorithm for ADG traversal. The outer loop in
algorithm implicitly assumes that interactions are serialized. The first step in the
initialises a set,S, which will contain the effects of an interactionI. The first inner loop
includesI.affectsin S. These effects can be represented by tuples, each consisting
attribute and a change to it. The change to an attribute depends on the semantics
interaction. Finally, in the second inner loop, for each unvisited element inS, the change
to an attribute is applied, and the change to dependent attributes is computed and in
in S. Marking an attribute as visited ensures that the effects of an interaction are no
applied to the attribute. The change to an attribute,a, as a result of the interaction depend
on the semantics of the attribute. Attributes dependent ona can be determined from the
ADG. For each dependent attribute, a mapping function translates the change to the
of the attribute. If a dependent attribute changes, a tuple consisting of the attribute a
change is included inS to account forI.affects+.

We step through the algorithm in Figure 34 with an example. Let a tank in our exam
MRE receive amoveinteraction. This interaction changes the position of the tank,
Pos2. Therefore, a tuple consisting of Pos2 and a change to Pos2 is included inS. When the
change to Pos2 is applied, the MRE is temporarily inconsistent. In order to regain
consistency of the MRE, a CE must traverse the ADG beginning from the n
corresponding to Pos2. The attributes that depend on Pos2 are: Pos, Pos1, Pos2, Form, App,
Dam1 and Dam2. Figure 35 shows a sub-graph of the ADG with only the nod
corresponding to attributes connected transitively to Pos2. A CE must invoke mapping
functions to translate changes to each of these attributes. For example, the change
may be computed as the centroid of Pos1 and Pos2. If the change to Pos is non-zero, then
tuple consisting of Pos and its change is included inS. In like fashion, the CE propagate
the effects of the interaction to each dependent attribute. Figure 36 shows a partia
corresponding to the propagation of the change to Pos2 to dependent attributes.

FIGURE 34: Algorithm for ADG Traversal

For each interaction I
Set S ← ∅
For each attribute a in I.affects

S ← S + <a, δa> // interaction effect
For each unvisited element <a, δa> in S

mark <a, δa> visited
a ← function of a, δa // attribute semantics
For each attribute d dependent on a in ADG

δd ← function of a, δa, d // mapping function
If δd ≠ 0 // or non-negligible

S ← S + <d, δd>
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The algorithm in Figure 34 includes but intentionally does not make apparent intri
issues in ADG traversal, for example, cyclic dependencies and traversal path. We ad
these issues next.

6.3.2 Cyclic Dependencies
Cyclic dependencies among attributes may cause traversal of an ADG to n

terminate. For example, when an interaction changes Pos2, a CE changes Pos because
the cumulative dependency from Pos2 to Pos. The CE propagates the change to Pos
Pos1 and Pos2 because of distributive dependencies. Since Pos2 has already changed
because of this interaction, the CE must stop the propagation of effects from Pos. If th
does not stop the propagation of effects, the MRE may never reach a state at
consistency can be evaluated. Although an ADG may have cycles, the propagati
effects must be non-cyclic. It is reasonable for attributes to be mutually depen
However, cycles should not prevent the graph traversal from terminating.

Reversible mapping functions break cycles in ADG traversal. If reversible map
functions translate attributes, then the change to some attributes may be null, which b
the cyclic traversal between them. In case of attributes for which reversible map
functions cannot ensure zero change, the final condition in Figure 34 should be mo
such that a tuple is included inS only when a non-negligible change occurs. Reversib
mapping functions ensure that a change to Pos due to an initial change to Pos2 does not
affect Pos2 again. Let mapping functionsf andg translate Pos2 to Pos and Pos to Pos2
respectively. Ifg(f(Pos2)) = Pos2, thenf andg are reversible. When an interaction chang
Pos2, f changes Pos, andg ensures that a subsequent change to Pos2 will be zero. In
Figure 34, effects are included inS only if necessary. Therefore, the zero change to Pos2 is
not included inS, breaking a cyclic traversal. When all cyclic traversals are broken,
traversal of an ADG can terminate. If ADG traversal terminates, an MRE can
consistent before the next observation point.

FIGURE 35: Applying the Effects of an Interaction

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

Pos1Dam1

Pos2Dam2

PosFormApp
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6.3.3 Unplanned Dependencies
ADGs enable designers to identify and capture combined semantics of mu

models. Unplanned dependencies are an example of the combined semantics of j
executing models. An ADG captures attribute dependencies that may not have
planned by designers of the individual models. For example, the designer of the
model may not have expected Pos2 and Dam1 to be dependent. However, because
transitive dependencies, these attributes are related, as seen from Figure 36.

6.3.4 Traversal Path
An issue with ADG traversal is the order in which a CE propagates the effect

interactions. When an interaction changes an attribute, a CE may change other attr
subsequently. For example, in Figure 36, if an interaction changes Pos2, a CE must change
Pos and Form. Suppose the CE changes Pos first. Next, it must change Form (beca
the original change to Pos2) and Pos1 (because of the change to Pos). Changing Form fi
implies a breadth-first traversal of the ADG, whereas changing Pos1 first implies a depth-
first traversal. Other traversal orders are possible as well. Ideally, all traversal o
finally must propagate the effects in the same manner. Practically, because of
accumulated during attribute translation, or because attribute translations are
commutative, different traversal orders may produce different results.

A breadth-first traversal is well-suited for propagating the effects of interactions.
distributive dependencies, the nature of the dependencies requires that effects pro
breadth-first. Moreover, when the comparison for consistency among attributes is ine
i.e., they are consistent within tolerance, longer paths may accumulate errors that
reversibility to fail. With breadth-first traversal, a CE chooses the shortest paths bet
the initial attribute and dependent attributes [CORMEN89]. Intuitively, when an interaction
changes an attribute, dependent attributes that are “closer” to the attribute in the ADG
reachable by fewer arcs, are affected more immediately by the interaction. Therefo
CE should change those attributes earlier.

FIGURE 36: Propagation of Interaction Effects

Pos2

Pos Form

AppPos1 Pos2 Pos1 Pos2

Dam1 Dam2Pos

Pos1 Pos2 App App
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The algorithm in Figure 34 can be refined to mandate breadth-first traversal.S should
be changed to a queue so that tuples are pushed the end of a queue. When se
attributes dependent on the current attributea, only attributes connected directly toa must
be included. Including only directly-connected attributes and makingS a queue ensure
that the effects of an interaction are applied breadth-first.

For our example MRE, we show how a CE propagates the effects of amoveinteraction
to attributes. We indicate the cause of each attribute change as well. Table 8 show
effects of this interaction. The first column lists the attributes changed by the interac
The second, third and fourth columns list the change to an attribute, the dependenc
caused the change and the interaction or independent attribute for that change. The
in which we list changes to attributes corresponds to a breadth-first traversal of an
for our MRE, i.e., a breadth-first traversal of the graph in Figure 36.

6.4 Possible Implementations of a Consistency Enforcer
Constructing a CE for an MRE is a reasonably straightforward task. A module f

CE may be implemented in a number of ways, as we show in the following sub-sect
We discuss broad implementation details in order to show that the CE is not a “black
that magically solves consistency maintenance — one of the hardest problems in M

TABLE 8: Effects of an Interaction

Attribute Change Dependency From Comment

Pos2 δP2
1 Interaction move Direct effect of interaction

Pos δP1 Cumulative Pos2

Form δF1 Cumulative Pos2

Pos1 δP1
1 Distributive Pos δP1

1 = 0 — Pos2 is unrelated to Pos1

Pos2 δP2
2 Distributive Pos δP2

2 = 0 — reversible mapping functions

Pos1 δP1
2 Distributive Form

Pos2 δP2
3 Distributive Form δP2

3 = 0 — reversible mapping functions

App δA1 Modelling Form

Pos δP1 Cumulative Pos1

Dam1 δD1
1 Distributive App

Dam2 δD2
1 Distributive App

Pos1 δP1
2 Distributive Pos δP1

2 = 0 — reversible mapping functions

Pos2 δP2
4 Distributive Pos δP2

4 = 0 — Pos1 is unrelated to Pos2

App δA2 Cumulative Dam1 δA2 = 0 — reversible mapping functions

App δA3 Cumulative Dam2 δA2 = 0 — reversible mapping functions
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6.4.1 As-Is
The most straightforward implementation of a CE is “as-is”; the ADG is instantia

as a graph data structure and mapping functions are function calls associated with ea
in the data structure. This implementation is effort-intensive for the designer but no
naïve as it first seems since it gives the designer the freedom to hand-craft relation
mapping functions and traversal strategies that are best-suited for an application.

6.4.2 Spreadsheets
In a spreadsheet, data are organised as tables. Each spreadsheet element is a

uniquely by row and column number. Each element may consist of a data value
function. In the latter case, the value of the element is computed by invoking the fun
on data values or elements specified along with the function.

A CE can be implemented as a spreadsheet that has an element for each attribute
ADG. The strict organisation of a spreadsheet as rows and columns is inconvenient b
restrictive. Mapping functions are specified by making some elements of the spread
functions of other elements. However, typical spreadsheet functions are awkwar
mapping functions. In typical spreadsheets, the function used to compute an elem
indistinguishable from the value of the element, i.e., the function and the value for ele
change jointly. Therefore, if we change the value of an element, we automatically ch
the function that computes the element as well. Changing a function change
relationship among elements in the spreadsheet, thus changing the relationship a
attributes in the MRE. Changing the relationship may not have been part of the sem
of the interaction. A work-around for this problem involves using multiple elements fo
attribute: one for the value and one for each relationship in which this attribute depen
other attributes. Not only is this work-around inelegant, but it also leads to circ
references, i.e., elements that refer to one another. Spreadsheets such asExcel* permit
circular functions. Typically, such functions are invoked iteratively. In the first iterati
the values of elements are computed left-to-right top-to-bottom with initial values for
elements. In the next iteration, the values of the elements are re-computed left-to
with values from the previous iteration. This process is continued until the numbe
specified iterations is exhausted. At the end of any iteration, including the final one
values of some elements may not satisfy all relationships. Therefore, some re
attributes may be inconsistent. Cyclic dependencies in an ADG increase the numb
circular references in a spreadsheet. Finally, the traversal strategy in a spreadsheet
to-right and top-to-bottom, not the desired breadth-first strategy.

A spreadsheet implementation for a CE is suited only for very simple ADGs whe
cyclic dependencies are limited and left-to-right top-to-bottom traversal is sufficien
approximate breadth-first traversal.

6.4.3 Attribute Grammars
An attribute grammar enables specifying meaning to a string derived from a con

free grammar [KNUTH68] [KNUTH71]. Properties† associated with non-terminals, an
functions associated with productions define the semantic meaning of strings.Synthesised

* Excel is a registered trademark of Microsoft.
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properties are defined solely in terms of the descendents of the corresponding
terminal symbol, i.e., in terms of the properties of the symbols on the right-hand side
production. Inherited properties are defined solely in terms of the ancestors of
corresponding non-terminal symbol, i.e., in terms of the properties of the symbols o
left-hand side of a production. Synthesised and inherited properties are duals; synth
properties alone are sufficient for attribute grammars. Attribute grammars have been
to design language-specific editing environments [HOR86]. Attribute grammars have bee
extended to include context-sensitive languages [REPS84].

A CE can be implemented as an attribute grammar that has a non-terminal for
attribute in the ADG. The property associated with each attribute is its va
Relationships among attributes are specified as productions in the grammar. Fun
associated with each production compute the inherited properties of the non-termina
the right-hand side of the production. A string derived according to this gram
corresponds to the effects of an interaction.

A number of factors make attribute grammars somewhat awkward for the design
CE. First, a grammar in which all attributes are non-terminals will never terminate bec
there are no terminals. Second, attribute grammars disallow cyclic dependencies
such dependencies lead to infinite invocations of productions in a grammar. Third
traversal strategy in attribute grammars is depth-first. All of these factors can be res
by having separate grammars for each attribute. In other words, a separate gramm
each attribute in the ADG must specify how a change to the attribute affects depe
attributes. The non-terminal for each attribute is the start symbol for its own grammar
terminals in each grammar serve merely to break dependency cycles among attri
Thus attribute grammars can accommodate cyclic dependencies (by having se
grammars for each attribute) yet propagate effects of an interaction non-cyclically (
each grammar has no cycles).

Although the specification of mapping functions and a traversal strategy is n
intuitive, attribute grammars can be used to implement CEs.

6.4.4 Mediators
A mediator captures behavioral relationships in complex systems [SULL94]. A

mediator is a first-class implementation object that realises behaviours external
Abstract Behavioral Type (ABT). An ABT characterizes a class of objects in terms o
data, operations on data and events that trigger other behaviours.

A CE can be implemented as a number of ABTs whose relationships are realise
mediators. Each attribute in the ADG is an ABT. The value of the attribute is the datu
the ABT. Reading and writing the datum are operations on the ABT. The only e
generated by the ABT is when the value of the datum changes. Mediators captur
behavioral relationships among ABTs, i.e., mediators encode the mapping func
among attributes. When an attribute ABT announces an event signifying that its datum
changed, mediators invoke the appropriate operations to ensure that relationships
all attribute ABTs hold.

† Meaning is assigned to a non-terminal in an attribute grammar by associating anattributewith
it. To avoid any confusion with our definition of an attribute — a part of a representation — we
use the termproperty to mean an attribute of a non-terminal in attribute grammars.
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The benefit of using mediators to design CEs is that consistency maintenan
decoupled from the design of the representation. Mediators, which are instantiated
for ensuring that relationships among attributes hold at all times, free designe
representations from the concerns of consistency maintenance. Mediators mu
designed carefully to ensure that the desired graph traversal strategy is realised
appropriate attribute ABT events.

6.4.5 Constraint Solvers
Dependencies among attributes may be viewed as constraints [ALLEN92] [HILL 92A]

[HORR92]. A constraint restricts the range of a dependent attribute. In the absence o
constraint, the range of a dependent attribute encompasses all values permitted by th
of the attribute. In the presence of a constraint, the range of a dependent attribute is l
by the relationship between the dependent and independent attributes.

A CE can be implemented as a constraint solver. The attributes in an ADG can b
symbols in a constraint-solving system. Mapping functions can be implemented u
unification. Constraints define relationships among attributes as well as legal rang
values of attributes. Many constraint-solving systems solve constraints among boole
even numerical variables. Constraint solving in the Herbrand universe, which is the u
of all symbols in a system, can be complex [FRÜH92A] [FRÜH92B] [JAFFAR94] [VAN96].
However, constraint systems can be simplified in many ways, such as incorpor
optimizations [MARR93], exploiting constraint independence [GARCÍA93], using
incremental constraints [FREE90], and building linear systems of equations that can
solved in polynomial time for numerical variables [JAFFAR92] [CORMEN89].

A general constraint solver may be too powerful for the relationships among attrib
We expect the relationships among attributes in a multi-representation model to be s
relationships. Since the multiple models represent the same object or process, typ
the relationships are those of equality (within tolerable error), whole-to-parts or part
whole. Accordingly, the constraints within an MRE may be solved relatively simp
Therefore, a constraint solver specific to the domain of the attributes of the mul
representations would be suited for the design of a CE.

6.5 Chapter Summary
A Consistency Enforcer (CE) maintains internal consistency within an MRE. A

consists of an Attribute Dependency Graph (ADG) and mapping functions. A CE ma
implemented in a number of ways, such as spreadsheets, mediators and constraint 

An ADG captures dependencies among attributes in concurrent representa
Individual attributes and the dependencies among them are the nodes and arcs in an
We classify dependencies into four categories: cumulative, distributive, interaction
modelling. Semantics associated with dependencies capture semantics of relatio
among attributes. Classifying dependencies and assigning semantics to them ai
construction of appropriate mapping functions that translate attributes. Traversin
ADG propagates the effects of an interaction to all dependent attributes. Whe
interaction changes the value of any attribute, traversing the graph and invoking
mapping functions associated with each arc can make the MRE consistent again.
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Mapping functions encode application-specific translations of values and chang
values among attributes. Mapping functions must translate attributes and chang
attributes. Also, mapping functions must be composable and reversible and must com
their translations before the next observation point.

As long as single interactions occur or concurrent interactions are always seria
ADGs and mapping functions maintain consistency in an MRE. In the next chapter
show the design of an Interaction Resolver to resolve the effects of concu
interactions. When concurrent interactions occur, we utilise semantic information a
the interactions in order to resolve any dependencies among them. The CE appli
effects of the resolved concurrent interactions.
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For effective MRM, the effects of dependent concurrent interactions must be reso
in accordance with model requirements. Often, concurrent interactions may
dependent effects, for example, precluding or enhancing the effects of one an
Traditionally, the effects of concurrent interactions have been resolved by serializatio
which the interactions are ordered arbitrarily. However, serialization is often inapprop
because it isolates even those interactions whose effects must be applied concur
Other policies, such as combining or ignoring some or all interactions, do not isolat
interactions and may be more suitable for resolving dependent effects.

In Chapter 5, we presented Multiple Representation Entities (MREs). AnInteraction
Resolver(IR) is a component of an MRE that encodes policies for resolving the effect
concurrent interactions. Since specifying policies for all possible concurrent interac
can be complex, we present a taxonomy consisting of classes of interactions. We a
that designers of multi-models understand the semantics of interactions in
application well enough to classify interactions and formulate policies for resolv
concurrent instances of classes of interactions. We present example policies for res
classes of concurrent interactions. Our taxonomy enables a designer to choose appr
policies for resolving concurrent interactions.

We describe interactions in §7.1. In §7.2, we discuss serialization and its alterna
In §7.3, we motivate the need for policies other than serialization. In §7.4, we explor
problem of dependent concurrent interactions by means of an abstract application
start with a simple system, add one dependency among its components, and stu
effect of single, and subsequently, multiple interactions. We show how resolving
effects of concurrent interactions can be a complex design issue. In §7.5, we pres
taxonomy to classify interactions based on intrinsic characteristics of interactions
encountered often in models. These characteristics lead naturally to policies for clas
interactions. We present example policies in §7.5. We describe the operation o
Interaction Resolver for an example MRE in §7.6.
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7.1 Interactions
Entities communicate with one another or influence one another by mean

interactions. As described in §3.2, an entity changes its own or another entity’s beha
by means of an interaction. Interactions are a fundamental part of any useful m
because they connect the model to its environment. We regard a communication be
any two entities as an interaction.

Interactions are ubiquitous — they may be physical occurrences such as movem
temperature increase or an explosion, or some sort of communication, such as a tele
broadcast, a dissertation submission or an order received from a superior. Examp
interactions are database transactions and operations [ESWA76]; processor interrupts;
cache operations [HENN96]; reads and writes to shared memory in parallel process
systems; operations, events and actions in object-oriented and process modelling [RUM91]
[SHLAER92] [ALHIR98]; method invocations and function calls in object-oriented syste
messages in distributed processing systems and logical time systems [LAM78]; accesses to
a blackboard [ERMAN80]; and exceptions in programming languages [GOOD75]. We
include all of these interactions as well as changes an entity makes to its own state
definition of interactions. Since we are concerned only with the effects of interactions
consider specific techniques for implementing interactions to be irrelevant to our wo

A model that permits concurrent interactions requires a policy to resolve
dependencies among interactions and a mechanism to implement the policy.
traditional policy for resolving the effects of concurrent interactions is serialization.

7.2 Serialization
Serialization, the traditional policy for resolving the effects of concurrent interactio

involves applying those effects in sequential order, i.e., one after another. Serializatio
valid policy for resolving the effects of concurrent interactions in many domains,
example, databases. Consider the clients and server in the system in Figu

Transactions from a client to the server are interactions, indicated by arrows. If only
client interacts with the server at any given time, the server returns to a valid state triv
at the end of each interaction. If multiple clients interact with the server concurre
ensuring that the server returns to a valid state is non-trivial.

Consider two interactions,I and J, independently issued to Server by Client1 and
Client2 respectively.I andJ each consists of operations, i.e., reads and writes, to varia
a andb, denoted byR( a) , R( b) , W(a)  andW(b) .

I: R( a)W( a)R( b)
J: R( b)W( b)W( a)

Server’s state will be as if Client1 issuedI to Server and whenI completed, Client2 issued
J to Server, or the other way around. Each client may not be aware of the other’s pre

FIGURE 37: Clients and Server

ServerClient1 Client2
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since the system guarantees that its behaviour will be as if each client is the only
interacting with the server. This property of the system’s behaviour, calledisolation, is one
of the ACID properties for database transactions [HAER83].

The actual order in which operations occur on Server is called aschedule. In a serial
schedule, interactions are ordered one after another [PAPA86]. A serial schedule ensure
that clients interact with the server in isolation.Z1 andZ2 below are serial schedules forI
andJ. For clarity, we underlineI’s operations in every schedule.

Z1: R( a)W( a)R( b)R( b)W( b)W( a)
Z2: R( b)W( b)W( a) R( a)W( a)R( b)
When I and J occur concurrently, the system must control how these interacti

change Server. SinceI andJ are concurrent, their operations may interleave. A possi
interleaved schedule forI andJ is Z3 below*. Z3 is not a serial schedule becauseI andJ are
not ordered one after another.

Z3: R( a)R( b) W(a)W( b)W( a) R( b)
A schedule isserializableif it is equivalent to a serial schedule for some definition
equivalence [ESWA76]. If Z3 is equivalent toZ1 or Z2, Z3 is a serializable schedule
Serialization is a policy that resolves concurrence by permitting only serializa
schedules, i.e., by ordering or interleaving concurrent interactions appropria
Concurrency control mechanisms, such as locking and time-stamp ordering are us
implement serialization.

Serialization has been chosen as a policy for resolving interactions in database sy
because it satisfies clients’ expectations of isolation yet permits concurrence [PAPA86]
[BERN87]. Isolation assumes that client interactions are not predicated on one anothe
they are independent of one another. Serialization isolates client interactions.

Some researchers have recognised that serialization can be too strict for
concurrent interactions. In advanced databases, serialization can reduce concu
significantly. Accordingly, researchers have proposed alternative policies that rela
extend serialization yet maintain isolation. These policies utilize varying levels
semantic information about transactions in order to increase concurrence yet ma
database consistency. Semantic information has been utilized for scheduling lon
short transactions [BRAHMA90]; extending and relaxing serialization [BARG91]; applying
counter-transactions [GARCIA83]; commuting interpreted operations on abstract data ty
[WEIHL88]; aborting conflicting transactions [BARG91]; and recovering database state
[BADRI92]†. In general, serialization is considered correct but too strict, and alterna
criteria relax or extend serialization in order to permit increased concurrence [BERN81]
[LYNCH83] [MUNSON96] [KORTH88] [THOM98]. Moreover, isolation of transactions i
considered a desirable property of database systems. Next, we discuss situations
isolation may be undesirable.

* We assume that the individual operations, i.e., reads and writes, are indivisible and atomic.
† A detailed analysis of each correctness criterion and policy presented for databases would ta

up too much time and space. Over 100,000 pages of new material are published every year
databases alone [DATE95].
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7.3 Abandoning Isolation
For some applications, the system must not isolate concurrent interactions since

may be dependent on one another. Serialization and alternative policies that rel
extend serialization isolate interactions. Therefore, they cannot be correct policie
resolving the effects of dependent concurrent interactions. Correct policies for t
interactions must provide alternatives for isolating the interactions.

In the following examples,not isolating concurrent interactions, i.e., abandonin
isolation, enables resolving their dependent effects correctly. Consider entities E1 and E2
that concurrently write to an attributev with the interactions E1.W(v, …) and E2.W(v, …).
The ellipses denote other interaction parameters. A sequential order for these intera
could be E1.W(v, …) followed by E2.W(v, …) or E2.W(v, …) followed by E1.W(v, …).

In a model of a billiards table, E1 and E2 could be ball entities andv could be the
velocity of a ball. The two interactions could be E1.W(v, δv1) and E2.W(v, δv2), whereδv1 is
a change inv caused by E1 andδv2 is a change inv caused by E2. The correct policy to
resolve these two interactions is to changev by the vector addition ofδv1 and δv2.
Serializing these interactions may be incorrect for a number of reasons as discussed
Let ⊕ denote vector addition.v1, v2 andv3 are three possible outcomes of addingδv1 and
δv2 to the original valuev0 of the velocityv.

v1 = (v0 ⊕ δv1) ⊕ δv2
v2 = (v0 ⊕ δv2) ⊕ δv1
v3 = v0 ⊕ (δv1 ⊕ δv2)

The parentheses show the order in which the interactions take effect.v1 and v2 are
computed by serializing the two interactions. In contrast,v3 is computed by combining the
two interactions before applying them tov. Mathematically,v1 = v2 = v3. However, when
executing a model, the results of these orderings can differ. For example,δv1 andδv2 may
be so small that adding them tov0 individually does not change the velocityv. However,
δv1 and δv2 combined may be sufficient to changev. In such a case,v1 = v2 ≠ v3. This
thresholding anomaly may occur because of low precision in the representationv.
Another instance of thresholding could be thatδv1 andδv2 can overcome the inertia of the
entity with velocityv when combined, but not individually. As another example, supp
an entity E3 continuously plots the trajectory of the ball with velocityv. If v changes tov1
or v2, E3 will plot two changes, whereas ifv changes tov3, E3 will plot only one change.
This example is an instance of temporal inconsistency.v1 and v2 are computed by
serialization, whereasv3 is computed by combination. For this model, combination is
more meaningful policy than serialization.

In a model of an autonomous agent, E1 could be a planner that pre-determines th
steps to fulfill the agent’s goal, E2 could be a perception-action (PA) system that obser
and acts on the agent’s environment, andv could be the visibility of an obstacle. The two
interactions could be E1.W(v, yes ) and E2.W(v, no), implying that the planner reports tha
the obstacle can be seen, whereas the PA system reports that the obstacle is h
Serializing these interactions causes the final value ofv to be eitheryes or no arbitrarily.
However, applying E2’s interaction and ignoring E1’s interaction may be a more
reasonable, if pessimistic, policy to resolve these interactions. Alternatively, applying1’s
interaction and ignoring E2’s interaction may also be a reasonable, if optimistic, polic
Another reasonable policy may be to construct a belief system that assigns weights
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two interactions for a final value ofv that is not bi-modal. Ignoring one or the other o
weighting both interactions are policies that ensure meaningful behaviour when
interactions occur concurrently.

In a model of a chemical reaction, E1 could be an acid entity, E2 could be a catalyst
entity, andv could be the volume of a by-product retrieved at the end of the reaction.
two interactions could be E1.W(v, δv1) and E2.W(v, δv2), whereδv1 andδv2 are increases in
the value ofv when E1 and E2 are added. In chemical reactions, it is well-known th
adding a catalyst can increase the rate of a reaction tremendously. As a result, th
change inv may be more thanδv1 + δv2. Serializing the interactions does not capture t
cooperative nature of these interactions. If the interactions are serialized, then eith
model’s representation must be augmented with an attribute that keeps track of wh
the acid or catalyst has been added previously, or the model must capture the effe
adding a catalyst — an increase in the surface area of the reaction — at a finer le
detail. Alternatively, a special policy can be formulated to increasev appropriately if these
concurrent interactions occur.

In the above examples, serializing concurrent interactions produces uninte
effects. Isolating them from one another produces effects that are semantically inco
Since serialization and alternative policies that relax or extend serialization iso
interactions, none of them is a correct policy for resolving them. These interaction
dependent particularly because they are concurrent. Therefore, they require corre
criteria that abandon isolation. The correctness criteria for dependent concu
interactions are application-specific. Next, with the help of an abstract application
show how resolving the effects of dependent concurrent interactions by aband
isolation makes the design of a system complex.

7.4 Switches — A Simple System
We use a simple system of switches as an abstraction for models with concu

interactions. We add constraints to the initial model, explaining the effort require
design the corresponding system. Next, we introduce dependent concurrent intera
and show how designing such a simple system becomes complex. We argue th
effects of dependent concurrent interactions must be resolved in an organised mann

7.4.1 Unconstrained System
We begin with an unconstrained system. Consider

the switches SA, S1 and S2 in Figure 38, each with two
states: on (or 1) and off (or 0). A client may turn a
switch on or off by an interaction (shown by an arrow).
The state of the system is an ordered triplet, individual
triplet elements being the states of SA, S1 and S2 respectively. In the state transition
diagram in Figure 39, an oval is a possible state of the system, a solid arrow is a
transition caused by turning one switch on, and a dashed arrow is a state transition c
by turning one switch off. Transitions that cause the system to begin and end in the
state, for example, turning S1 off in the state [0 0 0], are not shown in Figure 39 to redu
clutter. Since the switches are independent, all possible states are present in th
diagram.

FIGURE 38: Switches

SA

S1 S2
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7.4.2 Constrained System
Most practical systems are constrained, i.e., there

exist relationships among components of the system.
Accordingly, we add a constraint to our switches:

If S1 and S2 are both on, then SA must be on.
This constraint can be re-written as (S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1).
As a result of this constraint, the switches are no longer
independent. Figure 40 shows the new version of the switch system
with the constraint depicted by arrows between the switches. The
arrows merely depict a dependency between switches without
outlining the nature of the dependency. The new set of valid states
for the system is a subset of the old set of valid states. Figure 41
shows the new set of valid states. The crossed-out state does not
exist in the new system.

Usually, constraints reduce the possible states of a system, i.e., some states
unconstrained state transition diagram become unreachable. All transitions going
those states must be redirected elsewhere. The implications of the reduction in the
valid states on the state transition diagram are shown in Figure 42. The oval correspo
to the state [0 1 1] has been removed since that state can never be reached. The o
arrows from that state have been removed since transitions from an unreachable st
meaningless (unless error recovery is desired). The arrows from the states [0 1 0
[0 0 1] to [0 1 1] have been redirected to [1 1 1] in accordance with the constra
However, the constraint does not indicate which state to transition from [1 1 1] if onlyA
is turned off. In theory, it is possible to transition to any of the seven states (or ev
hitherto absent state) in such a situation. However, let us abide by the constraint as
possible. The following are re-statements of the constraint.

(S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1)
¬((S1 = 1) ∧ (S2 = 1)) ∨ (SA = 1) [Implication rule]
¬(S1 = 1) ∨ ¬(S2 = 1) ∨ (SA = 1) [DeMorgan’s laws]
(S1 = 0) ∨ (S2 = 0) ∨ (SA = 1) [Switch states]
(SA = 1) ∨ (S1 = 0) ∨ (S2 = 0) [Re-arrangement]
¬(SA = 1) ⇒ (S1 = 0) ∨ (S2 = 0) [Implication rule]
(SA = 0) ⇒ (S1 = 0) ∨ (S2 = 0) [Switch states]

FIGURE 39: State Transition Diagram

0 0 0

0 0 10 1 01 0 0

0 1 11 1 01 0 1

1 1 1

FIGURE 40: Constrained

SA

S1 S2

FIGURE 41: New

SA S1 S2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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The last statement suggests what to do when SA is turned off while S1 and S2 are on. In
order to keep transitions deterministic, we choose [0 0 1] arbitrarily as the stat
transition from [1 1 1] in case SA is turned off, i.e., we turn S1 off.

State transition diagrams describe a model effectively when sequences of intera
occur. The effects of each interaction are captured by appropriate transitions. Since
transition diagram can never put the system in an inconsistent state, every interactio
take effect without violating any constraint. Concurrent interactions, whether depende
not, introduce problems with state transition diagrams, as we show next.

7.4.3 Dependent Concurrent Interactions
In order to demonstrate the effects of dependent concurrent interactions that can

serialized, we add new transitions. Consider the switch system from §7.4.2, with
concurrent interactions. Let the system be in the state [0 0 1], and let the two interac
be turning SA off and turning S1 on. If we serialize the interactions, turning SA off before
turning S1 on results in the transitions [0 0 1]➛ [0 0 1] ➛ [1 1 1], while turning S1 on
before turning SA off results in the transitions [0 0 1]➛ [1 1 1] ➛ [0 0 1]. The order in
which the concurrent interactions are serialized determines the final state of the syst
the final state is immaterial as long as the system stays in a valid state, i.e., a state p
in the state transition diagram, then serialization is correct but non-deterministic.

For deterministic behaviour, we add other state transitions that capture the effe
concurrent interactions. In Figure 43, we add a transition between [0 0 1] and [0 1 0].
semantics of this transition could be, for example, that if SA is turned off and S1 is turned
on concurrentlyin the state [0 0 1], then transition directly to state [0 1 0]. The fact th
the interactions were concurrent caused this transition, and the final state of the tran
is different from that if the two interactions were serialized.

1 1 0

FIGURE 42: Constrained State Transition Diagram

0 0 0

0 0 10 1 01 0 0

1 0 1

1 1 1

FIGURE 43: Transitions on Concurrent Interactions

0 0 0

0 0 10 1 01 0 0

1 1 01 0 1

1 1 1
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7.4.4 Complexity
We desire systems to behave predictably no matter what interactions occur and

they occur. Accordingly, sequential interactions as well as concurrent interactions
have predictable results. A brute-force approach to resolving the effects of all pos
concurrent interactions is exponential in complexity. Therefore, a means of encodin
dependencies among interactions is necessary.

For the switches system in §7.4.2, given the different kinds of interactions (six ki
turning one of the switches on or off) and the number of different states (seven state
exponential number of transitions are possible on concurrent interactions. In the
case, the total number of transitions for the switch system is: (2number of interaction types− 1)
× number of states= (26 − 1) × 7 = 441. This calculation assumes that concurre
interactions of the same kind can be serialized without changing their effect. In o
words, concurrent multiple occurrences of the interaction to turn S1 off, for example, can
be serialized. Nevertheless, even in our simple system, the number of transitions is
Applications with more attributes, some non-Boolean, are likely to have many more s
than our simple system. Consequently, the number of transitions can grow fu
However, a number of mitigating factors can reduce the number of state transitions
system. In the switch system, in order to reduce the number of possible transition
stipulated that multiple occurrences of the same interaction can be serialized. An
reasonable assumption is that a switch client will not send concurrent on and
interactions to its switches. This assumption reduces the number of transitions t
product of the number of states and the number of all possible concurrent interactions
latter number is the sum of concurrent interactions occurring in all combinations of th
twos and ones. Therefore, the total number of transitions is:
This number of transitions is an upper bound, because we assume that no set of con
interactions is serializable.

Applications must exhibit predictable behaviour when concurrent interactions oc
Serialization is an example of predictability. However, as we have seen in §
serialization fails to resolve dependent concurrent interactions correctly, becau
assumes that the interactions can be isolated. Another example of predictabil
commutation, wherein the effects of commutable interactions are the same regardl
the order in which they are applied [ROSSER82]. Since commutation also assumes th
interactions can be isolated, it cannot resolve the effects of dependent concu
interactions correctly. When dependent concurrent interactions occur, predictability c
achieved by encoding transitions in rigorous formulæ. In such an approach, the beha
of the system when any set of concurrent interactions occur must be encodeda priori.
Such an encoding is similar to specifying transitions in a state diagram for every pos
set of concurrent interactions. As we have shown with our simple switches sys
specifying all possible transitions can become a complex task.

We encode semantic information in interactions in our technique for predict
behaviour when dependent concurrent interactions occur. Our technique does not
interactions, and does not incur the complexity cost of specifying all transitionsa priori.

3
i 

 
i 1=

3

∑ 2i× 7× 182=
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7.5 A Taxonomy of Interactions
The effects of dependent concurrent interactions are application-specific. Spec

policies for resolving the effects of every set of interactions that may occur concurren
a complex design task. However, specifying policies for resolving the effects ofclassesof
interactions can be less complex. We discuss the properties of a good taxonom
interactions. MRM designers may classify their interactions into any taxonomy
exhibits these properties. We present and justify one such taxonomy consisting o
classes of interactions. Our taxonomy is based on semantic characteristics of intera
we encountered often in models. Also, we present policies for resolving the effec
classes of concurrent interactions.

7.5.1 Properties of a Taxonomy of Interactions
A good taxonomy exhibits the following properties [AMO94] [HOW97]:
• mutually exclusive: classes do not overlap
• exhaustive: classes jointly cover all possible members
• unambiguous: classification is independent of the classifier
• repeatable: subsequent trials lead to same classification
• accepted: logical and intuitive classes
• useful: must lead to insights in particular field
MRM designers may choose any taxonomy of interactions as long as it exhibits

above properties. Traditional taxonomies of interactions, for example, readsversuswrites
or serializableversus non-serializable, may not exhibit these properties.

A straightforward classification of interactions is as reads or writes. This classifica
does not exhibit the property of usefulness because there is inadequate sem
information associated with the classes to resolve the effects of concurrent interac
When writes occur concurrently, we cannot determine whether the co-occurrence
happenstance of model execution or whether the writes are simultaneous events.
former case, the writes are independent and indistinguishable from their sequ
occurrence, while in the latter case, they may be dependent concurrent interaction
must be resolved accordingly.

We rejected classifying interactions as serializableversusnon-serializable. Such a
classification does not aid us in resolving non-serializable interactions. Moreo
serializable and non-serializable are relative classes. An interaction may be serial
with respect to another interaction, but non-serializable with respect to yet ano
Therefore, the same interaction falls into both classes, implying that the ch
characteristic does not partition interactions into exclusive classes. In other words
taxonomy does not exhibit the property of mutually exclusive classes.

In §7.5.2, we present a taxonomy of interactions. We identify four characteristic
interactions:request, response, certainanduncertain. By combining these characteristics
we identify four classes of interactions: Types 0, 1, 2 and 3. We were able to categ
interactions encountered in a number of models into these classes. Other characteri
interactions may exist, and if identified, may introduce new classes of interactions, w
may lead to new policies or refinements of our policies for resolving the effects
dependent concurrent interactions. We evaluate our taxonomy in §7.5.3.
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7.5.2 Interaction Characteristics and Classes
We present four interaction characteristics and four classes of interactions that we

defined. We show how to classify interactions based on semantic characteristics
identify four high-level semantic characteristics of interactions. These characteristic
application-independent, i.e., they are not specific to any application. The characte
themselves are well-known; however, using them to classify interactions is novel
identify four interaction classes from these characteristics of interactions.

7.5.2.1 Request and Response
Interactions may be requests or responses. Request interactions are concerned

entity soliciting some behaviour from another entity. For example, when an entity qu
the status of another entity, the former sends the latter a request interaction. Likewise
officer entity orders a soldier entity to fire, the former sends the latter a request intera
Response interactions are concerned with an entity responding to an action genera
part of a model’s behaviour, for example, a request. Responses may not be so
explicitly, i.e., a response may not have a request associated with it. For example, a
update is a response interaction. Likewise, billiard ball entities may send one an
response interactions generated because of a collision.

The distinction between request and response interactions is temporal. A re
interaction is made regarding a future action. A response interaction is made regard
action in the past. An interaction may be a request or a response, but not both‡.

• Request: An interaction concerned with eliciting future behaviour from an entity.
• Response: An interaction concerned with the effects of an action in the past.

7.5.2.2 Certain and Uncertain
Interactions may or may not have the desired outcomes. Certain interactions

predictable outcomes. For example, when billiard ball entities collide, the outcome of
interaction is predictable because of physical laws. Likewise, when an acid entity is a
to an alkali entity, the outcome of their interaction is predictable because of chemical
Uncertain interactions are those whose outcomes are not predictable. For exam
request for information may not always be satisfied, or satisfied truthfully. Likewis
request to perform an action is not guaranteed to be satisfied.

Uncertainty in interactions may be defined along a continuum. For exam
interactions may be distinguished on a scale with completely certain interactions a
end and increasingly uncertain interactions further away from that end. In such a cas
uncertainty of an interaction is a measure of its distance from the completely-certain
of the scale. Priorities may be viewed as an example of such a continuum. High-pr
interactions always take effect preferentially over lower-priority interactions.

‡ Interactions cannot refer to actions in the present. One explanation is that the sender may n
know when an interaction may be received. Therefore, the sender cannot base the effects of
interaction on actions that will happen precisely during the time-step that a receiver receives th
interaction. Another explanation is that we can think of a time-step as having two phases:
send-receivephase during which interactions are sent and received and aperformphase during
which the effects of interactions are applied. If the perform phase occurs first, effects in tha
phase are in the past of the send-receive phase, whereas if the perform phase occurs seco
effects in that phase are in the future of the send-receive phase.
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• Certain: An interaction whose outcome is predictable.
• Uncertain: An interaction whose outcome is unpredictable.

7.5.2.3 Combining Characteristics
Combining these characteristics yields four

classes of interactions, which we name Types 0,
1, 2 and 3. We list the four classes below along
with the conjunction of characteristics that
defines each class. Also, we present an example
interaction for each class. We depict the four
classes in Figure 44.

Type 0: Response ∧ Certain
e.g., physical events

Type 1: Response ∧ Uncertain
e.g., updates

Type 2: Request ∧ Certain e.g., reads
Type 3: Request ∧ Uncertain e.g., orders

7.5.3 Evaluating the Taxonomy
Our taxonomy of interactions exhibits the properties of a good taxonomy discuss

§7.5.1. Our four interaction classes are mutually exclusive since no two of them po
the same conjunction of characteristics. Our taxonomy is exhaustive because the
interaction classes cover all possible combinations of the four interaction character
We believe our taxonomy is unambiguous, repeatable, intuitive and useful.
characteristics capture semantic information about interactions. An interaction ca
classified into our four classes according tosemanticinformation, (i.e., its expected effec
on its sender and receiver), rather than non-semantic information (e.g., its syntax
variables it reads or writes, its size, the time taken to transmit it). We assume m
designers can identify the semantics of an interaction and determine its characte
subsequently. Determining the class of an interaction from its characteristic
unambiguous and repeatable. Our classes are logical combinations of ortho
interaction characteristics. The classes are intuitive because they are derived from
known characteristics of interactions. All of the interactions we have encountered ex
combinations of these characteristics. Next, we will demonstrate the usefulness o
taxonomy by showing how to resolve the effects of concurrent interactions.

7.5.4 Resolving Effects of Concurrent Interactions
We show how to resolve the effects of concurrent interactions based on the two s

characteristics of interactions defined above: responseversusrequest and certainversus
uncertain. Independent interactions are those whose concurrent occurren
indistinguishable from their sequential occurrence. If we can determine that concu
interactions are independent, then they may be resolved by serialization. The follo
properties enable designers to determine whether concurrent interactions are indep

FIGURE 44: Classes of Interactions
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Property 1: If the concurrent occurrence of interactions is indistinguishable
from a sequential occurrence, the interactions are independent.

Argument: Assume the interactions are dependent. Therefore, they are relate
by either cause-effect or concurrence. If they are related by cause
effect, they cannot occur concurrently, since cause precedes effec
If they are related by concurrence, no sequential occurrence of the
interactions can have the same effect as the concurrent occurrenc
Since the interactions do not depend on one another by either
cause-effect or concurrence, the initial assumption is false.

Property 2: If concurrent interactions affect disjoint sets of attributes, they are
independent.

Argument: If concurrent interactions affect disjoint sets of attributes, their
effects can be applied sequentially. Therefore, the concurrent
occurrence of these interactions is indistinguishable from their
sequential occurrence. By Property 1, they are independent.

If concurrent interactions affect disjoint sets of attributes, they are independent. If
do not, theyinterfere, but cannot be determined to be dependent yet. For interactionI1
andI2, if in terms of attributes,I1.affects∗ ∩ I2.affects∗ = ∅ thenI1 andI2 are independent,
else they interfere. Figure 45 shows a number of interactions that occur during a time
Each interaction is shown as a labeled node in a graph. An arc between two n
indicates that the corresponding interactions affect non-disjoint sets of attributes
example, the arc between nodes labeledI2 and I3 indicates that in terms of attributes
I2.affects∗ ∩ I3.affects∗ ≠ ∅. The nodes that transitively affect non-disjoint sets
attributes form isolated sub-graphs. The interactions corresponding to nodes in a
graph are independent of the interactions corresponding to nodes in another sub-
For example, each ofI2, I3 andI4 is independent of each ofI1, I5, I6, I7 andI8. The set of
interactions corresponding to nodes in a sub-graph may be serialized with respect
set of interactions corresponding to nodes in another sub-graph. Therefore, the s
interactions {I2, I3, I4}, { I1} and {I5, I6, I7, I8} can be serialized with one another.

Property 3: Concurrent response and request interactions are independent.
Argument: Consider the interactions occurring during a time-step [ti, ti+1] (see

Figure 46). Response interactions received during this time-step
refer to behaviour prior to timeti. Request interactions received
during this time-step refer to behaviour after timeti+1. Let there be
a timet´ such thatti < t´ < ti+1. Re-arrange the interactions such that

FIGURE 45: Concurrent Interactions Affecting Sets of

I4

I2

I3 I8
I7

I5
I6

I1
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all response interactions occur during the time-step [ti, t´], and all
request interactions occur during the time-step [t´, ti+1]. This re-
arrangement does not alter the semantics of any interaction becaus
all of the response interactions continue to refer to behaviour prior
to time ti and all of the request interactions continue to refer to
behaviour after timeti+1. All of the response interactions can occur
before all of the request interactions. Therefore, the concurrent
occurrence of response and request interactions is indistinguishabl
from a sequential occurrence, namely, responses before request
By Property 1, responses and requests are independent.

When two interactions interfere, but one of them has a certain outcome and the
has an uncertain outcome, then the former takes effect preferentially over the l
Interactions with certain outcomemust take effect, whereas interactions with uncerta
outcome may be ignored, delayed or permitted to take partial effect. A partial effect fo
interaction is its effect on some attributes but not others, or its fractional effect as opp
to its complete effect. If certainty or uncertainty of interaction outcomes is multi-mo
(e.g., as in priorities), then interactions with higher degrees of certainty take e
preferentially over those with lower degrees of certainty.

When two interactions are resolved, either one of them takes effect preferentially
another, or they are combined. In the former case, the preferred interaction retains its
In the latter case, the resultant interaction has the same type as the original interacti
interactions of the same type interfere, they can be resolved by application-sp
policies. For example, if two Type 0 interactions interfere, then they can be combined
policy that reflects domain-specific laws. If they cannot be combined, then the model
be re-designed to avoid such paradoxical interactions. When concurrent interaction
combined, they may have cooperative or competitive effects. When the effect of comb
interactions is “greater” than the combined effects of the individual interactions,
interactions arecooperative. When the effect of combined interactions is “less” than t
combined effects of the individual interactions, the interactions arecompetitive.
Determining “greater” and “less” is application-specific. If cooperative or competi
effects exist and the original interactions are serialized, new interactions can be add
account for these effects.

[ti, ti+1]

FIGURE 46: Independent Concurrent Response and Request Interactions

[ti, t´], [t´, ti+1]

ti ti+1

ti ti+1

Response

Request

t´
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7.5.5 Policies for Resolving Effects of Interactions
In order to resolve the effects of dependent concurrent interactions, we present po

based on the characteristics of interactions, and our definitions of a model and intera
from §3.2. Designers of multi-models may choose from these policies to resolve
effects of dependent concurrent interactions. Recall that the effect of an interactionInt(ti)k
on a state of the model is the changeE(Int(ti)k), and applying the effect of that interactio
on the representationRep(ti) is equivalent to computing a functionF(Rep(ti), E(Int(ti)k))

** .
Applying the resolved effects of all of the interactions in one time-step results in the
of the model at the next time-step.

Serializing: If interactions are independent, their concurrent effects
indistinguishable from their sequential effects (Property 1). Independent interactions
be serialized in an arbitrary order, and permitted to take effect one after another
combined effect of concurrent interactionsI andJ is E(I • J). If I andJ are independent,
their serialized effects areE(I) ◊ E(J). If the effects ofI are applied before the effects ofJ,
we denote the combined effects asE(I), E(J). The effect ofI andJ on the representation
Rep(ti) can be applied by computingF(Rep(ti), (E(I), E(J))). Applying their serialized
effects is equivalent to computing the functionF recursively:F(F(Rep(ti), E(I)), E(J)).

Since no ordering is implied for the interactions within a time-step, the interact
may be ordered arbitrarily. If the representation at timeti+1, Rep(ti+1), is the same no
matter how the interactions are ordered, then the interactions are commutative, i.e
order in which their effects are applied does not change their combined effects.

Response interactions are independent of request interactions because th
temporally disjoint. Accordingly, if the firstk interactions in the setInt(ti) are responses
and all of the remaining interactions are requests, then they can be resolved as belo

** We will use sets and individual elements of a set of interactions interchangeably as paramete
for F andE in order to avoid digressing into more formalisms. Distinguishing the “overloaded”
uses ofF andE will be clear from context.

Int Int t0( ) Int t1( ) Int t2( ) …, , ,( )=

Int ti( ) Int ti( )0 Int ti( )1• …• Int ti( )ni
•( )=

Rep ti 1+( ) F Rep ti( ) E Int ti( )( ),( )=

E Int ti( )0 Int ti( )1• …• Int ti( )ni
•( ) E Int ti( )0( ) E Int ti( )1( ) … E Int ti( )ni

( )◊ ◊ ◊=

E Int ti( )0 Int ti( )1• …• Int ti( )ni
•( )∴ E Int ti( )0( ) E Int ti( )1( ) … E Int ti( )ni

( ), , ,=

Rep ti 1+( ) F F F F Rep ti( ) E Int ti( )0( ),( ) E Int ti( )1( ),( ) …,( ) E Int ti( )ni
( ),( )=

E Int ti( )0 Int ti( )1• …• Int ti( )ni
•( ) E Int ti( )ni

( ) E Int ti( )1( ) E Int ti( )0( ) …, , ,=

Rep ti 1+( ) F F F F Rep ti( ) E Int ti( )ni
( ),( ) E Int ti( )1( ),( ) E Int ti( )0( ),( ) …,( )=

E Int ti( )( ) E Int ti( )0( ) … E Int ti( )k 1–( )◊ ◊( ) E Int ti( )k( ) … E Int ti( )ni
( )◊ ◊( ),=

Rep ti 1+( )

F F Rep ti( ) E Int ti( )0( ) … E Int ti( )k 1–( )◊ ◊,( ) E Int ti( )k( ) … E Int ti( )ni
( )◊ ◊,( )=
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Ignoring : The effects of some sets of dependent concurrent interactions ca
resolved meaningfully by ignoring some of them. For example, if uncertain interact
interfere with certain interactions, the former may be ignored. If the interactions inInt(ti)
are sorted such that the firstk interactions take effect while the rest are ignored, then:

Delaying: The effects of some sets of dependent concurrent interactions ca
resolved meaningfully by delaying some of them. For example, uncertain req
interactions may be delayed if the receiver cannot resolve their effects within the cu
time-step. If the interactions inInt(ti) are sorted such that the firstk interactions take effect
during the time-step [ti, ti+1], while the rest are delayed to a future time-step [tj, tj+1], then:

Combining Cooperatively or Competitively: Resolving the effects of some
dependent concurrent interactions may result in enhancing or diminishing the effec
the individual interactions. If the effects are enhanced, the interactions have coope
effects, whereas if the effects are diminished, the interactions have competitive ef
The effects of such interactions may be resolved by applying the effects of the indiv
interactions as well as compensatory interactions that account for the cooperati
competitive effects. Let two interactions inInt(ti) have cooperative or competitive effects
Let the compensatory interaction be denoted byInt(ti)0, 1. The effect ofInt(ti) is:

7.6 Constructing an Interaction Resolver
An Interaction Resolver (IR) resolves the effects of concurrent interactions receive

an MRE. This process involves determining the class of each interaction, determin
interactions of the same type interfere, propagating the effects of interactions
resolving the effects on each attribute using application-specific policies. The IR may
single component or a number of components distributed over the attributes in an AD
the MRE. Conceptually, the distinction is unimportant; during implementation,
distributed view may be more efficient.

7.6.1 Operation of an IR
The operation of an IR involves implementing policies for resolving the effects

classes or types of dependent concurrent interactions.
At design time, a designer encodes the type or characteristics of each intera

Encoding the type or characteristics enables an IR to classify interactions. Also, at d
time, the designer encodes policies in the IR for resolving types of concurrent interac
For example, if Type 1 and Type 0 interactions interfere, the former can be discarded
designer must specify a policy for discarding the Type 1 interactions. Examples of su
policy are ignoring or delaying the interactions (see §7.5.5). If choice of policies va
during run-time, the designer must specify conditions under which a policy is chosen

E Int ti( )0 Int ti( )1• …• Int ti( )ni
•( ) E Int ti( )0 Int ti( )1• …• Int ti( )k 1–•( )=

Rep ti 1+( ) F Rep ti( ) E Int ti( )0 Int ti( )1• …• Int ti( )k 1–•( ),( )=

Rep ti 1+( ) F Rep ti( ) E Int ti( )0 Int ti( )1• …• Int ti( )k 1–•( ),( )=

Rep tj 1+( ) F Rep tj( ) E Int t j( ) I• nt ti( )k Int ti( )k 1+• …• Int ti( )ni
•( ),( )=

E Int ti( )0 Int ti( )1•( ) E Int ti( )0( ) E Int ti( )1( ) E Int ti( )0 1,( )◊ ◊=
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At run-time, an MRE sends and receives concurrent interactions during a time-
The IR groups the interactions according to their type. Initially, the IR determines
effect of each interaction on all attributes assuming that the interaction occurs in isola
The semantics of an interactionI determine howI.affectsis constructed. The ADG and
mapping functions determine howI.affects+ is constructed. The effects are not applie
immediately to the attributes since interfering effects have not been resolved yet. For
attribute, a list of potential changes caused by the concurrent interactions is constr
Not all of these changes will be applied to the attribute. The IR resolves changes caus
interactions by considering the type of interactions and policies that eliminate con
among types of interactions. The IR considers the changes to each attribute in the
Type 0, 1, 2 and 3 to preserve dependencies among the corresponding interactions.

The first group of interactions the IR considers is the Type 0 group. Type 0 interac
are communications about events that have already occurred. Their effects on the re
are certain and can be computed in accordance with model requirements. If two or
Type 0 interactions interfere, then their effects can be combined. The IR permits
Type 0 interaction to take effect.

The next group of interactions the IR considers is the Type 1 group. Typ
interactions are communications about events that may have occurred. Their effects
receiver are uncertain. Type 1 interactions may interfere with one another as well as
Type 0 interactions. Let the tuple<a, δa> denote an attribute and a change to it caused
a Type 1 interactionI. The IR determines whetherδa conflicts semantically with any
Type 0 change. If it does, the IR marks<a, δa> as discarded. IfI is discarded entirely, the
IR marks all tuples inI.affects∗ as discarded. Thus, the interaction can take effect entir
or not at all. If I may have partial effects, then not all of the tuples inaffects∗ need be
discarded. When the only Type 1 changes remaining are the ones that do not conflic
the Type 0 changes, the Type 1 changes are checked for conflicts among themsel
there are conflicts, the IR selects a set of non-conflicting interactions among them
on appropriate policies.

Next, the IR considers interactions in the Type 2 group. Type 2 interactions
communications about events that will occur. Type 2 interactions may be reads of attr
values, in which case, they do not interfere with any other interactions and can take
immediately. Some Type 2 interactions may not be just reads. For example, a part
Type 2 interaction may read an attribute and have the side-effect of writing to ano
attribute, such as a counter. As another example, a Type 2 interaction may
communication about an event that is certain to happen, such as a collision betwee
entities within the current time-step. Although Type 2 interactions occur during the s
time-step as Type 0 or Type 1 interactions, Type 2 interactions are serialized with re
to Type 0 and Type 1 interactions. If Type 2 interactions interfere with one another,
can be combined in the same manner as Type 0 interactions.

Finally, the IR considers interactions in the Type 3 group. Type 3 interactions
communications about events that may occur. Type 3 interactions may be requests,
or commands that may not be satisfied. Type 3 can be serialized with respect to Type
Type 1 interactions. Type 3 interactions are resolved with respect to Type 2 interactio
the same way as Type 1 interactions are resolved with respect to Type 0 interac
Although the actual policies may differ, Type 1 and Type 3 interactions may be disca
in favour of interactions in the other two classes.
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In Figure 47, we present an algorithm for an IR. The IR determines the effects o
concurrent interactions by referring to policies encoded by the designer. The fourth s
the algorithm refers to an algorithm similar to the one we presented in Figure 34 in w
we applied the effects of interactions as soon as they were determined. In Figure 4
apply the effects of interactions after all dependent interactions have been resolved.

7.6.2 An Example IR
We demonstrate the operation of an IR with the example MRE described in Chap

Let the interactions in Table 9 be received concurrently by the MRE. The class of
interaction is listed in the column headed “Type”. The setsaffectsandaffects+ have been
shown in the last two columns. The semantics of the various interactions are as belo

• Move_Tank1: Tank1 moves in the current time-step.
• Move_Platoon: Platoon moves in the current time-step.
• Collide_Tank2: Tank2 suffers a collision in the current time-step.
• See_Tank1: An entity requests the values of some attributes of Tank1.
• Refill_Tank1: Tank1 is refuelled and repaired in the current time-step.
• Fire_Platoon: Platoon fires in the current time-step.
• Detonation: Platoon is in the path of a detonation in the current time-step.

TABLE 9: Example Concurrent Interactions

Interaction Type affects affects+

Move_Tank1 3 Pos1 Pos, Pos2, Form, App, Dam1, Dam2

Move_Platoon 3 Pos Pos1, Pos2, Form, App, Dam1, Dam2

Collide_Tank2 0 Vel2, Pos2 Vel, Pos, Form, Vel1, Pos1, App, Dam1, Dam2

See_Tank1 2 ∅ ∅

Refill_Tank1 1 Ammo1, Fuel1 Fire, Ammo2

FIGURE 47: Algorithm for Resolving Interactions

For each time-step
List L = sort interactions by type
For each interaction I in L

Determine effects of I on each attribute in ADG
For each attribute a in ADG

If cooperative/competitive effects exist
Insert compensatory effects in L

If Type 0 and Type 1 interactions interfere
Discard Type 1 changes

If Type 2 and Type 3 interactions interfere
Discard Type 3 changes

For each attribute a in ADG
Apply remaining changes
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At design-time, a designer encodes the type of each interaction and policie
resolving types of concurrent interactions. The encoded types of the interactions app
Table 9. Suppose the encoded policies are:

L1: If Move_Platoon occurs concurrently with Move_Tank1 or Move_Tank2,
then Move_Platoon takes effect preferentially.

L2: If Detonation occurs concurrently with Collide_Tank1 or Collide_Tank2, the
interactions have competitive effects.

L3: If a change caused by an interaction is discarded, the interaction is discard
entirely, i.e., no partial effects of interactions are permitted.

At run-time, the IR resolves the effects of concurrent instances of the interaction
Table 9. Accordingly, the IR constructs a table similar to Table 10 for these interact
The first column lists the name of the attribute. The second column lists the interac
affecting that attribute. The rows for which the second column reads “competitive” ref
a compensatory interaction added by the IR to enforce L2. The third column lists the
of each interaction. The fourth column lists changes to that attribute caused
corresponding interaction. These changes are computed by permitting each interac
take effect in isolation initially, determining the changes to attributes caused directl
the interaction, traversing the ADG and invoking the appropriate mapping function
determine the changes to attributes caused indirectly by the interaction. In Chapter
explained a similar procedure in detail for singly-occurring interactions.

Fire_Platoon 3 Fire Ammo1, Ammo2

Detonation 0 App Dam1, Dam2

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change

Pos

Collide_Tank2 0 δP1

Move_Platoon 3 δP2

Move_Tank1 3 δP3

Pos1

Collide_Tank2 0 δP1
1

Move_Tank1 3 δP1
2

Move_Platoon 3 δP1
3

Pos2

Collide_Tank2 0 δP2
1

Move_Tank1 3 δP2
2

Move_Platoon 3 δP2
3

Vel Collide_Tank2 0 δV1

TABLE 9: Example Concurrent Interactions

Interaction Type affects affects+
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For each attribute, the IR resolves the changes caused by different interactions
order in which attributes are chosen is unimportant. Interactions that do not chang

Vel1 Collide_Tank2 0 δV1
1

Vel2 Collide_Tank2 0 δV2
1

Form

Collide_Tank2 0 δF1

Move_Platoon 3 δF2

Move_Tank1 3 δF3

App

Detonation 0 δA1

Collide_Tank2 0 δA2

competitive 0 δA3

Move_Platoon 3 δA4

Move_Tank1 3 δA5

Dam1

Detonation 0 δD1
1

Collide_Tank2 0 δD1
2

competitive 0 δD1
3

Move_Platoon 3 δD1
4

Move_Tank1 3 δD1
5

Dam2

Detonation 0 δD2
1

Collide_Tank2 0 δD2
2

competitive 0 δD2
3

Move_Platoon 3 δD2
4

Move_Tank1 3 δD2
5

Fire
Refill_Tank1 1 δR1

Fire_Platoon 3 δR2

Ammo1

Refill_Tank1 1 δA1
1

Fire_Platoon 3 δA1
2

Ammo2

Refill_Tank1 1 δA2
1

Fire_Platoon 3 δA2
2

Fuel1 Refill_Tank1 1 δU1

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change
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attributes, i.e., whoseaffects∗ = ∅, cannot cause any inconsistencies among the mult
representations. If such interactions are reads, the values returned may be the va
attributes before any changes are applied or after all changes have been applied. W
how to resolve concurrent changes for all of the attributes in our example.

• Pos: The concurrent changes areδP1, δP2 andδP3. δP1 is a Type 0 change and can
be applied.δP2 andδP3 are Type 3 changes that conflict with each other, but ar
independent ofδP1 which is a Type 0 change. By L1,δP2 is applied andδP3 is
discarded. By L3, Move_Tank1 is discarded entirely, and the IR discardsδP1

2,
δP2

2, δF3, δA5, δD1
5 andδD2

5 — the changes caused by this interaction to eac
attribute in Move_Tank1.affects∗.

• Pos1: The concurrent changes remaining areδP1
1 andδP1

3. δP1
1 can be applied

since it is a Type 0 change. In practice, we expectδP1
1 = 0 since a collision

involving Tank2 will not affect Tank1. However, this is an artifact of the particular
interactions we have chosen, hence it does not factor into the decision about wh
changes are applied.δP1

3 does not conflict withδP1
1 because of the types of these

changes. The IR has discardedδP1
2 already.

• Pos2: The concurrent changes remaining areδP2
1 andδP2

3. δP2
1 can be applied

since it is a Type 0 change.δP2
3 can be applied since it does not conflict withδP2

1

because of the types of these changes.δP2
2 has been discarded already.

• Vel: δV1 can be applied.
• Vel1: δV1

1 can be applied.
• Vel2: δV2

1 can be applied.
• Form: Both the remaining changes,δF1 andδF3, can be applied.
• App: δA1, δA2 and δA3 can be applied because they are Type 0.δA3 is a

competitive change caused by the compensatory interaction added by the IR. S
δA3 is a compensation for two Type 0 interactions, it is also Type 0. After th
Type 0 interactions are applied, the Type 3 changes are applied. SinceδA5 has
been discarded, onlyδA4 can be applied.

• Dam1: δD1
1, δD1

2 and δD1
3 can be applied because they are Type 0.δD1

4 is
applied subsequently.

• Dam2: δD2
1, δD2

2 and δD2
3 can be applied because they are Type 0.δD2

4 is
applied subsequently.

• Fire: The potential changes areδR1 andδR2. δR1 is a Type 1 change. Since there
are no previously-applied changes, it can be applied.δR2 can be applied as well
since Type 3 interactions do not conflict with Type 1 interactions.

• Ammo1: δA1
1 andδA1

2 can be applied.
• Ammo2: δA2

1 andδA2
2 can be applied.

• Fuel:δU1 can be applied.
When all of these changes have been applied, the MRE will be consistent. Th

enforces policies L1, L2 and L3 specified for this application. Since the specified pol
for dependent concurrent interactions do not isolate the interactions, the effects of
interactions can be resolved in a manner meaningful to the application. Consequent
MRE interacts at multiple representation levels concurrently and consistently.
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7.7 Chapter Summary
Concurrent interactions may have effects that are dependent on one another. Res

the effects of such interactions by serializing them is incorrect since serialization iso
the interactions. Dependent concurrent interactions can be resolved efficientl
classifying them and formulating policies for resolving classes of interactions. We pre
four characteristics of interactions — request, response, certain and uncertain — an
classes of interactions based on combinations of these characteristics — Types 0, 1
3. The classes distinguish semantic types of interactions encountered in models. Ba
these classes of interactions, we presented policies for resolving the effects of
concurrent occurrence. We showed how to construct an Interaction Resolver (IR) f
MRE. An IR resolves the effects of types of interactions at run-time. By designin
Consistency Enforcer and an Interaction Resolver, a designer can ensure that an
interacts at multiple representation levels concurrently. Next, we present a proces
applying our framework,UNIFY, to jointly-executing models.
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In this chapter, we present guidelines and a process for applying our techniqu
achieve effective MRM. Designers can applyUNIFY by reading this chapter first and
referring to preceding chapters when necessary. We presented Multiple Represen
Entities (MREs) as a means of maintaining concurrent representations (Chapter
Consistency Enforcer (CE) maintains internal consistency within an MRE (Chapter 6
Interaction Resolver (IR) resolves the effects of dependent concurrent interactions
MRE (Chapter 7). Here, we present a process for applying the techniques inUNIFY. By
following these steps, designers can achieve effective MRM in their applications:

1. Construct an MRE from the representations of jointly-executing models.
2. Capture dependencies among the attributes with an ADG.
3. Select mapping functions for each dependency.
4. Classify interactions according to a taxonomy.
5. Select policies for resolving the effects of concurrent interactions.
6. Construct a CE and an IR for the MRE.
We expect designers to construct solutions for their MRM applications based

general guidelines. In §8.1, we justify each guideline briefly. SinceUNIFY is intended to
aid designers of multi-models, in §8.2 we show howUNIFY can be used in conjunction
with a familiar modelling methodology. In §8.3, we explain how to apply the technique
UNIFY with the example application employed in previous chapters.

8.1 Guidelines for MRM Designers
We present guidelines for achieving effective MRM usingUNIFY. We justify each

guideline briefly and refer to earlier sections in this dissertation for detailed explanat
We assume that a designer desires to construct a multi-model from models that mee
users’ requirements. For each model, the designer must identify the representat
entities, relationships among attributes and interactions that change the state of en
We assume the designer can identify the cross-model relationships in the multi-mode
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understand the intertwined semantics of interactions and can make time-steps in the
model compatible.

G1: Represent entities at levels at which they can interact.
This guideline arises from FO-1 in §4.2. For effective MRM, entities sho
interact at a representation level at which their semantics are compatible
Figure 9 in Chapter 4).

G2: Maintain concurrent representations for jointly-executing models.
Maintaining concurrent representations means preserving them at all time
permitting interactions to change them. MREs maintain concurr
representations (see Chapter 5). Designing MREs can ensure that en
interact at levels at which their semantics are compatible.

G3: Make the time-steps of the multiple models compatible.
If jointly-executing models have compatible time-steps, neither violates
assumptions made by another during any time-step. Achieving compa
time-steps may involve executing some models at finer or coarser time-s
(see §3.3.3). Accordingly, the attributes in the models may be augmented
tolerance values, which determine acceptable variances in the values o
attributes at overlapping simulation times (see §4.2.4).

G4: Capture cross-model relationships.
Capturing relationships among representations involves determining
semantics of attributes that are part of the representations. Attributes
overlapping semantics are likely to be related to one another. Relations
among models can be captured by Attribute Dependency Graphs and ma
functions (see Chapter 6).

G5: Propagate the effects of an interaction to all representation levels.
An interaction affects the attributes at its own representation level as we
related attributes at other representation levels (see FO-2 in §4.
Propagating the effects of interactions to all relevant attributes ensures
multiple representations are consistent.

G6: Select mapping functions for each relationship between representations.
These functions translate value spaces or changes in values among r
attributes. Mapping functions must satisfy the properties time-boun
completion, composability and reversibility (see §6.2).

G7: Identify semantics characteristics of interactions.
In §7.5, we presented a taxonomy of interactions, consisting of four classe
order to reduce the complexity of resolving concurrent interactions. Alterna
taxonomies are possible. Classifying an interaction involves understandin
semantics, i.e., its effects on its sender and receiver.

G8: Select policies for resolving the effects of dependent concurrent interactio
The effects of concurrent interactions may depend on one another (see F
§4.2.3, §7.3). In §7.5.4, we presented example policies for resolving the ef
of dependent concurrent interactions. Specifying policies for resolv
interactions involves capturing the semantics of their concurrent occurren
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By following these guidelines, designers can incorporate effective MRM into th
applications. A multi-model can satisfy its users’ requirements if MRM is effective.

8.2 UsingUNIFY with a Specification Methodology
We expect designers of multi-models to achieve effective MRM by employingUNIFY

in conjunction with a specification methodology. We augment an existing specifica
methodology so that designers can build on familiar modelling techniques when
apply UNIFY. Specification methodologies such as OMTR [RUM91], OOA [SHLAER92]
and UML [ALHIR98] support specifying model representations and relationships, but
the effects of interactions. In contrast, OMT [OMT98] supports specifying the effect
an interaction in terms of its parameters, its sender, its receiver and the attributes it a
Since resolving the effects of concurrent interactions is one of the hardest problem
MRM, we regard the support for interactions in OMT suitable for MRM. We augm
OMT by permitting designers to specify attribute relationships, interaction types
policies for resolving concurrent interactions.

In the Department of Defense’s High Level Architecture (HLA) initiative, multip
models may execute together in a “plug-and-play” fashion. Individual models and m
models are specified using a methodology called the Object Model Template (OMT
OMT, individual models, or federates, are specified by tables describing their inter
These tables together are called the Federate Object Model (FOM) for that federate
FOM for a particular model has the following tables:

• Object Class Structure Table (OCST) shows the class hierarchy along w
information for whether each class is publishable (shareable with other mode
subscribable (interesting to the current model) or both.

• Attribute/Parameter Table (APT) lists object attributes and interaction paramet
along with their data type, cardinality, units, resolution, accuracy, accura
condition, update type and update condition.

• Object Interaction Table (OIT) lists each interaction, its sender, its receiver, t
attributes it affects and whether a model initiates, senses or reacts to it.

• Enumerated Data Table (EDT) lists the values of all enumerations.
• Complex Data Table (CDT) lists the definitions of all structured data types.
• Object Class Definitions (OCD) describes the role of each entity.
• Object Interaction Definitions (OID) describes each interaction.
• Attribute/Parameter Definitions (APD) describes each object attribute a

interaction parameter.
The OCST and the APT enable a designer to construct the representations for a

model. The APT and the OIT enable the designer to describe the interactions for the m
model. In OMT, the only relationships that can be determined are those of base clas
derived class [STROU91]. These relationships capture neither attribute relationships
complex entity relationships. Furthermore, although in OMT a designer can specify
effects of an interaction, the designer cannot specify effects ofconcurrent interactions.

We augment OMT with tables that permit a designer to capture relationships am
attributes and specify policies for resolving the effects of concurrent interactions.
inability to express entity relationships is a serious shortcoming in OMT. The c
hierarchy captured by the OCST captures static entity relationships such as inheri
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but not the dynamic relationships among entities, for example, relationships
configuration. Therefore, we augment OMT with an Attribute Relationship Table (AR
This table lists each attribute dependency, its class and specifications for its asso
mapping function. In OMT, the OIT and APT permit interactions to be specified in de
We augment the OIT in OMT with a column for specifying the class for each interact
Once the class for an interaction has been specified, policies for resolving the effe
concurrent interactions can be formulated. We augment OMT with a table, the Concu
Interactions Table (CIT), which permits a designer to specify such policies. The
permits a designer to specify policies in terms of combinations of classes of interactio
individual interactions. Table 11 is an ART and Table 12 is a CIT for the exam
application developed in Chapters 6 and 7. With these additions, designers can e
OMT andUNIFY to incorporate MRM into their applications.

TABLE 11: Example Attribute Relationship Table

Dependency Type Specification

Hits1 → Str Cumulative Str is the weighted sum of Hits1 and Hits2.
Changes to Str are distributed to Hits1 and Hits2
according to weights on the dependencies.

Hits2 → Str Cumulative

Str → Hits1 Distributive

Str → Hits2 Distributive

Ammo1 → Fire Cumulative Fire is the weighted sum of Ammo1 and Ammo2.
Changes to Fire are distributed to Ammo1 and
Ammo2 according to weights on the dependencie

Ammo2 → Fire Cumulative

Fire → Ammo1 Distributive

Fire → Ammo2 Distributive

Pos1 → Pos Cumulative Pos is the centroid of Pos1 and Pos2.

Pos2 → Pos Cumulative

Pos→ Pos1 Distributive

Pos→ Pos2 Distributive

Vel → Pos Modelling Position Pos changes with Velocity Vel according
to physical laws.Vel1 → Pos1 Modelling

Vel2 → Pos2 Modelling

TABLE 12: Example Concurrent Interactions Table

Concurrent Interactions Condition Policy

Move_Platoon, any combination
of (Move_Tank1, Move_Tank2)

All received Ignore all except Move_Platoon

Detonation, any combination of
(Collide_Tank1, Collide_Tank2)

All received Add compensatory interaction for
competitive effects to Dam1 or Dam2;
actual damage less than sum of
damages

Type 0, Type 1 All received Ignore Type 1
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8.3 Process for Effective MRM
UNIFY can be summarised by the process diagram in Figure 48. The unshaded

represent steps in the process of applyingUNIFY, whereas the shaded boxes represe
steps in the design of models or a multi-model. The dashed arrows represent feedb
the process. We view designing models, constructing a multi-model and achieving M
as iterative processes. We employed a running example of a Platoon-Tanks MR
Chapters 6 and 7 in order to explain our techniques for effective MRM. Here, we pre
the process of applying those techniques.

UNIFY does not address the design of individual models. However, the step
UNIFY depend on the successful completion of steps in the design of individual mo
For example, constructing an MRE requires that the designer identify the represent
of jointly-executing models, ModelA and ModelB. Conversely, constructing an MRE ma
provide insights into identifying representations of the models. Likewise, constructin
ADG and selecting mapping functions for an MRE requires that the designer identify
relationships within and among jointly-executing models. In the design of a mo
identifying relationships can be carried out in parallel with identifying interactions. In l
fashion, inUNIFY, constructing an ADG and selecting mapping functions can be car
out in parallel with classifying interactions and selecting policies for resolving concur
interactions. In practice, these steps may be carried out sequentially; however,
relative order is unimportant.

Verification and validation (V&V) is an important step in the design of models. V&
is undertaken to ensure that a model is effective, i.e., meets its users’ requirements.
for a multi-model depends on V&V for constituent models as well as V&V for MRM
V&V for constituent models is outside the scope of our work. V&V for MRM involve
ensuring that jointly-executing models satisfy MRM requirements: multi-representa
interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3)
MRE approach satisfies R3. If R1 and R2 are not satisfied, a designer must iterate th
the process of achieving MRM. In turn, the designer may have to re-examine
construction of jointly-executing models.

We list the steps inUNIFY for the Platoon-Tanks MRE from Chapters 6 and 7. T
Platoon-Tanks multi-model captured the combined semantics of a Platoon model
Tank model. We employedUNIFY in order to achieve effective joint execution of th
Platoon and Tank models. The steps we undertook in the process of employing techn
in UNIFY are listed below along with the sections in which we performed each step.

1. Construct an MRE for the jointly-executing models: §6.1. The Platoon-Tan
MRE captured the concurrent representations of a Platoon and two Tanks. T
MRE could interact at either or both representation levels at any time.

Type 2, Type 3 All received Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

TABLE 12: Example Concurrent Interactions Table

Concurrent Interactions Condition Policy
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FIGURE 48: Process for Effective MRM
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2. Capture dependencies among the attributes in the MRE: §6.1. An ADG captu
the dependencies among Platoon and Tank representations. By classifying
weighting dependencies, we captured their static and dynamic semantics.

3. Select mapping functions for each dependency: §6.2. We selected mapp
functions to translate values or changes in values among Platoon and T
attributes. These mapping functions ensured that the Platoon-Tanks MRE w
internally consistent at all observation times.

4. Classify interactions: §7.6.2. We classified the interactions in the Platoon a
Tank models according to our taxonomy. This classification enabled us
capture the semantics of interactions.

5. Select policies for resolving concurrent interactions: §7.6.2. We selected polic
for capturing the dependencies among concurrent interactions. These polic
resolved the effects of dependent concurrent interactions.

6. Construct a CE and an IR for the MRE: §6.3 and §7.6.2. A CE consists of
ADG and application-specific mapping functions, whereas an IR consists
policies for resolving the effects of interactions. We presented processes for
operation of a CE and IR for the Platoon-Tanks MRE. A CE and IR maintai
internal consistency within an MRE when concurrent interactions occur.

The above steps constitute a process for achieving effective MRM for an applica
The process and the techniques employed in each step are part ofUNIFY, our approach for
effective MRM. We demonstrated how to applyUNIFY to a multi-model application. We
present our experience in applying the above process to several models in the appe
Next, we evaluateUNIFY.
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Our framework, UNIFY, is a sufficient and practical approach for effective MRM
UNIFY is sufficient because it satisfies three requirements for MRM: multi-representa
interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3
described these requirements in §1.3 and §3.4.UNIFY is practical because it offers
techniques and processes for designing a multi-model. Designers can applyUNIFY in
conjunction with a model specification methodology such as OMT to construct effec
multi-models. In §9.1, we evaluateUNIFY in terms of the MRM requirements. In §9.2, w
discuss briefly howUNIFY can be applied to existing applications to achieve effect
MRM. In §9.3, we present limitations of our work.

9.1 EvaluatingUNIFY in terms of MRM Requirements
We evaluateUNIFY with regard to our three sufficiency requirements R1, R2 and R

multi-representation interaction, multi-representation consistency and cost-effective
Since the joint execution of multiple models is intended to capture their comb
semantics, an MRM approach must permit the execution of the individual mod
Therefore, the MRM approach must permit entities at all representation levels to inte
An MRM approach must maintain consistency among the representations of joi
executing models. If the representations of jointly-executing models are consisten
behaviours of the models can be consistent, thus leading to effectiveness of the
model. Consistency can be maintained among multiple representations by propa
changes from one representation to another. Lastly, an MRM approach must
simulation and consistency costs low. We reiterate the definitions of R1, R2 and R3 

• Multi-representation Interaction (R1) : Entities in each jointly-executing model
may initiate and receive interactions concurrently.

• Multi-representation Consistency (R2): The multiple models must be consistent
with one another, i.e., cross-model relationships must hold.

• Cost-Effectiveness (R3): The total cost of simulating multiple models and
103



tion-

. Let

on, do
ation

tion,
given

ted,

. A
ations
ndent
ion-
erent

next

ective
odel

se,
ding

ts.

ips to
ntly-
ation-

ns
g

maintaining consistency among them should be low.
UNIFY satisfies these requirements. In the following sub-sections we evaluateUNIFY

and alternative MRM approaches such as selective viewing and aggrega
disaggregation in terms of these requirements.

9.1.1 Multi-Representation Interaction
UNIFY satisfies R1 by permitting interactions to occur at all representation levels

ModelM be a multi-model constructed from low-resolution model,ModelA, and a high-
resolution model,ModelB. Recall from Chapter 3 that .

Alternative approaches, such as selective viewing and aggregation-disaggregati
not satisfy R1. In selective viewing, interactions at only the most detailed represent
level are permitted. In other words, in selective viewing,IntM = IntB at all times.
Therefore, selective viewing does not satisfy R1. In aggregation-disaggrega
interactions at different representation levels are permitted, but at only one level at a
time. In other words, at timeti ∈ TM, IntM(ti) = IntA(ti) but at some timetj ∈ TM, tj ≠ ti,
IntM(tj) = IntB(tj). Since at any given time, interactions at only one level are permit
aggregation-disaggregation does not satisfy R1.

In contrast with selective viewing and aggregation-disaggregation,UNIFY permits
concurrent interactions at multiple representation levels. InUNIFY, IntM = IntA ∪ IntB.
Since interactions at all representation levels can occur at all times,UNIFY satisfies R1.

9.1.2 Multi-Representation Consistency
UNIFY satisfies R2 by maintaining consistency among jointly-executing models

Consistency Enforcer (CE) maintains consistency among the concurrent represent
within an MRE. A CE propagates a change caused by an interaction to all depe
attributes. A CE consists of an Attribute Dependency Graph (ADG) and applicat
specific mapping functions. An ADG captures dependencies among attributes at diff
representation levels. Mapping functions translate changes to attributes before the
observation time occurs. Consequently, an MRE is always internally consistent.

In alternative MRM approaches, such as aggregation-disaggregation and sel
viewing, multi-representation consistency is not satisfied because cross-m
relationships do not hold at all times. For a valid model, ,Rel
must hold at all observed times. For a multi-model,ModelM = ModelA ∪ ModelB,
RelM = RelA ∪ RelB ∪ Relcross-model. If the models,ModelA andModelB, are not related to
one another,Relcross-model= ∅, i.e., cross-model relationships are null. In such a ca
cross-model relationships hold at all observation times for any approach, inclu
UNIFY. However, for typical jointly-executing models,Relcross-model≠ ∅. Selective
viewing forces Relcross-model to be null, since only one representation level exis
Likewise, aggregation-disaggregation forcesRelcross-model to be null except during
transitions from one representation level to another. Forcing cross-model relationsh
be null ensures that they hold trivially, but does not capture relationships among joi
executing models at all observed times. Therefore, selective viewing and aggreg
disaggregation satisfy R2 partially only.

In UNIFY, Relcross-modelholds at all observation times. ADGs and mapping functio
capture Relcross-model completely. A CE, which consists of an ADG and mappin

ModelM RepM RelM IntM, ,〈 〉=

Model Rep Rel Int, ,〈 〉=
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functions, ensures that changes to attributes of an MRE propagate to all depe
attributes before the next observation time. Consequently, no two entities can re
inconsistent views of an MRE at overlapping simulation times. Therefore, an M
exhibits temporal consistency. Mapping functions ensure that attributes in an MRE d
change in a manner inconsistent with model requirements. As a result, the MRE ex
mapping consistency. Since an MRE is always internally consistent,UNIFY satisfies R2.

9.1.3 Cost-Effectiveness
UNIFY satisfies R3 by reducing the total cost of executing a model. A suffic

approach to MRM must achieve multi-representation interaction and multi-represent
cost-effectively.Simulation costis the cost of executing multiple models.Consistency cost
is the cost of maintaining consistency among concurrent representations. Tog
simulation and consistency costs constitute the total cost of executing a model. Simu
and consistency costs can be translated to resource consumption costs. For ex
simulation cost can be translated to the amount of processing required to appl
primary effects of interactions. In other words, when an interaction occurs, the proce
required to change the values of attributes affected directly by the interaction
simulation cost. Likewise, consistency cost can be translated to the processing
incurred in order to keep entities consistent. In other words, when an interaction oc
the processing required to apply the secondary effects of the interaction is a consis
cost. Simulation and consistency costs tend to be trade-offs, i.e., an approach wit
simulation cost tends to have high consistency cost andvice versa. UNIFY enables
reducing the two costs, i.e., their sum is lower whenUNIFY rather than aggregation-
disaggregation or selective viewing is the MRM approach.UNIFY satisfies R3 by
reducing simulation and consistency costs.

We compare simulation and consistency costs for selective viewing, aggrega
disaggregation andUNIFY. It is hard, if not impossible, to change the MRM approa
dynamically for an application in order to measure costs fairly. Hence, we constru
synthetic application for which we can change the MRM approach. We presen
assumptions we make in our cost comparison.

9.1.3.1 Assumptions
The semantics of our synthetic application are unimportant; we merely co

simulation and consistency actions undertaken by the application. Each action refl
processing or communication operation with an associated application-specific res
cost. For a fair comparison, each approach should permit interactions at all le
However, aggregation-disaggregation and selective viewing do not permit interactio
non-simulated levels, whereasUNIFY permits interactions at all levels. Accordingly, w
compareUNIFY with hypothetical variants of aggregation-disaggregation and selec
viewing that permit interactions at non-simulated levels. ComparingUNIFY with these
variants does not bias our cost analyses because the variants have the same rem
characteristics as their corresponding original approaches.

In our hypothetical aggregation-disaggregation approach (AD), an entity is simu
at its lowest resolution or most aggregate level. As long as interactions occur at this
the entity is represented at this level alone. However, when an interaction at a h
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resolution occurs, the entity is disaggregated into sub-entities at the level of
interaction. After the effects of the interaction have been applied to the appropriate
entity, all sub-entities are aggregated back to the lowest resolution. AD can be impr
partial disaggregation and pseudo-disaggregation are improvements over AD (see §
However, as it stands, AD captures the essence of the aggregation-disaggre
approach. AD has low simulation cost since only a few entities are simulated.

In our hypothetical selective viewing approach (SV), an entity is simulated at
highest resolution level. The entity is disaggregated initially into its sub-entities at
highest resolution. Each sub-entity exists throughout the duration of the simulation. W
lower-resolution interactions occur, they are translated into their highest-resolu
equivalents. If a low-level interaction affects a single low-resolution entity, we trans
the interaction to many high-resolution interactions that affect a corresponding numb
high-resolution entities. SV has low consistency cost since only one level is simulate

In UNIFY, an MRE is constructed for an entity at multiple resolution levels. In o
synthetic application, we maintain attributes at all resolution levels at all times. The ef
of an interaction are applied at the appropriate resolution level and propagated to
resolution levels. Computing simulation costs for an MRE simulated at all resolu
levels would bias our analysis againstUNIFY unfairly. An MRE simulated at all levels
permitsconcurrentinteractions at different levels, which none of AD, SV, aggregatio
disaggregation and selective viewing permit. Therefore, for our analyses, we simula
MRE at any one of its levels at a given time. Simulating the lowest resolution level wo
incur low simulation cost. However, we choose the simulated level uniform-random
reflect the capability of an MRE to be simulated at any level.

The model for our synthetic application consists of one entity (shown in Figure
represented at multiple resolution levels. The entity may interact at any level. In ord
satisfy R2, the representations of the entity at all resolution levels must be consisten
one another. We make some assumptions about our model for our analyses:

• There areL resolution levels, level 0 being the lowest (most aggregate) and lev
L−1 being the highest (most disaggregate).

• A sub-entity at a resolution levelj consists ofN identical sub-entities at levelj+1 if
0 ≤ j < L−1, and zero sub-entities ifj = L−1. We refer toN as the fan-out.

• All sub-entities at all levels have exactlya attributes. All of the attributes of a sub-
entity at a particular level are modified by every interaction at that level.

• Interactions may occur at any resolution level.
• All interactions are independent of one another. Therefore, concurrent interactio

are serialized.
• An entity executesprogress interactions to advance in the simulation. These

interactions do not change attributes, but involve processing on the part of
entity. An entity receivesR interactions before receiving a progress interaction.

We defineΨ as a function onX andY such that: . If
an entity is represented atL resolution levels with a fan-out ofN, it has Ψ(N, L) sub-
entities. In AD, an entity may be disaggregated down to levelL−1, thus requiring
Ο(Ψ(N, L)) memory. In SV, only levelL−1 sub-entities are simulated, thus requirin
Ο(NL-1). In UNIFY, all sub-entities at all levels are present, thus requiringΟ(Ψ(N, L))
memory. The memory consumption for all three approaches is of the orderΟ(NL-1).

Ψ X Y,( ) Xi

i 0=

Y 1–∑ XY 1–
X 1–
---------------= =
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9.1.3.2 Consistency Cost
Consistency Cost (CC) reflects the number of actions required to maintain consis

when interactions at different resolution levels occur.
Aggregation-disaggregation: In AD, an entity is always simulated at level 0. If a

entity receives an interaction at levelr (0 < r < L), the entity disaggregates to levelr,
applies the effects of the interaction at levelr and re-aggregates to level 0. Aggregatio
and disaggregation maintains consistency among the multiple representations beca
effects of an interaction propagate to attributes at the simulated level. In orde
disaggregate to levelr from the current level 0, or aggregate from level 0 to levelr, the
costs incurred areΟ(a × Ψ(N, r)). Thus, CCAD (Figure 50)= Ο(2a × Ψ(N, r)).

Selective Viewing: In SV, an entity is always simulated at levelL−1. There exists only
one level of resolution, namely, the highest. Consistency is maintained only within
level. All interactions occur at levelL−1, where L = 1. Therefore, CCSV
(Figure 51)= Ο(a).

UNIFY: In an MRE, an entity is represented consistently at all levels of resolution
an interaction occurs at levelr (0 ≤ r < L), the entity applies the effects of the interaction
level r and propagates the effects to all other levels. In order to propagate the effe
higher resolution levels, the cost incurred isΟ(a × Ψ(N, L−r)). The cost incurred in

FIGURE 49: Entity in Synthetic Application
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FIGURE 50: AD — Consistency Cost
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propagating the effects to lower resolution levels isΟ(ra). Thus, CCUNIFY
(Figure 52)= Ο(ra + a × Ψ(N, L−r)).

9.1.3.3 Simulation cost
Simulation Cost (SC) reflects the number of actions required to simulate an enti

AD, an entity is simulated at level 0. Therefore, SCAD = Ο(a). In SV, an entity is simulated
at level L−1. Therefore, SCSV = Ο(a × NL−1). In UNIFY, at a given time, an entity is
simulated at one of the multiple levels. If the entity is simulated at levelr (0 ≤ r < L),
SCUNIFY = Ο(a × Nr). Figure 53 shows SC for AD, SV andUNIFY.

FIGURE 51: SV — Consistency Cost
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FIGURE 52: UNIFY — Consistency Cost
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FIGURE 53: (Left to Right) AD, SV andUNIFY — Simulation Cost
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9.1.3.4 Expected Costs
Table 13 compares the expected costs for the different approaches. Figure 54 sh

rough diagram of expected simulation and consistency costs for AD, SV andUNIFY.

As Figure 54 shows, simulation and consistency
costs are trade-offs. Consistency costs decrease
with approaches that execute more in the
disaggregate. However, simulation costs increase.
An approach executing mostly in the aggregate has
low simulation costs, but high consistency costs.
UNIFY lies between extremes of multi-resolution
approaches, i.e.,

SCAD ≤ SCUNIFY ≤ SCSV
CCAD ≥ CCUNIFY ≥ CCSV.

Therefore,UNIFY enables reducing the sum of
simulation and consistency costs.

9.1.3.5 Experimental Costs
We constructed a simulation to measure and compare SC and CC for AD, SV

UNIFY. The simulation confirmed our predictions about how the costs grow as fac
such as number of levels and fan-out grow. Also, the simulation confirmed our expect
that the total of simulation and consistency costs can be reduced inUNIFY.

All costs were measured in terms of the number of actions. SC was the total numb
actions to execute a progress interaction (SCP) and apply the primary effects of an
interaction (SCI), i.e., SC= SCP + SCI. SCP

AD and SCIAD were one per interaction. Fo
each interaction, SCPSV was equal to the total number of entities at the highest resolut
and SCISV was equal to the number of sub-entities affected by the interaction (a
translating a low-resolution interaction into high-resolution interactions). For e
interaction, SCPUNIFY was equal to the number of entities at a level chosen unifor
randomly when a progress interaction occurred, and SCI

UNIFY was one. CCAD was the
number of times sub-entities were created and destroyed per interaction. CCSV was the
number of sub-entities created and destroyed initially. CCUNIFY was the number of actions
required to propagate the effects of each interaction to all sub-entities and to each p

We measured costs by varying four independent parameters one at a time:
• T: total number of interactions during the simulation. T= 10, 100, …, 100000.
• R: number of interactions between progress interactions. R= 1, 2, 3, …, 10.

TABLE 13: Cost Comparison among MRM approaches

CC SC

AD Ο(2a × Ψ(N, r)) Ο(a)

SV Ο(a) Ο(aNL−1)

UNIFY Ο(ra + aΨ(N, L−r)) Ο(a × Nr)

AD UNIFY SV

Consistency Sim
ul

at
io

n

FIGURE 54: Expected Costs
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• F: fan-out, or the number of sub-entities per entity. F= 1, 2, 3, …, 10.
• L: number of levels. L= 1, 2, 3, …, 10.
The canonical case was L= 3, F= 2, T = 1000, R= 5. The graphs that follow should

be interpreted for trends rather than actual numbers. The relationship between co
simulation and consistency and the above parameters are as follows:

1. As the number of interactions increased, primary effects on sub-entiti
increased, and more progress interactions occurred (since the number of prog
interactions was T÷R). Therefore, SC increased with T for all approaches
(Figure 55). SCSV increased the most since all interactions were translated in
equivalent highest-resolution interactions. The translation usually resulted
more interactions being generated since a low-resolution interaction affe
many sub-entities at higher resolution levels.

2. As the number of interactions increased, secondary effects on sub-enti
increased. Therefore, CCAD and CCUNIFY increased with T (Figure 56). No
consistency maintenance is required for SV since only one level is present.

3. As R increased, progress interactions occurred less frequently, since the num
of progress interactions was T÷R. Accordingly, SC decreased with an increase in
R for all approaches (Figure 57).

4. The increase or decrease in R did not change CC since the progress interac
were purely simulation interactions. Accordingly, CC was unaffected by R for a
approaches (Figure 58).

5. As the number of sub-entities for each level increased, SCSV and SCUNIFY
increased polynomially. SCSV increased because an increase in the number
sub-entities increased the number of translated interactions. SCSV and SCUNIFY,
increased because a greater number of sub-entities resulted in a greater num
of actions when progress interactions occurred. SCAD was independent of F
because the effects of all interactions were applied at level 0 (Figure 59).

6. As the number of sub-entities for each level increased, CC increas
polynomially for all approaches (Figure 60). An increase in F resulted in a
increase in CCSV because more sub-entities were created initially and destroy
finally. CCAD increased with F because more sub-entities were created a
destroyed during aggregation and disaggregation. CCUNIFY increased with F
because more effects were propagated to other resolution levels.

7. As the number of levels increased, SCSV and SCUNIFY increased exponentially.
SCSV increased because the greater the number levels, the greater the numb
translated interactions. For SCSV and SVUNIFY, a greater number of levels
resulted in an greater number of actions for progress interactions. SCAD was
independent of L since the effect of all interactions, including progres
interactions, were applied at level 0 (Figure 61).

8. As the number of levels increased, CC increased exponentially for all approac
(Figure 62). CCSV increased with L because more sub-entities were create
initially and destroyed finally at levelL−1. CCAD increased with L because more
sub-entities were created and destroyed during aggregation and disaggrega
CCUNIFY increased with L because more effects were propagated to oth
resolution levels.
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In Figure 63, we plot SC, CC and Total Cost using each approach for the cano
case (L= 3, F= 2, T = 1000, R= 5). Total Cost is a weighted sum of simulation an
consistency costs. The weights for SC and CC are application-specific; in the gra
Figure 63 we assign equal weights to them, i.e. Total Cost= SC+CC. UNIFY incurs the
least total cost in this case. Other cases in which the values of the above parameter
varied indicate similar trends.

9.1.3.6 Summary of Cost-Effectiveness
UNIFY satisfies R3 by enabling reductions in the costs of simulation and consist

maintenance. Although selective viewing incurs low consistency cost and aggrega
disaggregation incurs low simulation cost, both approaches fare poorly when both
are considered. In contrast,UNIFY achieves lower total cost than either aggregatio
disaggregation or selective viewing. An approach that achieves MRM at a high co
ineffective because it does not satisfy R3.UNIFY enables the total of simulation and
consistency costs to be reduced, thus satisfying R3.
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FIGURE 55: Simulation Cost varying with Number of Interactions
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FIGURE 56: Consistency Cost varying with Number of Interactions
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FIGURE 57: Simulation Cost varying with Rate of Simulation
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FIGURE 58: Consistency Cost varying with Rate of Simulation
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FIGURE 59: Simulation Cost varying with Number of Sub-entities
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FIGURE 60: Consistency Cost varying with Number of Sub-entities
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FIGURE 61: Simulation Cost varying with Number of Levels
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9.1.4 Summary of Evaluation in Terms of MRM Requirements
UNIFY satisfies our three requirements for effective MRM: multi-representat

interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). T
requirements must be satisfied by any approach in order to achieve effective
execution of multiple models at reasonable cost. Alternative approaches suc
aggregation-disaggregation and selective viewing do not satisfy all of R1, R2 and
Therefore, by these criteria,UNIFY is better than the popular MRM approaches.

9.2 Applying UNIFY to Existing Models
We have appliedUNIFY to four models. Three of them are military models specifi

using OMT. The fourth is a hierarchical autonomous agent that is a research project
University of Virginia. For all four models, we constructed an MRE from attributes
multiple representation levels. We constructed an ADG for each MRE. We classifie
interactions in each model according to our taxonomy. For each model, we ass
reasonable mapping functions and policies for resolving concurrent interactions. For
model, we worked only from specifications, since pursuing the project to implementa
would have been an unreasonably large undertaking.

9.2.1 Military Models
The three military models we considered are part of the Department of Defense’s

Level Architecture (HLA). They are: Joint Task Force prototype (JTFp) [JTFP97], Joint
Precision Strike Demonstration (JPSD) [JPSD97] and Real-time Platform Refer
(RPR) [RPR97]. These models have been the basis of many examples that we provi
this dissertation to explain techniques inUNIFY. The process for applying techniques i
UNIFY to these models is shown in Chapter 8:

1. Construct a Multiple Representation Entity (MRE) from the OCST.
2. Capture relationships among the attributes with an Attribute Dependency Gra

(ADG) constructed from the APT and the ART (see §8.2).

AD UNIFY SV

Approach

0

5000

10000

15000

20000

25000

SC
 +

 C
C

L = 3, N = 2, T = 1000, R = 3

SC
CC
Total

FIGURE 63: AD, SV andUNIFY — Cost Comparison
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3. Select mapping functions for each dependency in the ART.
4. Determine the effects of interactions from the OIT, and classify interaction

according to our taxonomy.
5. Resolve the effects of concurrent interactions from policies specified in the C

(see §8.2).
6. Construct a Consistency Enforcer and an Interaction Resolver for the MRE.
The results of our experience with these models are a proof-of-concept forUNIFY.

Designers of jointly-executing battlefield models can achieve effective MRM by apply
UNIFY. For each of these models, we were able to applyUNIFY, thus avoiding pitfalls
encountered with alternative MRM approaches. Details of how we appliedUNIFY to
JTFp, JPSD and RPR appear in Appendices B, C and D respectively.

9.2.2 Autonomous Agent Model
We applied UNIFY to a hierarchical autonomous agent model [WAS98B]. The

autonomous agent model we considered is part of a research project undertaken
Vision Group at the University of Virginia. The autonomous agent, Marcus, has b
programmed to construct complex arrangements from basic building blocks. Figu
shows Marcus with an example arrangement, an archway.

Marcus is a hierarchical autonomous agent that has two models, one correspond
a planner and the other corresponding to a perception-action (PA) system. Typicall
planner maintains long-term or abstract representation, whereas the PA system ma
immediate and detailed representation. Each model may have its own representation
world in which Marcus operates. Accordingly, each model may represent building blo
partially-completed arrangements, obstacles, doors and pathways by a number of re
attributes such as position, orientation and colour. Marcus considers relationships a
blocks that are stacked or placed next to each other as an arrangement.

We constructed an MRE for Marcus’s planner and PA system and capt
dependencies among attributes with an ADG. In the current implementation of Ma

FIGURE 64: Marcus and Archway
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interactions occur only at the PA level through sensors and effectors. Planner
interactions originating from user directives are envisioned as future work. Therefore
classified interactions at only the PA level. Figure 65 shows a partial ADG for an M
constructed from the planner and PA representations for Marcus. The MRE contains
the objects (and their attributes) that the planner considers important for the current
and all of the objects (and their attributes) that the PA system senses and affect
brevity, we show only objects represented by the planner and PA, but not their attrib
We show dependencies that exist among objects when Marcus constructs an arrang
Wasson shows how representations can be constructed for the models in Marcus an
consistency can be maintained among the representations [WAS99].

Our experience with the hierarchical autonomous agent model indicates tha
techniques inUNIFY can be applied to multi-models in different domains. A val
concern with any framework-based approach is whether the framework is general en
to be useful to applications in many domains. ApplyingUNIFY to applications in many
domains would be a convincing, but time-consuming, argument for the applicabilit
UNIFY. We chose one domain — that of hierarchical autonomous agents — to show
UNIFY can be applied to many domains. Details of how we appliedUNIFY to a
hierarchical autonomous agent appear in Appendix E.

9.3 Limitations
A fair evaluation of any research must include the known limitations of the work. T

underlying feature of our work is a design decision to maintain concurrent representa
of jointly-executing models to enable effective MRM. In order to support this decision,
constructed a framework,UNIFY, consisting of techniques and processes for achiev
effective MRM. However, in order to makeUNIFY a viable approach for MRM, we made
some assumptions about jointly-executing models. These assumptions are the limit
of UNIFY. These limitations, individually and together, neither makeUNIFY unusable nor
outweigh its benefits.

UNIFY is limited to models in which representation exists for objects and proce
that are part of a model. We assume that designers can describe properties of obje
processes in a model, i.e., they can represent a model.UNIFY is not applicable to models

FIGURE 65: MRE for planner and PA system representations
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wherein representation does not exist. Our assumption about representation is reas
because a large number of practical models represent objects and processes.

In UNIFY, we assume that individual models meet their users’ requirements.UNIFY
permits designers to capture the combined semantics of multiple models of the
phenomenon. Whether the individual models meet their users’ requirements or not
important issue, but outside the scope of our work. Our work addresses the effectiv
of the joint execution of multiple models alone.

In UNIFY, we assume that multi-models progress in compatible time-steps.
discussed compatible time-steps in §5.2. We regard our assumption of compatible
steps as the most critical assumption inUNIFY. General techniques for achievin
compatible time-steps would be a desirable addition toUNIFY.

UNIFY requires appropriate mapping functions to translate attributes from
representation to another and appropriate policies for resolving the effects of depe
concurrent interactions. We do not regard our assumptions about the presence of m
functions and interaction policies as critical assumptions because:

1. Mapping functions and interaction policies capture semantic information abo
an application. Semantic information is specific to an application and can
provided by a designer.

2. Alternative approaches to MRM also require similar mapping functions an
interaction policies (see §5.3).

3. We guide designers in the selection of mapping functions and interaction polic
(see §6.2 and §7.6).

Despite these limitations,UNIFY is a viable approach for MRM. Its benefits outweig
its limitations. It eliminates or reduces many problems with alternative MRM approac
(see §5.5). It provides designers with techniques for resolving concurrent interaction
Chapter 7) and applying their effects consistently (see Chapter 6). It provides desi
with a process for achieving MRM (see Chapter 8) effectively and practically (see
and §8.2). Hence,UNIFY enables designers to achieve effective MRM.

9.4 Chapter Summary
UNIFY is a sufficient and practical approach for effective Multi-Representat

Modelling (MRM). It is the first known approach to MRM that satisfies R1, R2 and R
Its limitations are not serious. We have applied it to four practical applications
established that it supports MRM exactly as we have claimed it would. Next, dis
contributions of our work and present future directions for research.
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We presented a sufficient and practical framework,UNIFY, for effective Multi-
Representation Modelling (MRM). MRM, the joint execution of multiple models, is
significant challenge facing model designers. Previous approaches have been unsuc
in helping model designers overcome this challenge; these approaches they do not
all of our requirements for effective MRM. The techniques and processes that are p
UNIFY help designers to overcome the challenge of executing multiple models jointl
enabling consistency maintenance among the concurrent representations of the m
UNIFY is a sufficient approach for achieving effective MRM because it satisfies
requirements for effective MRM.UNIFY is practical because designers can apply it
conjunction with a familiar model specification methodology.UNIFY is a significant
contribution to the practice of modelling and simulation.

Previous MRM approaches such as aggregation-disaggregation and selective vi
can fail to achieve effective MRM for many applications because they do not sa
critical MRM requirements. These approaches encounter many problems such as tem
inconsistency, chain disaggregation and thrashing, which render the appro
ineffective for many applications. Our fundamental observations about jointly-execu
models address the causes of these problems. These observations indicate that main
consistency among the representations of jointly-executing models can elimina
reduce the problems encountered in other approaches.

UNIFY, our approach for achieving effective MRM, involves maintaining consiste
among concurrent representations. The techniques and processes inUNIFY address
consistency maintenance in concurrent representations. The viability ofUNIFY rests on
the assumptions that designers can (i) select mapping functions to capture applic
specific aspects of attribute relationships, (ii) select policies to resolve the effec
concurrent interactions by understanding their semantics, and (iii) make time-
compatible. These assumptions are reasonable because without them, no approa
capture the application-specific semantics of jointly-executing models. Alterna
approaches fail to achieve effective MRM despite making similar assumptions.
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UNIFY aids designers in incorporating MRM effectively in their application
Effective MRM leads to the design of multi-models that satisfy their users’ requireme
We provided guidelines for designers so that they can apply our techniques and proc
to achieve effective MRM within their applications.

10.1 Contributions
Our work benefits the practice of modelling and simulation.UNIFY is the first known

framework for effective MRM. The focus ofUNIFY is to execute multiple models jointly.
UNIFY is intended for designers who desire to incorporate MRM into their applicatio
These designers can construct MRM solutions for their applications by applying
techniques and processes withinUNIFY.

The main contribution of our work isUNIFY — a framework for the joint execution of
multiple models. We formulated three requirements for MRM: multi-representa
interaction, multi-representation consistency and cost-effectiveness. We showed
alternative MRM approaches do not satisfy these requirements, whileUNIFY does. The
contributions of our work are the following:

1. Fundamental Observations about MRM
2. UNIFY

a. Multiple Representation Entities (MREs)
b. Attribute Dependency Graphs (ADGs)
c. Properties and requirements of mapping functions
d. Process for constructing Consistency Enforcers (CEs)
e. A Taxonomy for Interactions
f. Process for constructing Interaction Resolvers (IRs)

3. A Cost Study of various MRM approaches
4. Guidelines for MRM designers
We presented the fundamental observations to show how problems arise in the

execution of multiple models [REYN97]. We made these observations after studying
joint execution of many models. The fundamental observations address the caus
ineffectiveness in jointly-executing models, such as inconsistency among
representations and dependent concurrent interactions. Addressing the fundam
observations forms the basis of any approach to effective MRM, such asUNIFY.

MREs are an approach for maintaining concurrent representations of jointly-exec
models [NAT95]. An MRE permits interactions at all representation levels, yet is intern
consistent. MREs eliminate or reduce many problems seen with alternative M
approaches, such as aggregation-disaggregation and selective viewing. MREs elim
chain disaggregation, temporal inconsistency, mapping inconsistency, transition la
and thrashing, and reduce network flooding. MREs require a means of capturin
relationships among multiple representations and policies to resolve the effec
concurrent interactions. Provided these requirements are satisfied, MREs reduce the
problem to the problem of maintaining consistency among concurrent representa
when interactions at multiple representation levels occur.

ADGs and mapping functions capture relationships among concurrent representa
ADGs are a technique to capture dependencies among attributes in an MRE, wh
mapping functions capture application-specific information about the dependen
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ADGs permit designers to express how attributes in representations are dependent
another, and how the execution of a multi-model affects the representations of each m
Mapping functions translate attributes from one representation level to another. ADG
mapping functions can be used to construct a CE for an MRE. A CE is responsibl
maintaining an MRE consistent at all observation times. When an interaction change
value of an attribute, a CE traverses an ADG and invokes the appropriate map
functions in order to maintain consistency in an MRE. We demonstrated the constru
of a CE by showing how to construct an ADG and select mapping functions for an M
We showed how to assign static and dynamic semantics to dependencies captured
ADG by classifying dependencies into four types and weighting them. We prese
requirements and properties of mapping functions. We discussed how an ADG ca
traversed in order to propagate the effects of an interaction. Finally, we presente
algorithm for the operation of a CE.

We presented one taxonomy for classifying interactions semantically and reso
their dependent effects [NAT99]. We presented four characteristics of interactions a
showed how to classify interactions into four classes based on these characteristic
showed how serialization, the traditional approach for resolving the effects of concu
interactions, can be inappropriate for dependent concurrent interactions. Based o
taxonomy, we presented policies for resolving the effects of classes of depen
concurrent interactions. Our taxonomy is applicable to interactions in a variety
modelling and simulation applications. We believe that in any application wh
concurrent interactions may be dependent on another, such a taxonomy is applicab
can be used to resolve the effects of concurrent interactions. We demonstrate
construction of an IR and presented an algorithm for its operation.

We presented the first cost study comparing various MRM approaches [NAT97]. The
study compares simulation and consistency costs forUNIFY and alternative approaches
We showed how simulation and consistency costs vary for the different approa
Lastly, we showed thatUNIFY reduces the total of simulation and consistency costs.

The fundamental observations, MREs, ADGs and our taxonomy of interactions en
designers to incorporate effective MRM in their applications. Providing designers
techniques and guidelines to achieve effective joint execution of multiple models is
main contribution to modelling and simulation.

10.2 Future Work
In the future, we expect to eliminate a few of the assumptions we made inUNIFY and

apply UNIFY to applications in a variety of domains. Eliminating some of t
assumptions we made in our work would makeUNIFY more beneficial to model
designers. ApplyingUNIFY to more applications, would provide us with great
experience with regard to MRM.

A critical assumption we made was that designers can make the time-steps of jo
executing models compatible. Jointly-executing models executing with compatible t
steps can be temporally consistent. Application-independent guidelines for making
steps compatible would be a desirable addition toUNIFY. Alternatively, providing
techniques for maintaining temporal consistency among jointly-executing models
execute with incompatible time-step would eliminate a critical assumption inUNIFY.
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Another assumption was that designers can select mapping functions to tran
attributes among representations. We specified requirements and properties of ma
functions as guidelines for selecting them. However, specifying requirements
properties in greater detail, perhaps for classes of applications, would enable design
select mapping functions with greater ease.

Yet another assumption was that designers can select policies for resolving the e
of concurrent interactions after classifying the interactions. We showed how to cla
interactions and select policies for resolving classes of interactions. Providing sub-cl
of interactions would enable designers to refine the classification of the different kind
interactions in various applications. Refined classification may lead to refined policie
resolving the effects of concurrent interactions.

An area of future work would be applyingUNIFY to a larger variety of models.
Applying UNIFY to a wide variety of models would increase our understanding of MR
We would like to applyUNIFY to models in areas such as economics, weather predic
and graphics. ApplyingUNIFY to such models would enable us to specify detail
requirements and properties of mapping functions and to refine the classificatio
interactions. Also, we would like to study the implementation of applications that em
UNIFY to incorporate MRM. Such studies details may reveal connections betw
requirements and properties of mapping functions, policies for resolving concu
interactions and the implementation of modules for enforcing consistency and reso
interactions.UNIFY can gain widespread acceptability if it is applied successfully to
large number of multi-model applications.
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Multi-model applications in a number of domains maintain multiple representation
views with some degree of concurrence and consistency. In §2.1, we presented
applications briefly and evaluated whether they satisfy the MRM requirements R1, R2
R3 (Table 1). Here, we evaluate these applications in detail. Briefly, we discuss ho
approach based on MREs may benefit these applications.

A.1 Multi-Resolution Graphical Modelling
Multi-resolution graphical modelling involves maintaining multiple representations

levels of detail, of the same object [CLARK76]. For example, a lamp may be rendered
full detail when a viewer is close to it, but as the viewer moves away, successively co
levels of detail are rendered. As the viewing distance increases, the lamp occup
smaller portion of the viewed screen space, and coarser levels of detail for the lam
sufficient to cover this portion. The coarser the level of detail, the fewer the polyg
required to render it. The system always maintains multiple levels of detail for all obje
and selects the appropriate level of detail depending on an object’s distance from
viewer. The challenges in graphical MRM are to generate the multiple representa
such that each captures sufficient detail as to be visually appealing, and to tran
among representations smoothly [GAR95] [HECK94] [HECK97] [LUEBKE97] [PUPPO97].

Typically, users cannot change multi-resolution graphical entities, although they
issueview interactions, which essentially read the values of attributes such as position
colour. Moreover, concurrent interactions to multiple levels of detail of the same objec
not supported. Since interactions cannot change entities’ representations and can
concurrent, R1 is violated. R2 is satisfied trivially after the levels of detail are cre
because the representations do not change. A few multi-resolution graphical m
permit a single user to change entities dynamically, but do not support concurrent m
representation interaction [BERM94] [LEE98] [ZORIN97]. Multi-resolution graphical
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models satisfy R3 because multiple levels of detail reduce simulation cost. As lon
interactions cannot change the representations of objects, consistency cost is not an

An MRE for a multi-resolution graphical model would incorporate all levels of det
Designers can create the multiple levels of detail using refinement or simplifica
[HECK97] [LUEBKE97]. Refinement and simplification methods can be the mapp
functions among the multiple levels of detail. When changes to any levels of detail o
these mapping functions can ensure that the other levels of detail are changed so as
the MRE consistent. Consequently, an MRE for a graphical object may inte
concurrently and consistently at multiple representation levels.

A.2 Hierarchical Autonomous Agents
An autonomous agent is an actual or simulated robot that attempts to fulfill a goa

performing actions from its basic skill set. Traditionally, there have been two approa
regarding the manner in which an agent fulfills its goal. In thedeliberativeapproach, an
agent constructs a plan to fulfill its goal by composing actions from its skill set be
beginning any action [SACER74]. The agent may form optimal or provably correct plan
however, unexpected occurrences can sabotage any plan easily. In thereactiveapproach,
an agent forms no plan at all, relying on reactions to external stimuli to fulfill its g
[AGRE87]. This approach leads to extremely robust behaviour in the presence of urge
unexpected circumstances; however, the agent may become trapped in local minim

Multi-layered architectures for autonomous agents incorporate a deliberative lay
planner) and a reactive layer (a perception-action or PA layer) with some interme
layers. Multi-layered architectures balance varying requirements and capabilitie
different layers, e.g., level of abstraction, amount of inference, time-scale and band
[ALBUS97] [BON97] [FIRBY87] [GAT92] [LAIRD91] [HANKS90] [SIM94] [WAS98A].

Multi-layered, or hierarchical, autonomous agents satisfy R1. Such agents ex
deliberative and reactive models jointly in order to take advantage of both. The pla
and PA layer representations* are linked epistemologically, i.e., subsets of representati
encode knowledge that depends on or is derived from knowledge encoded in other s
[BRILL96]. Hierarchical agents do not satisfy R2 because dependencies among p
and PA layer representations can give rise to inconsistencies. For some desired
behaviour, the paradigm of executing both models jointly is more cost-effective
executing only one model. Hence hierarchical agents satisfy R3.

Provided designers can agree on what must be represented at each layer of hiera
autonomous agents, an MRE for such agents would incorporate the representation fo
layer. Typically, we can capture dependencies between the representations by s
relationships, such ashas-part and is-a [WAS98B]. By ensuring that the individual
relationships hold, we can maintain consistency between the representations.

* Although Brooks argues against representation in an agent [BROOKS86], Brill has shown that
agents with representation can be effective [BRILL98].
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A.3 Blackboard Systems
Hearsay-II is a layered system for translating spoken sentences into

corresponding alphabetic representation. InHearsay-II , many processes access
single data structure, called ablackboard[ERMAN80]. Processes aredata-driven, i.e., a
process activates itself whenever appropriate data appears on the blackboard
lowermost layer of the system interprets parts of sound waves as silence or non-si
The next layer interprets non-silence as phonemes and predicts the sound
corresponding to the next likely phoneme. The next layer composes phonemes
syllables and predicts the next word. The hierarchy of layers continues with the top
layer composing phrases into sentences and predicting the next phrase.

Hearsay-II ’s blackboard is a multi-representation system; each layer is a diffe
model of the entire spoken sentence. R1 is satisfied because for each sentence fra
the interpretation of the current layer and the prediction of the layer above are m
representation interactions.Hearsay-II resolves conflicting interactions — differen
predictions or interpretations of the same sentence fragment — by retaining each
version of the sentence. Each version is consistent — the wavelets are consistent w
phonemes, the phonemes with the syllables, and so on — thus satisfying R2. The s
ranks all versions by a credibility metric; the version with the highest credibility is the b
translation of the sentence. However, retaining all versions may be impractical in a ge
sense, since many multi-representation systems may not tolerate multiple outcomes

Each version of a sentence inHearsay-II is similar to an MRE. However,
Hearsay-II violates R3 because it resolves conflicting interactions by creating
MREs that subsequently execute concurrently with existing MREs. In effect, each M
executes in a “parallel universe” in which it is the most credible version. The greate
number of versions, the greater the number of MREs in execution, putting a strai
available resources. Our technique of resolving concurrent interactions within a s
MRE may miss the best possible version of a sentence when local minima o
However, when many objects or processes are present in a system,Hearsay-II ’s
technique of creating a new MRE for every possible outcome of conflicting concur
interactions can cause a combinatorial increase in consumption of resources.

A.4 Cache Coherence
In a multi-processor configuration, individual processors may access a small am

of fast memory locally in order to reduce accesses to main memory, which tends
slow. The fast memory, called acache, may store copies of data items stored in ma
memory. Processors may read and modify data items in their caches. Ensuring
processors read correct versions of the data in their caches is known as thecache
coherence problem [HENN96].

Cache coherence is a form of the MRM problem. The main memory copy and
cache copy of a single data item are concurrent representations of a variable. Pro
issue interactions in the form of read and write operations to the copies. Processor
interact with cache copies as well as the main memory copy, the latter when a proce
cache copy is absent or stale or, in the case of write-through policies, wheneve
processor writes to the variable. Concurrent interactions at multiple representation
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are assumed to have independent effects. Since multi-representation interaction
occur, but dependent interactions are not supported, R1 is satisfied partially. C
coherence involves combining detection mechanisms such as snoopy bus or dire
based protocols with write policies such as write-back and write-through to main
consistency among cache and memory copies. Although cache coherence so
maintain consistency, typically, the relationships among memory and cache copie
simple relationships of equality. Therefore, cache coherence satisfies R2 partially. Va
cache coherence strategies have different costs associated with them [ARCH86]. However,
accessing caches is more cost-effective than accessing memory. Hence caches sat

We do not forward any new solutions for cache coherence. Rather, we use the
coherence example to highlight the benefits of maintaining concurrent representatio

A.5 Abstract Data Types and Object Inheritance
Polymorphic languages may associate multiple types for a single data item. Fo

data item, the operations that are valid on it, the contexts in which it can be used le
and the manner in which it is allocated memory are determined by its type. If a data
has multiple types, the operations valid on it and the contexts in which it can be used
union of the operations and contexts respectively for the individual types. Typically,
memory allocated to the data item is such that the data item has a single representa

Some abstract data types present multiple views of the same data item, thus exh
a form of MRM. A data item defined as a union in C [KERN88] and C++ [STROU91] or as
perspectives [GOLD80] [STEFIK86] can have multiple types, thus displayingad hoc
polymorphism [CARD85]. Consider the definition of a union in C:

union {
int a;
char b;

} X;

The data itemX has two types,int and char , corresponding toX.a . and X.b
respectively.X.a and X.b are different views ofX. They occupy overlapping bytes o
memory, i.e., if anint is stored as two bytes on a particular system and achar is stored
as one byte, thenX is allocated two bytes of memory. One byte holds the value ofX.b as
well as part of the value ofX.a , while the other byte holds the remaining part of the val
of X.a . X.a andX.b are accessed jointly by any operation accessing one of them, i.
an operation changes the value ofX.b , it changes the value ofX.a as well andvice versa.
A type is a representation level; therefore, operations of different types constitute m
representation interactions. However, these interactions are assumed to be indepen
one another. Therefore, R1 is satisfied partially. Changing the value of any
automatically changes the value of other types for a data item. However, unions c
capture general relationships, such as those among attributes of an MRE. For exam
union cannot present two views such that a value in one view is an accumulation of v
in another view. Hence,ad hoc polymorphism satisfies R2 partially.

Inheritance in object-oriented languages is an example of MRM, since a data item
inherits from one or more types has multiple views. Object-oriented languages su
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Smalltalk-80 [BORN82], Simula-67 [DAHL66] [BIRT73] and C++ [STROU91] support
inclusion polymorphism [CARD85]. Consider the C++-like example below:

class Mammal { ... }
class Oviparous { ... }
class Platypus: Mammal, Oviparous { ... } Bill;

Here,MammalandOviparous are base classes for the derived classPlatypus .
Bill is an instance of the classPlatypus , and by inheritance, also an instance of th
classesMammalandOviparous . Inheritance results inBill having multiple views:
one, as an instance of a base class and two, as an instance of a derived class. One
subsumed by another; the view asMammal is a subset of the view asPlatypus .
Multiple inheritance results inBill having even more views. However, the views do n
subsume each other; the view ofBill as aMammalhas no relation to the view ofBill
as anOviparous . The representation forBill is the union of the representation
defined by each of the above classes, assuming name conflicts are resolved. Likewi
set of methods applicable toBill is the union of the set of methods defined by each cla
A class is a representation level; therefore, methods of the multiple classes cons
multi-representation interactions. However, these interactions are assumed t
independent of one another. Therefore, R1 is satisfied partially. Any operation th
performed on an instance of a derived class is performed on an instance of the bas
as well. Therefore, the instance of the derived class is always self-consistent. How
inheritance is only one kind of relationship among attributes of an MRE; for exam
inheritance does not capture the accumulation relationship mentioned earlier. H
inclusion polymorphism satisfies R2 partially.

A.6 Views in Databases and Integrated Environments
Views, as defined for databases and integrated environments, are a form of MR

view in a database is a subset of the information contained in the system.
Database views are derived from the complete database by specifying relation

restrict the items displayed. In relational database applications, data are abstracte
relations, which essentially are tables of tuples and their values [CODD70]. Relational
databases have been used for many applications [ASTRA76] [STONE76] and programming
environments [LINTON84]. In object-oriented databases, data are abstracted as beha
entity relationships [CHEN76] [BALZER85]. Hybrid approaches that maintain relations
well as attribute relationships have been used for editing programs [HOR86]. A view is a
set of relations derived from existing relationships (in an object-oriented databas
relations (in a relational database) [CHAM75]. Changes to a view must be translated
changes to the database in order to maintain consistency in the database [BAN81]. Since
all views are derived from one database, this approach is a form of selective view
which violates R3. Each view is constructed after the entire database has been const
Users may update data in any view; however, all updates are assumed to be indepe
Hence, views in databases satisfy R1 partially. When users update data in a view
system updates the database automatically, thus maintaining consistency and sat
R2. Views in databases require the database to be the repository of all possible view
making them unsuitable for MREs, wherein multiple representations may have
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designed independently. Moreover, relations are powerful but not intuitive for some k
of relationships [HOR86].

In some integrated environments, the complete database is constructed by conj
all the views [GAR87]. Individual tools may maintain views of their data. Users m
update data in any view as well as in the database; however, all updates are assume
independent. Hence, views in databases satisfy R1 partially. Users’ updates
interactions. The system updates the views and databases to remain consistent w
another, thus satisfying R2. In database views, if each view is an independently-des
model, then requiring a single database for all the models put together violates R
contrast, in integrated environments, if each view is an independently-designed m
then the complete database is just the conjoining of the models, which satisfies R3
latter approach is related closely to MREs. Each view may be considered a concu
representation and the conjoining of all the views is the MRE. Garlan’s work envisio
the multiple views to be used by tools that change databases. In MREs, other en
other models and the environment change a representation.

A.7 Nested Climate Modelling
An increasingly popular approach to climate modelling is to nest the executio

Limited Area Models (LAMs), which predict regional climate, within Global Circulatio
Models (GCMs), which predict wide-ranging climate changes [GIORGI90] [GIORGI91]
[RISBEY96]. GCMs model synoptic or large-scale climate changes. The resolution of t
models is usually in the hundreds of kilometres, which means that regional clim
variations are modelled poorly. LAMs model mesoscale or medium-scale climate cha
The resolution of these models is in kilometres, hence they model local climate well b
a huge computational cost. Of late, small sub-areas of the larger area modelled b
GCM are taken over by LAMs which discard all the GCM modelling information exc
at the edges of the sub-area modelled by each LAM. Subsequently, each LAM ru
own computations to predict local climates. The GCM-LAM linkage produces m
accurate predictions than either a GCM alone (since the LAM usually has more det
topographical and orographical information) or just a LAM driven by empirical d
(which assumes that future climate will be very similar to past climate).

Nested climate models satisfy R1 but not R2. The nested models interact at mu
representation levels since climatic data at either level is incorporated. However, w
researchers have had success translating GCM data for LAM input, the reverse is an
problem. As a consequence, global factors such as temperature fronts, monsoons an
mountain ranges can influence local climate models, but it is extremely hard to make
factors such as fires, nuclear waste build-up, small mountain ranges and anthropo
pollution influence global climate models. Nested climate models satisfy R3 because
are more cost-effective than executing any one model individually.

A climate model MRE would incorporate GCM and LAM representations for
particular area. As a result, the climate of the area would be influenced by global facto
well as local factors. Nesting the LAM within the GCM would be one way to reconc
concurrent climate changes. However, as discussed earlier, this tends to mak
execution of the LAM dominate the execution of the GCM, particularly close to the ce
of the area modelled by the LAM. In terms of accuracy of predictions, the MRE appro
127
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can do no worse than nesting; the potential to do better lies in the ability of the M
approach to capture dependencies between the two representations that are ign
nesting. However, the limiting problem in either approach is the lack of technique
translate local factors into global factors.

A.8 Integrated Molecular Modelling
When theoretical studies on the potential energy surfaces for chemical reactio

large systems are carried out, low-detail low-computation models, such as mole
mechanics (MM) models, are used for most of the system and high-detail h
computation models, such as molecular orbital (MO) methods, are used for a small p
the system. An MM model for the entire system is usually fast but inaccurate since
level of detail does not capture all interactions among atoms. An MO model for the e
system is accurate but computationally expensive. Integrated models such asIMOMM
[MATSU96] andONIOM[SVEN96A] strike a balance between resource usage and accur
These approaches integrate MM models, such asMM2, MM3, CHARMM, AMBERandUFF,
with MO models such as Møller-Plasset second-order perturbation (MP2) and Hartree-
Fock (HF), in order to compute potential energy surfaces. Some approaches, for exa
IMOMO, integrate an high-detail MO model with a low-detail MO model [HUMBEL96]
[SVEN96B]. In all the integrations, the reported accuracy is comparable to a full-s
high-detail model, while resource usage is markedly below such a model.

Integrated molecular models satisfy R2 and R3. The models incorporate interactio
multiple levels of detail and are remarkably consistent. Also, reported costs are lower
running a detailed model for the entire system. However, these models satisfy R1 pa
because the multiple models are executed one after another. Therefore, m
representation interactions are assumed to be independent of one another.

The integrated models for the reactions under study are MREs. Although expe
molecular modelling strive for better correlation between the MM and MO models,
high level of consistency already achieved suggests that the integrated approach i
well-suited for applications involving models at different representation levels.

A.9 Multi-Level Computer Games
A number of commercial computer games present a player with multiple views o

world inhabited by the characters controlled by the player. In games† like Civilization,
WarCraft, SimCity, Doom, Heretic, Hexen, Quake andDuke Nukem, a player
may view the playing area at multiple levels of resolution. In some games, the player
control characters at any resolution, while in others, the player may control chara
only at the highest resolution level, with the game pausing when the player switches
lower resolution level.

Multi-level games satisfy R2 but not R1. Merely displaying information at multip
resolutions amounts to processing read interactions that do not change the represen

† Civilization is a registered trademark of Sid Meier games.WarCraft is a registered trademark of
Blizzard. SimCity is a registered trademark of Maxis.Doom, Heretic, Hexenand Quakeare
registered trademarks of id Software.Duke Nukemis a registered trademark of 3D Realms
Entertainment.
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Even games that permit changes to be made at either representation rarely
concurrent changes, or concurrent interactions, thereby completely avoiding the ha
problem in MRM. Most games adopt the approach of selective viewing, wherein
processing takes place at the highest resolution level. The player may request
resolution information or may ask for low-resolution information. In the latter case, h
resolution information is aggregated and presented as low-resolution informa
Selective viewing violates R3.

MREs for entities within such games would incorporate the representation at
resolution level. Players could be permitted to interact at any resolution level, and i
case of multi-player games, at multiple resolutions concurrently. Mapping functions
translate changes to one resolution level to changes to other resolution levels will kee
multiple resolution levels consistent.

A.10 Battlefield Simulations
In the domain of battlefield simulations that are used for training as well as anal

MRM relates to resolving conceptual and representational differences arising
multiple levels of resolution in simulations that are joined for a common object
particularly where the simulations were designed and implemented independently
crux of the problem can be appreciated by considering what is required to sim
accurately an objectand its constituents concurrently. For example, the abstractionconvoy
may have attributes such as position, velocity, orientation and state of repair. At a
detailed level, the convoy may be viewed as trucks that have attributes such as po
velocity, orientation, state of repair, fuel level, gross weight, carrying capacity and num
of occupants. If the convoy abstraction and its constituent trucks are mod
concurrently, all interactions with the convoy abstraction and its constituents
overlapping periods of time must be reflected accurately at both levels.

Many battlefield simulations satisfy none of R1, R2 or R3 fully. Typically, battlefie
simulations employ aggregation-disaggregation to force entities to interact at the
resolution. Aggregation-disaggregation can preclude concurrent multi-represen
interaction, can give rise to inconsistencies, and incur high resource costs. MRE
battlefield simulations would incorporate multiple representations of the same ob
Typically, the object would be a hierarchical unit such as a corps, division or platoon
129



lity.
e

What your actual solution is is unimportant as long as it has Qua
— Robert Pirsig,Zen and the Art of Motorcycle Maintenanc
Appendix B
Joint Task Force Prototype
te

MT
tain

TFp
odel
s, as
the

re the
elect
lect

MRE.
ute
ts of

ith

n
cy,
We demonstrate how designers can employUNIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorpora
UNIFY in Joint Task Force prototype (JTFp) [JTFP97], a military model that is part of the
Department of Defence’s High Level Architecture (HLA). JTFp is specified using O
[OMT98]. From the JTFp specifications, we construct an MRE and show how to main
consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the J
specifications. We assume that the jointly-executing models in JTFp are a Platoon m
and a Tank model. For brevity, we assume that a Platoon consists of only two Tank
shown in Figure 66. From the OMT tables in the JTFp specification, we determine
attributes in the representations of the Platoon and Tank models. Next, we captu
relationships among attributes using an Attribute Dependency Graph (ADG) and s
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we se
policies for resolving the effects of concurrent interactions.

In §B.1, we present the tables in OMT. In §B.2, we list steps for incorporatingUNIFY
in JTFp. We demonstrate each step in subsequent sections. In §B.3, we construct an
In §B.4 and §B.5, we construct an ADG and select mapping functions for attrib
dependencies in the MRE. In §B.6 and §B.7, we determine and resolve the effec
concurrent interactions. In §B.8, we construct a CE and IR for the MRE.

B.1 OMT Tables
OMT consists of a number of tables for specifying parts of a model. They are:
1. Object Class Structure Table (OCST): Shows the class hierarchy along w

publishable/subscribable information for each class.
2. Attribute/Parameter Table (APT): Lists object attributes and interactio

parameters along their data type, cardinality, units, resolution, accura
accuracy condition, update type and update condition.
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3. Object Interaction Table (OIT): Lists each possible interaction and associa
information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.
5. Complex Data Table (CDT): Lists the definitions of all structured data types.
6. Object Class Definitions (OCD): Describes the role of each entity.
7. Object Interaction Definitions (OID): Describes each interaction.
8. Attribute/Parameter Definitions (APD): Describes each object attribute a

interaction parameter.
We augment the OIT with the class of each interaction. Also, we add two table

OMT to capture attribute relationships and specify policies for concurrent interaction
9. Attribute Relationships Table (ART): Lists each attribute dependency, its typ

its mapping function and requirements and properties of the mapping function
10. Concurrent Interactions Table (CIT): Lists policies for resolving classes a

instances of concurrent interactions.

B.2 Steps
The steps for incorporatingUNIFY in JTFp are:
1. Construct an MRE from the OCST and the APT
2. Construct an ADG from the APT and the ART
3. Select Mapping Functions for Dependencies in the ART
4. Determine the Effects of Interactions from the OIT
5. Resolve the Effects of Concurrent Interactions from the CIT
6. Construct a Consistency Enforcer and an Interaction Resolver

B.3 Construct an MRE from the OCST and the APT
We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank m

jointly. Using the OCST for JTFp (shown in Table 14), we derive a Platoon fr
AggregateGroundPlayer, and a Tank from MobileGroundPlayer. Our Platoon-Tanks
consists of the representations of a Platoon and two Tanks, Tank1 and Tank2. The PS
(publishable/subscribable) information associated with each class in Table 14 is us
manage data transfer within the HLA.UNIFY does not require this information.

Platoon

Platoon-Tanks MRE

Representation

FIGURE 66: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation
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From the APT, we determine the attributes that are part of the concur
representations within our Platoon-Tanks MREs. For brevity, Table 15 shows only pa
the APT for JTFp. The table lists attributes only for classes or base classes of Platoo
Tank. For each attribute, the designer may specify information such as its data type,
resolution, accuracy, condition under which the specified accuracy is required and u
type. The T/A and U/R information is not used inUNIFY.

TABLE 14: Object Class Structure Table for JTFp

Base Class 1st Subclass 2nd Subclass

Player (S) AirPlayer (S) BallisticMissile (PS)

Aircraft (PS)

Flight (PS)

GroundPlayer (S) FixedSite (PS)

MobileGroundPlayer (PS)

AggregateGroundPlayer (PS)

AfloatPlayer (PS)

Environment Atmosphere (PS)

SurfaceCover (PS)

OpenWater (PS)

FederateStatus (PS)

TABLE 15: Attribute/Parameter Table for JTFp

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type
Update

Condition
T/A U/R

P
la

ye
r

entity_name string 1 perfect always static N UR

federate_id enumeration 1 perfect always static N UR

affiliation enumeration 1 perfect always static N UR

motion_type enumeration 1 perfect always static N UR

voice_nets boolean maximum TRUE, FALSE perfect always static N UR

jtids_nets boolean maximum TRUE, FALSE perfect always static N UR

trap_tre boolean 1 TRUE, FALSE perfect always static N UR

commander_type enumeration 1 perfect always static N UR
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From the OCST (Table 14) and APT (Table 15), we derive the attributes of a Tank
a Platoon. Table 16 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we
combine a number of attributes derived from the OCST and APT (second column)
one attribute (fourth column). We combine attributes that are logically similar and

M
ob

ile
G

ro
un

dP
la

ye
r

radar_cross_section float 1 meters 0.1 meters2 0.1 meters2 always static N UR

radar_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

elint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

comint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

ir_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

photint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

air_to_air_engageable boolean 1 TRUE, FALSE perfect always static N UR

air_to_surf_engageable boolean 1 TRUE, FALSE perfect always static N UR

surf_to_air_engageable boolean 1 TRUE, FALSE perfect always static N UR

surf_to_surf_engageable boolean 1 TRUE, FALSE perfect always static N UR

damage_state float 1 percent 0.01 0.01 always conditional N UR

entity_type enumeration 1 perfect always static N UR

time_at_last_cse_change float 1 seconds 0.1 second 0.1 seconds always conditional TA

lat_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

lng_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

alt_at_last_cse_change float 1 meters 1 meter 1 meter always conditional TA U

cse_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

hspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA

vspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA

role enumeration 1 perfect always static N UR

A
gg
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te
G
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radar_cross_section float unbounded meters 0.1 meters2 0.1 meters2 always static N UR

radar_detectable boolean unbounded TRUE, FALSE perfect always conditional N U

elint_detectable boolean unbounded TRUE, FALSE perfect always conditional N U

comint_detectable boolean unbounded TRUE, FALSE perfect always conditional N U

ir_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

photint_detectable boolean unbounded TRUE, FALSE perfect always conditional N U

air_to_air_engageable boolean unbounded TRUE, FALSE perfect always static N U

air_to_surf_engageable boolean unbounded TRUE, FALSE perfect always static N U

surf_to_air_engageable boolean unbounded TRUE, FALSE perfect always static N U

surf_to_surf_engageable boolean unbounded TRUE, FALSE perfect always static N U

composition enumeration unbounded perfect always conditional N UR

time_at_last_cse_change float 1 seconds 0.1 second 0.1 seconds always conditional TA

lat_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

lng_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

alt_at_last_cse_change float 1 meters 1 meter 1 meter always conditional TA U

cse_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

hspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA

vspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA

orientation float 1 degrees 0.1 degree perfect always conditional N UR

depth float 1 meters 1 meter perfect always conditional N UR

front float 1 meters 1 meter perfect always conditional N UR

TABLE 15: Attribute/Parameter Table for JTFp

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type
Update

Condition
T/A U/R
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have identical accuracy condition, update type and update condition. For exampl
combine the attributes radar_detectable, elint_detectable, comint_detectable, ir_dete
and photint_detectable into an attribute called detectable. Likewise, we com
entity_name, federate_id, affiliation, motion_type, voice_nets, jtids_nets, trap_tre
commander_type into an attribute called initial_parameters. We combine such attri
so that we can present a simple MRE, for which an ADG will be presentable
specifying mapping functions will be manageable. Combining similar attributes
consistent with our discussion about assigning nodes of an ADG (§6.1.1). A node c
assigned to any subset of a representation for which a designer can specify how the
of interactions must be applied. In practice, we expect designers to assign nod
individual attributes rather than combined attributes.

B.4 Construct an ADG from the APT and the ART
We construct an ADG for the Platoon-Tanks MRE from the APT and the ART

JTFp. Since OMT does not support specifying relationships, we construct an exa
ART for our MRE (Table 17). In practice, we expect a designer to construct an A
specific to the models executed jointly. The specification of the relationship may
accomplished formally; in Table 17, we present informal specifications in the last colu

We construct an ADG for the Platoon-Tanks MRE. From Table 16, which was der
from the APT, we determine the nodes in the ADG. From the ART in Table 17,
determine the arcs in the ADG. The ADG is shown in Figure 67. The interac
dependencies to each attribute exist because interactions with other entities or in
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weigh
dependencies. Dependency classes capture static semantics, whereas weights
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to
cumulative dependency, and equal weights to distributive dependencies that have the
independent attribute. We select these weights in order to keep our subsequent disc
of mapping functions simple. Other weights for these dependencies are possible.

B.5 Select Mapping Functions for Dependencies in the
ART

We select mapping functions to translate attributes among concurrent represent
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions m
translate values or changes in values of attributes from one to another. Additionally
desirable that mapping functions complete their translations in a time-bound manne
that they be composable and reversible.

We show mapping functions for some dependencies in Table 18. The map
functions are presented as pseudo-code. Error-checking has been omitted for b
Pseudo-code in the second column of Table 18 implements specifications in the
column of Table 17. If any Tank is detectable, Platoon is detectable. Likewise, if Plato
detectable, all Tanks are detectable. Platoon is not detectable only if both Tanks a
detectable. If any Tank is engageable, Platoon is engageable. If Platoon is engagea
least one Tank is engageable. Platoon is not engageable only if both Tanks ar
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FIGURE 67: ADG for the JTFp Platoon-Tanks MRE
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TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes

Platoon entity_name Player initial_parameters

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section AggregateGroundPlayer radar_cross_secti

radar_detectable detectable

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

composition composition

time_at_last_cse_change last_cse_change

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

depth depth

front front

orientation orientation
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Tank1 entity_name Player initial_parameters1

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section MobileGroundPlayer radar_cross_sectio1

radar_detectable detectable1

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable1

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state damage_state1

entity_type entity_type1
time_at_last_cse_change last_cse_change1

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

role role1

TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes
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engageable. If the damage_state of any Tank becomes 100%, the composition
Platoon is reduced by one. The damage_state of the Tank is changed to∞ to ensure that
composition is not reduced further subsequently. Likewise, if composition is reduce
one (δcomposition= −1), a Tank whose damage_state was less than 100% previous
selected and its damage_state changed to 100%. Similarly, mapping functions for
dependencies can be constructed. For the last_cse_change attribute, a design
employ different functions for the different parts, such as lat_at_last_cse_cha

Tank2 entity_name Player initial_parameters2

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section MobileGroundPlayer radar_cross_sectio2

radar_detectable detectable2

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable2

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state damage_state2

entity_type entity_type2
time_at_last_cse_change last_cse_change2

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

role role2

TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes
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time_at_last_cse_change and hspd_at_last_cse_change. For example, the Plato
position, consisting of lat_at_last_cse_change, lng_at_last_cse_change
alt_at_last_cse_change may be defined as the centroid of the Tank-level pos
However, the Platoon-level time, time_at_last_cse_change, may be defined as the la
the Tank-level times. Mapping functions such as those shown in Table 18 translate v
or changes in values of attributes.

TABLE 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp

Dependency Type Specification

detectable1 → detectable Cumulative If even one tank is
detectable, the entire platoon
is detectable. If the platoon
is detectable, each tank is
detectable.

detectable2 → detectable Cumulative

detectable→ detectable1 Distributive

detectable→ detectable2 Distributive

engageable1 → engageable Cumulative If even one tank is
engageable, the platoon is
engageable. If the platoon is
engageable, at least one tank
must be engageable.

engageable2 → engageable Cumulative

engageable→ engageable1 Distributive

engageable→ engageable2 Distributive

damage_state1 → composition Cumulative If a damage_state become
100%, composition reduces
by one, andvice versa.

damage_state2 → composition Cumulative

composition→ damage_state1 Distributive

composition→ damage_state2 Distributive

last_cse_change1 → last_cse_change Cumulative Elements of the course, su
as altitude, velocity and
position, are vector
quantities.

last_cse_change2 → last_cse_change Cumulative

last_cse_change→ last_cse_change1 Distributive

last_cse_change→ last_cse_change2 Distributive

radar_cross_section1 → radar_cross_section Cumulative The radar cross-section o
the platoon encompasses the
radar cross-section of its
tanks.

radar_cross_section2 → radar_cross_section Cumulative

radar_cross_section→ radar_cross_section1 Distributive

radar_cross_section→ radar_cross_section2 Distributive

composition→ depth Modelling The composition affects the
depth, front line and
orientation of the platoon.

composition→ front Modelling

composition→ orientation Modelling

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency Mapping Function

detectable1 → detectable detectable← fd(detectable1, detectable2)
fd: detectable← detectable1 ∨ detectable2detectable2 → detectable
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The mapping functions shown in Table 18 are composable and reversible. More
since they are simple in construction, we expect that they will complete in a time-bo
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation
When an interaction changes the value of any attribute, mapping functions propaga
change in the attribute to dependent attributes. For example, if an interaction chang
Tank-level attribute, detectable1, the mapping functionfd changes the dependent Platoo
level attribute, detectable. Subsequently, the mapping functiongd changes the Tank-leve
attribute, detectable2. Sincefd andgd are composable, the change to detectable1 eventually
propagates to detectable2. Sincefd andgd are reversible, detectable1 does not change again
as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 67 and applying
mapping functions in Table 18 ensures that the Platoon-Tanks MRE is consistent
observation times. Next, we determine and resolve the effects of concurrent interact

B.6 Determine the Effects of Interactions from the OIT
We determine the effects of interactions on the Platoon-Tanks MRE from the OIT

show an augmented OIT in Table 19. The first column lists the name of the interac
The next four columns list the class and affected attributes for the sender and recei
the interaction. We augment each interaction in the OIT with its type (see Chapte
Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain request
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information
the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity.
example, the OIT does not list any interaction corresponding to our Platoon-Tanks

detectable→ detectable1 (detectable1, detectable2) ← gd(detectable)
gd: detectable1 ← detectable2 ← detectabledetectable→ detectable2

engageable1 → engageable engageable← fe(engageable1, engageable2)
fe: engageable← engageable1 ∨ engageable2engageable2 → engageable

engageable→ engageable1 (engageable1, engageable2) ← ge(engageable)
ge: engageablerandom(1, 2)← engageableengageable→ engageable2

damage_state1 →
composition

composition← fc(damage_state1, damage_state2)
fc: for (i ← 1 to 2)

if (damage_statei = 100%)
{ composition−−; damage_statei ← ∞ }

damage_state2 →
composition

composition→
damage_state1

(damage_state1, damage_state2) ← gc(composition)
gc: if (δcomposition= −1)

if (damage_state1 < 100%) damage_state1 ← ∞
elsif (damage_state2 < 100%) damage_state2 ← ∞

composition→
damage_state2

…

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency Mapping Function
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changing its course, because such an interaction is internal to the MRE. InUNIFY, internal
actions are interactions. We add an internal action called ChangeCourse to the intera
in the OIT (see last row in Table 19) to show thatUNIFY addresses internal actions as we
as interactions with other entities. This interaction initiates a change in the course
entity. The sender and receiver of ChangeCourse is the same entity. The class of tha
is Player. The interaction affects the attribute last_cse_change.

The last column in Table 19 lists the type of an interaction. Assigning a type requ
information about the semantics of an interaction. In OMT, this information is availa
from the OID. For example, the OID lists the semantics of GetSeaState as a reque
will be satisfied by an Environment entity. Hence GetSeaState is a Type 2 interac
ReturnSeaState is the response to a GetSeaState. ReturnSeaState could be Ty
Type 1, but we assigned it to Type 1 because an entity may discard an update abo
state of the sea. For the ChangeCourse interaction, we assumed that a change in the
of an entity is a request whose outcome is uncertain.

TABLE 19: Object Interaction Table for JTFp

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type

TBMWarning Player none Player none send_time, comms_system,
net_number

IR 1

TBMLaunchAlert Player none Player none send_time, comms_system,
net_number, launch_lat, launch_lng

IR 1

InitiateStrikeCommand Player none Player none send_time, comms_system,
net_number, strike_phase_name,
strike_phase_number

IR 3

DetectionReport Player none Player none send_time, comms_system,
net_number, report_type, entity_id,
reported_lat, reported_lng,
reported_alt, reported_cse,
reported_hspd, reported_vspd,
reported_affiliation, reported_type,
reported_raid_count, reported_damage

IR 1

RequestAirSupport Player none Player none send_time, comms_system,
net_number, requestor_id, target_id,
time_on_target, target_lat, target_lng

IR 3

SituationReport Player none Player none gfc_lat, gfc_lng, rel_to_objective,
objective_name, personnel_status,
equipment_status, effectiveness_status,
combat_intensity

IR 1

AirToDiscreteGroundEngage AirPlayer none MobileGroundPlayer damage_state launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size, aimpoint,
estimated_pk_at_launch

IR 0

AirToAggregateGroundEngage AirPlayer none AggregateGroundPlayer composition launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size,
targeted_systems,
estimated_pks_at_launch

IR 0

DiscreteGroundToAirEngage MobileGroundPlayer none AirPlayer damage_state launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size,
estimated_pk_at_launch

IR 0

AggregateGroundToAirEngage AggregateGroundPlayer none AirPlayer damage_state,c
omposition

launch_time, time_of_flight
launch_quadrant, launch_offsets,
weapon_systems, ammo_types,
salvo_sizes estimated_pks_at_launch

IR 0

DiscreteGroundToGroundEngage MobileGroundPlayer none MobileGroundPlayer damage_state launch_time, time_of_flight,
aim_pt_lat, aim_pt_lng, weapon_type,
estimated_pk_at_launch

IR 0

TroopsHitBeach Player none num_boat_sorties, num_helo_sorties,
lat_of_beach_location.
lng_of_beach_location

IR 0
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We determine the interactions that our Platoon-Tanks MRE can send and recei
Table 20, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along w
suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction
For example, the interaction GetLOSVisibility can be sent by an entity of class Pla
Since Player is a base class of Platoon, Tank1 and Tank2, we distinguish the interaction
GetLOSVisibility sent by these three entities as GetLOSVisibility-P, GetLOSVisibility-1
and GetLOSVisibility-T2 respectively. In the second column, we indicate whether
Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the third column, w
the attributes affected by the interaction directly, i.e., we list the setaffects for the
interaction. These attributes are determined from the OIT. In the fourth column, we lis
attributes affected by the interaction indirectly, i.e., we list the setaffects+ for the
interaction. These attributes can be determined from the ADG in Figure 67. Finally
indicate the type of the interaction.

GetLOSVisibility Player none Environment none observation_time, sensor_lat,
sensor_lng, sensor_alt, target_lat,
target_lng, target_alt

IR 2

ReturnLOSVisbility Environment none Player none LOS_visibility, relative_humidity,
reason, return_id

IR 1

GetAtmosphericCondition Player none Environment none time, observation_lat, observation_lng IR

ReturnAtmosphericCondition Environment none Player none ceiling, surface_temperature,
surface_pressure, visibility,
relative_humidity, total_cloud_cover,
cloud1_type, cloud1_height,
cloud1_amount, cloud2_type,
cloud2_height, cloud2_amount,
cloud3_type, cloud3_height,
cloud3_amount, surface_wind_speed,
surface_wind_direction,
precipitation_amount,
artificial_obscurants,
natural_obscurants

IR 1

GetSeaState Player none Environment none lat, lng IR 2

ReturnSeaState Environment none Player none state_of_sea, sea_surface_temp IR

ChangeCourse Player last_cse_change Player last_cse_change new_lat, new_lng, new_alt, new_hspd,
new_vspd

IR 3

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type

TBMWarning-P S 1

TBMWarning-T1 S 1

TBMWarning-T2 S 1

TBMLaunchAlert-P S 1

TBMLaunchAlert-T1 S 1

TBMLaunchAlert-T2 S 1

InitiateStrikeCommand-P S 3

TABLE 19: Object Interaction Table for JTFp

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type
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InitiateStrikeCommand-T1 S 3

InitiateStrikeCommand-T2 S 3

DetectionReport-P S 1

DetectionReport-T1 S 1

DetectionReport-T2 S 1

RequestAirSupport-P S 3

RequestAirSupport-T1 S 3

RequestAirSupport-T2 S 3

SituationReport-P S 1

SituationReport-T1 S 1

SituationReport-T2 S 1

AggregateGroundToAirEngage-P S 0

DiscreteGroundToAirEngage-T1 S 0

DiscreteGroundToAirEngage-T2 S 0

DiscreteGroundToGroundEngage-T1 S 0

DiscreteGroundToGroundEngage-T2 S 0

TroopsHitBeach-P S 0

TroopsHitBeach-T1 S 0

TroopsHitBeach-T2 S 0

GetLOSVisibility-P S 2

GetLOSVisibility-T1 S 2

GetLOSVisibility-T2 S 2

GetAtmosphericCondition-P S 2

GetAtmosphericCondition-T1 S 2

GetAtmosphericCondition-T2 S 2

GetSeaState-P S 2

GetSeaState-T1 S 2

GetSeaState-T2 S 2

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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ChangeCourse-P S last_cse_change last_cse_change1,
last_cse_change2,
last_cse_change

3

ChangeCourse-T1 S last_cse_change1 last_cse_change,
last_cse_change2,
last_cse_change1

3

ChangeCourse-T2 S last_cse_change2 last_cse_change,
last_cse_change1,
last_cse_change2

3

TBMWarning-P R 1

TBMWarning-T1 R 1

TBMWarning-T2 R 1

TBMLaunchAlert-P R 1

TBMLaunchAlert-T1 R 1

TBMLaunchAlert-T2 R 1

InitiateStrikeCommand-P R 3

InitiateStrikeCommand-T1 R 3

InitiateStrikeCommand-T2 R 3

DetectionReport-P R 1

DetectionReport-T1 R 1

DetectionReport-T2 R 1

RequestAirSupport-P R 3

RequestAirSupport-T1 R 3

RequestAirSupport-T2 R 3

SituationReport-P R 1

SituationReport-T1 R 1

SituationReport-T2 R 1

AirToAggregateGroundEngage-P R composition damage_state1,
damage_state2,
depth, front,
orientation,
composition

0

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type
144



how
Any subset of the interactions in Table 20 may occur concurrently. Next, we show
to resolve the effects of concurrent interactions.

AirToDiscreteGroundEngage-T1 R damage_state1 composition,
damage_state2,
depth, front,
orientation,
damage_state1

0

AirToDiscreteGroundEngage-T2 R damage_state2 composition,
damage_state1,
depth, front,
orientation,
damage_state2

0

ReturnLOSVisibility-P R 1

ReturnLOSVisibility-T1 R 1

ReturnLOSVisibility-T2 R 1

ReturnAtmosphericCondition-P R 1

ReturnAtmosphericCondition-T1 R 1

ReturnAtmosphericCondition-T2 R 1

ReturnSeaState-P R 1

ReturnSeaState-T1 R 1

ReturnSeaState-T2 R 1

ChangeCourse-P R last_cse_change last_cse_change1,
last_cse_change2,
last_cse_change

3

ChangeCourse-T1 R last_cse_change1 last_cse_change,
last_cse_change2,
last_cse_change1

3

ChangeCourse-T2 R last_cse_change2 last_cse_change,
last_cse_change1,
last_cse_change2

3

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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B.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices
the CIT. In practice, a designer constructs a CIT specific to the application. Since a C
unavailable in OMT, we construct an example CIT, shown in Table 21.

A designer specifies policies in the CIT for resolving the effects of concurr
interactions. The CIT consists of sets of concurrent interactions with dependent ef
policies for resolving them and conditions under which the policies are applica
Concurrent interactions that are independent of one another can be resolve
serialization and are not specified in the CIT. Some interactions may be indepe
because they affect disjoint sets of attributes. Other interactions may be indepe
because their effects are applied in different time-steps, for example, interactions se
received by an entity. Yet other interactions are independent because they are re
response pairs. Policies must be specified in the CIT for only the remaining interact
Policies may be specified for classes of interactions (e.g., the last two rows in Table 2
for instances of interactions (e.g., all the other rows in Table 21). In JTFp, m
interactions do not affect any attributes. Although such interactions can be ass
independent, we do not make such an assumption. It is likely that the interactions
internal attributes in the models. Since OMT is meant to be an interface specifica
internal attributes are not listed in the APT. For consistency maintenance, a designe
list internal attributes as well in the APT. Since internal attributes are not listed, we
not assume that interactions that affect disjoint sets of attributes are independen
example, although InitiateStrikeCommand-P, InitiateStrikeCommand-T1 and
InitiateStrikeCommand-T2 affect no attributes, hence affecting disjoint sets of attribut
we specify policies for resolving these interactions. An Interaction Resolver for
Platoon-Tanks MRE applies the policies in the CIT only if the effects of concurr
interactions conflict. If concurrent interactions do not conflict, they may be serialized

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions Condition Policy

AggregateGroundToAirEngage-P, any
combination of
(DiscreteGroundToAirEngage-T1,
DiscreteGroundToAirEngage-T2,
DiscreteGroundToGroundEngage-T1,
DiscreteGroundToGroundEngage-T2)

All sent Do not send all except
AggregateGroundToAirEngage-P

DiscreteGroundToAirEngage-Ti,
DiscreteGroundToGroundEngage-Ti

All sent Do not send
DiscreteGroundToAirEngage-Ti

InitiateStrikeCommand-P, any
combination of
(InitiateStrikeCommand-T1,
InitiateStrikeCommand-T2)

All
received

Delay all except
InitiateStrikeCommand-P by one
time-step
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ADG
B.8 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE main
consistency and resolve concurrent interactions respectively. A CE consists of an

DetectionReport-P, any combination of
(DetectionReport-T1,
DetectionReport-T2)

All
received

Ignore DetectionReport-P

RequestAirSupport-P, any combination
of (RequestAirSupport-T1,
RequestAirSupport-T2)

All
received

Delay all except
RequestAirSupport-P by one time-
step

SituationReport-P, any combination of
(SituationReport-T1, SituationReport-
T2)

All
received

Ignore SituationReport-P

AirToAggregateGroundEngage-P,
AirToDiscreteGroundEngage-Ti

All
received

Damage to Tanki less than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

ReturnLOSVisibility-P, any
combination of (ReturnLOSVisibility-
T1, ReturnLOSVisibility-T2)

All
received

Ignore ReturnLOSVisibility-P

ReturnAtmosphericCondition-P, any
combination of
(ReturnAtmosphericCondition-T1,
ReturnAtmosphericCondition-T2)

All
received

Ignore
ReturnAtmosphericCondition-P

ReturnSeaState-P, any combination of
(ReturnSeaState-T1, ReturnSeaState-
T2)

All
received

Ignore ReturnSeaState-P

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions Condition Policy
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and mapping functions, whereas an IR consists of policies for resolving concu
interactions. Figure 68 shows a JTFp Platoon-Tanks MRE. The MRE can intera
multiple representation levels — the Platoon and Tank levels — concurrently. More
the concurrent representations within the MRE are consistent at all observation time

A CE consists of an ADG and application-specific mapping functions. For
Platoon-Tanks MRE, we presented an ADG in Figure 67 and mapping function
Table 18. In Figure 34 (see Chapter 6), we presented an algorithm for implementing
In §6.3, we discussed how to traverse an ADG and apply mapping functions in ord
keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurr
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concu
interactions in Table 21. In Figure 47 (see Chapter 7), we presented an algorithm
implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. U
this taxonomy, we presented policies for resolving the effects of concurrent interacti

A CE and an IR ensure that an MRE is internally consistent when concur
interactions occur. During a time-step, a number of concurrent interactions may occu
IR determines the type of each interaction. Next, the IR applies the effect of e
interaction as if the interaction occurred in isolation. In order to do so, the IR permits
interactions to take effect one at a time. When an interaction changes an attribute, t
traverses an ADG and translates changes to dependent attributes by invokin
appropriate mapping functions. The CE maintains a list of changes for each attribute
result of computing the effects of each interaction. Subsequently, the CE applie
effects of all the interactions on each attribute. The CE queries the IR about polici
resolve the effects of dependent concurrent interactions whenever the CE detects co
in the list of changes for an entity. If the IR contains a policy for resolving conflict
changes, the CE applies the changes accordingly; otherwise, the CE assumes the c
are independent and applies them in an arbitrary order. When the changes to all attr
have been applied, the MRE is internally consistent.

FIGURE 68: JTFp Platoon-Tanks MRE

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation
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“My dear Watson, try a little analysis yourself,”
said he, with a touch of impatience

“You know my methods. Apply them
and it will be instructive to compare results.
— Arthur Conan Doyle,The Sign of the Four
Appendix C
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We demonstrate how designers can employUNIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorpora
UNIFY in Joint Precision Strike Demonstration (JPSD) [JPSD97], a military model tha
part of the Department of Defence’s High Level Architecture (HLA). JPSD is speci
using OMT [OMT98]. From the JPSD specifications, we construct an MRE and show
to maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the JP
specifications. We assume that the jointly-executing models in JPSD are a Platoon
and a Tank model. For brevity, we assume that a Platoon consists of only two Tank
shown in Figure 69. From the OMT tables in the JPSD specification, we determine
attributes in the representations of the Platoon and Tank models. Next, we captu
relationships among attributes using an Attribute Dependency Graph (ADG) and s
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we se
policies for resolving the effects of concurrent interactions.

In §C.1, we present the tables in OMT. In §C.2, we list steps for incorporatingUNIFY
in JPSD. We demonstrate each step in subsequent sections. In §C.3, we construct an
In §C.4 and §C.5, we construct an ADG and select mapping functions for attri
dependencies in the MRE. In §C.6 and §C.7, we determine and resolve the effe
concurrent interactions. In §C.8, we construct a CE and IR for the MRE.

C.1 OMT Tables
OMT consists of a number of tables for specifying parts of a model. They are:
1. Object Class Structure Table (OCST): Shows the class hierarchy along w

publishable/subscribable information for each class.
2. Attribute/Parameter Table (APT): Lists object attributes and interactio

parameters along their data type, cardinality, units, resolution, accura
accuracy condition, update type and update condition.
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3. Object Interaction Table (OIT): Lists each possible interaction and associa
information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.
5. Complex Data Table (CDT): Lists the definitions of all structured data types.
6. Object Class Definitions (OCD): Describes the role of each entity.
7. Object Interaction Definitions (OID): Describes each interaction.
8. Attribute/Parameter Definitions (APD): Describes each object attribute a

interaction parameter.
We augment the OIT with the class of each interaction. Also, we add two table

OMT to capture attribute relationships and specify policies for concurrent interaction
9. Attribute Relationships Table (ART): Lists each attribute dependency, its typ

its mapping function and requirements and properties of the mapping function
10. Concurrent Interactions Table (CIT): Lists policies for resolving classes a

instances of concurrent interactions.

C.2 Steps
The steps for incorporatingUNIFY in JPSD are:
1. Construct an MRE from the OCST and the APT
2. Construct an ADG from the APT and the ART
3. Select Mapping Functions for Dependencies in the ART
4. Determine the Effects of Interactions from the OIT
5. Resolve the Effects of Concurrent Interactions from the CIT
6. Construct a Consistency Enforcer and an Interaction Resolver

C.3 Construct an MRE from the OCST and the APT
We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank m

jointly. We modify the OCST for JPSD to make Aggregate a derived class of Entity so
an Aggregate entity can send and receive other interactions in addition to reque
aggregate and disaggregate. Also, we do not show specific instances of derived c
such as Tank or Aggregate. From the modified OCST for JPSD (shown in Table 22
derive a Platoon from Aggregate. Our Platoon-Tanks MRE consists of the represent
of a Platoon and two Tanks, Tank1 and Tank2.

Platoon

Platoon-Tanks MRE

Representation

FIGURE 69: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation
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From the APT, we determine the attributes that are part of the concur
representations within our Platoon-Tanks MREs. For brevity, Table 23 shows only pa
the APT for JPSD. The table lists attributes only for classes or base classes of Platoo
Tank. For each attribute, the designer may specify information such as its data type,
resolution, accuracy, condition under which the specified accuracy is required and u
type. The T/A and U/R information is not used inUNIFY.

From the OCST (Table 22) and APT (Table 23), we derive the attributes of a Tank
a Platoon. Table 24 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we
combine a number of attributes derived from the OCST and APT (second column)
one attribute (fourth column). We combine attributes that are logically similar and
have identical accuracy condition, update type and update condition. For exampl
combine the attributes Location_X, Location_Y, and Location_Z into an attribute ca
Location. Likewise, we combine Entity_ID_site, Entity_ID_application, Entity_ID_enti
Entity_Type_Kind, Entity_Type_Domain, Entity_Type_Country, Entity_Type_Catego
Entity_Type_Subcategory, Entity_Type_Specific and marking_text into an attribute c
Initial_Parameters. We combine such attributes so that we can present a simple MR
which an ADG will be presentable and specifying mapping functions will be managea
Combining similar attributes is consistent with our discussion about assigning nodes
ADG (§6.1.1). A node can be assigned to any subset of a representation for wh
designer can specify how the effects of interactions must be applied. In practice, we e
designers to assign nodes to individual attributes rather than combined attributes.

TABLE 22: Object Class Structure Table for JPSD

Base Class 1st Subclass 2nd Subclass 3rd Subclass

Entity Aggregate

Platform

Land Tank

ArmoredFightingVehicle

SelfPropelledArtillery

SmallWheeledUtilityVehicle

Air AttackHelicopter

ElectronicWarfare

UAV

Munition AntiArmor Guided

BattlefieldSupport

System TacticalSystem

Strike

BattalionCommander

ModSafCommander
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TABLE 23: Attribute/Parameter Table for JPSD

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition T/A U/R

E
nt

ity

Entity_ID_site short enumeration discrete perfect always static UR

Entity_ID_application short enumeration discrete perfect always static UR

Entity_ID_entity short enumeration discrete perfect always static UR

Force_ID short enumeration discrete perfect always static UR

Entity_Type_Kind short enumeration discrete perfect always static UR

Entity_Type_Domain short enumeration discrete perfect always static UR

Entity_Type_Country short enumeration discrete perfect always static UR

Entity_Type_Category short enumeration discrete perfect always static UR

Entity_Type_Subcategory short enumeration discrete perfect always static U

Entity_Type_Specific short enumeration discrete perfect always static UR

Location_X double meters 1 10% DR* conditional time-out† TA UR

Location_Y double meters 1 10% DR conditional time-out TA UR

Location_Z double meters 1 10% DR conditional time-out TA UR

Velocity_X double meters/sec 10% DR conditional time-out TA UR

Velocity_Y double meters/sec 10% DR conditional time-out TA UR

Velocity_Z double meters/sec 10% DR conditional time-out TA UR

Orientation_Psi double radians 3 degrees DR conditional time-out TA UR

Orientation_Theta double radians 3 degrees DR conditional time-out TA UR

Orientation_Phi double radians 3 degrees DR conditional time-out TA UR

marking_text string perfect always static UR

A
gg

re
ga

te

Aggregate_ID_site short enumeration discrete perfect always static UR

Aggregate_ID_application short enumeration discrete perfect always static U

Aggregate_ID_entity short enumeration discrete perfect always static UR

Entity_Type_Kind short enumeration discrete perfect always static UR

Entity_Type_Domain short enumeration discrete perfect always static UR

Entity_Type_Country short enumeration discrete perfect always static UR

Entity_Type_Category short enumeration discrete perfect always static UR

Entity_Type_Subcategory short enumeration discrete perfect always static U

Entity_Type_Specific short enumeration discrete perfect always static UR

Location_X double meters 1 10% DR periodic 0.033333333 TA UR

Location_Y double meters 1 10% DR periodic 0.033333333 TA UR

Location_Z double meters 1 10% DR periodic 0.033333333 TA UR

Velocity_X double meters/sec 10% DR periodic 0.033333333 TA UR

Velocity_Y double meters/sec 10% DR periodic 0.033333333 TA UR

Velocity_Z double meters/sec 10% DR periodic 0.033333333 TA UR

Orientation_Psi double radians 3 degrees DR periodic 0.033333333 TA UR

Orientation_Theta double radians 3 degrees DR periodic 0.033333333 TA U

Orientation_Phi double radians 3 degrees DR periodic 0.033333333 TA UR

marking_text string perfect always static UR

Shape short enumeration discrete perfect always conditional if tasking changes set
shape

UR

Num_Entities_in_Aggregate short enumeration discrete perfect always delta U

DisaggPermitted boolean discrete perfect always static UR

AggregateState short enumeration discrete perfect always delta U

SubordinateList sequence discrete perfect always delta UR
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C.4 Construct an ADG from the APT and the ART
We construct an ADG for the Platoon-Tanks MRE from the APT and the ART

JPSD. Since OMT does not support specifying relationships, we construct an exa
ART for our MRE (Table 25). In practice, we expect a designer to construct an A
specific to the models executed jointly. The specification of the relationship may
accomplished formally; in Table 25, we present informal specifications in the last colu

We construct an ADG for the Platoon-Tanks MRE. From Table 24, which was der
from the APT, we determine the nodes in the ADG. From the ART in Table 25,
determine the arcs in the ADG. The ADG is shown in Figure 70. The interac
dependencies to each attribute exist because interactions with other entities or in
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weigh
dependencies. Dependency classes capture static semantics, whereas weights
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to
cumulative dependency, and equal weights to distributive dependencies that have the
independent attribute. We select these weights in order to keep our subsequent disc
of mapping functions simple. Other weights for these dependencies are possible.

C.5 Select Mapping Functions for Dependencies in the
ART

We select mapping functions to translate attributes among concurrent represent
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions m
translate values or changes in values of attributes from one to another. Additionally
desirable that mapping functions complete their translations in a time-bound manne
that they be composable and reversible.

We show mapping functions for some dependencies in Table 26. The map
functions are presented as pseudo-code. Error-checking has been omitted for b

P
la

tfo
rm

Appearance_Paint_Scheme short enumeration discrete perfect always delta U

Appearance_Smoking short enumeration discrete perfect always delta U

Appearance_Flaming short enumeration discrete perfect always delta U

Appearance_Trailing short enumeration discrete perfect always delta UR

Appearance_Lights short enumeration discrete perfect always delta U

Appearance_Hatch short enumeration discrete perfect always delta U

Damage_State_Appearance short enumeration discrete perfect always delta

Damage_State_Mobility short enumeration discrete perfect always delta U

Damage_State_Fire_Power short enumeration discrete perfect always delta U

Ta
nk GunElevation double radians 0.1 DR delta TA UR

* DR refers to a dead-reckoning algorithm, listed in the JPSD APT as DR(F, P, W).
† time-out refers to the JPSD APT condition: if (!accurate) or (value has changed and 5 second

update interval passed)

TABLE 23: Attribute/Parameter Table for JPSD

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition T/A U/R
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FIGURE 70: ADG for the JPSD Platoon-Tanks MRE
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TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes

Platoon Aggregate_ID_site Aggregate Initial_Parameters

Aggregate_ID_application

Aggregate_ID_entity

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location

Location_Y

Location_Z

Velocity_X Velocity

Velocity_Y

Velocity_Z

Orientation_Psi Orientation

Orientation_Theta

Orientation_Phi

Shape Composition

Num_Entities_in_Aggregate

DisaggPermitted

AggregateState

SubordinateList
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Tank1 Entity_ID_site Entity Initial_Parameters1

Entity_ID_application

Entity_ID_entity

Force_ID

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location1
Location_Y

Location_Z

Velocity_X Velocity1

Velocity_Y

Velocity_Z

Orientation_Psi Orientation1
Orientation_Theta

Orientation_Phi

Appearance_Paint_SchemePlatform Appearance1

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch

Damage_State_Appearance Damage_State1

Damage_State_Mobility

Damage_State_Fire_Power

GunElevation Tank GunElevation1

TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes
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Pseudo-code in the second column of Table 26 implements specifications in the
column of Table 25. The location, velocity and orientation of Platoon are averages o
location, velocity and orientation of Tank1 and Tank2. Similarly, mapping functions for

Tank2 Entity_ID_site Entity Initial_Parameters2

Entity_ID_application

Entity_ID_entity

Force_ID

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location2
Location_Y

Location_Z

Velocity_X Velocity2

Velocity_Y

Velocity_Z

Orientation_Psi Orientation2
Orientation_Theta

Orientation_Phi

Appearance_Paint_SchemePlatform Appearance2

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch

Damage_State_Appearance Damage_State2

Damage_State_Mobility

Damage_State_Fire_Power

GunElevation Tank GunElevation2

TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes
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other dependencies can be constructed. Mapping functions such as those sho
Table 26 translate values or changes in values of attributes.

TABLE 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD

Dependency Type Specification

Location1 → Location Cumulative The location of the platoon
is the centroid of the
location of its tanks.

Location2 → Location Cumulative

Location→ Location1 Distributive

Location→ Location2 Distributive

Velocity1 → Velocity Cumulative The velocity of the platoon
is the average of the velocity
of its tanks.

Velocity2 → Velocity Cumulative

Velocity → Velocity1 Distributive

Velocity → Velocity2 Distributive

Orientation1 → Orientation Cumulative The orientation of the
platoon is the average of the
orientations of its tanks.

Orientation2 → Orientation Cumulative

Orientation→ Orientation1 Distributive

Orientation→ Orientation2 Distributive

Damage_State1 → Composition Cumulative If a tank is fatally damaged
Composition reduces by
one, andvice versa.

Damage_State2 → Composition Cumulative

Composition→ Damage_State1 Distributive

Composition→ Damage_State2 Distributive

Appearance1 → Composition Cumulative The appearance of each tan
determines the appearance
of the platoon.

Appearance2 → Composition Cumulative

Composition→ Appearance1 Distributive

Composition→ Appearance2 Distributive

Velocity → Location Modelling The location of a platoon or
a tank depends on its
velocity.

Velocity1 → Location1 Modelling

Velocity2 → Location2 Modelling

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function

Location1 → Location Location← fd(Location1, Location2)
fl: Location_X← (Location1_X + Location2_X) / 2

Location_Y← (Location1_Y + Location2_Y) / 2
Location_Z← (Location1_Z + Location2_Z) / 2

Location2 → Location

Location→ Location1 (Location1, Location2) ← gd(Location)
gl: δLocation1_X ← δLocation2_X ← δLocation_X

δLocation1_Y ← δLocation2_Y ← δLocation_Y
δLocation1_Z ← δLocation2_Z ← δLocation_Z

Location→ Location2
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The mapping functions shown in Table 26 are composable and reversible. More
since they are simple in construction, we expect that they will complete in a time-bo
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation
When an interaction changes the value of any attribute, mapping functions propaga
change in the attribute to dependent attributes. For example, if an interaction chang
Tank-level attribute, Orientation1, the mapping functionfo changes the dependent Platoo
level attribute, Orientation. Subsequently, the mapping functiongo changes the Tank-leve
attribute, Orientation2. Since fo and go are composable, the change to Orientatio1
eventually propagates to Orientation2. Sincefo andgo are reversible, Orientation1 does not
change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 70 and applying
mapping functions in Table 26 ensures that the Platoon-Tanks MRE is consistent
observation times. Next, we determine and resolve the effects of concurrent interact

C.6 Determine the Effects of Interactions from the OIT
We determine the effects of interactions on the Platoon-Tanks MRE from the OIT

show an augmented OIT in Table 27. The first column lists the name of the interac

Velocity1 → Velocity Velocity← fd(Velocity1, Velocity2)
fv: Velocity_X ← (Velocity1_X + Velocity2_X) / 2

Velocity_Y ← (Velocity1_Y + Velocity2_Y) / 2
Velocity_Z ← (Velocity1_Z + Velocity2_Z) / 2

Velocity2 → Velocity

Velocity → Velocity1 (Velocity1, Velocity2) ← gd(Velocity)
gv: δVelocity1_X ← δVelocity2_X ← δVelocity_X

δVelocity1_Y ← δVelocity2_Y ← δVelocity_Y
δVelocity1_Z ← δVelocity2_Z ← δVelocity_Z

Velocity → Velocity2

Orientation1 → Orientation Orientation← fd(Orientation1, Orientation2)
fo: Orientation_Psi←

(Orientation1_Psi+ Orientation2_Psi)/ 2
Orientation_Theta←

(Orientation1_Theta+ Orientation2_Theta)/ 2
Orientation_Phi←

(Orientation1_Phi+ Orientation2_Phi)/ 2

Orientation2 → Orientation

Orientation→ Orientation1 (Orientation1, Orientation2) ← gd(Orientation)
go: δOrientation1_Psi← δOrientation2_Psi←

δOrientation_Psi
δOrientation1_Theta← δOrientation2_Theta←

δOrientation_Theta
δOrientation1_Phi← δOrientation2_Phi←

δOrientation_Phi

Orientation→ Orientation2

…

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function
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The next four columns list the class and affected attributes for the sender and recei
the interaction. We augment each interaction in the OIT with its type (see Chapte
Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain request
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information
the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity.
example, the OIT does not list any interaction corresponding to our Platoon-Tanks
changing its course, because such an interaction is internal to the MRE. InUNIFY, internal
actions are interactions. We add an internal action called ChangeCourse to the intera
in the OIT (see last row in Table 27) to show thatUNIFY addresses internal actions as we
as interactions with other entities. This interaction initiates a change in the course
entity. The sender and receiver of ChangeCourse is the same entity. The class of tha
is Entity. The interaction affects the attributes Location, Velocity and Orientation.

The last column in Table 27 lists the type of an interaction. Assigning a type requ
information about the semantics of an interaction. For example, the semantics of Col
are that it is generated in response to a modelling event in which two entities collide. S
the collision has occurred already and its effects on the sender and receiver are c
Collision is a Type 0 interaction. ArtyRadioMessage is a request by a commanding o
to perform a task. Since an entity may discard the request, ArtyRadioMessage is a T
interaction. For the ChangeCourse interaction, we assumed that a change in the co
an entity is a request whose outcome is uncertain.

We determine the interactions that our Platoon-Tanks MRE can send and recei
Table 28, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along w
suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction
For example, the interaction Collision can be sent by an entity of class Entity. Since E
is a base class of Platoon, Tank1 and Tank2, we distinguish the interaction Collision sen
by these three entities as Collision-P, Collision-T1 and Collision-T2 respectively. In the
second column, we indicate whether the Platoon-Tanks MRE sends (S) or receives (
interaction. In the third column, we list the attributes affected by the interaction dire

TABLE 27: Object Interaction Table for JPSD

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type

Collision Entity Location,
Velocity,
Orientation,
Appearance,
Damage_State

Entity Location,
Velocity,
Orientation,
Appearance,
Damage_State

Issuing_ID, Colliding_ID, Mass,
Relative_Location, Event_ID, Velocity

ISR 0

Detonation Munition Appearance,
Damage_State

Entity Velocity,
Appearance,
Damage_State

Munition_ID, Location, Velocity,
Firing_ID, Target_ID ,Event_ID,
Detonation_Result, Burst_Descriptor

ISR 0

Weapon_Launch Platform none Munition none Launch_Platform_ID, Weapon_ID ISR 3

DisaggregateRequest Aggregate none Aggregate AggregateState,
Subordinates

entity_ID, aggregate_ID,
detection_range, aggregate_state

ISR 3

ArtyRadioMessage ModSafCommander none Land Location,
Orientation,
Velocity

message_type, command, gun_ID,
full_message

ISR 3

ChangeCourse Entity Location,
Velocity,
Orientation

Entity Location,
Velocity,
Orientation

New_Location, New_Velocity,
New_Orientation

IR 3
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i.e., we list the setaffectsfor the interaction. These attributes are determined from the O
In the fourth column, we list the attributes affected by the interaction indirectly, i.e.,
list the setaffects+ for the interaction. These attributes can be determined from the ADG
Figure 70. Finally, we indicate the type of the interaction. Since inUNIFY we do not
aggregate or disaggregate, we do not expect the DisaggregateRequest interaction t

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type

Collision-P S Location,
Velocity,
Orientation,
Composition

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Orientation,
Composition

0

Collision-T1 S Location1,
Velocity1,
Orientation1,
Appearance1,
Damage_State1

Location, Velocity,
Orientation, Composition,
Location2, Velocity2,
Orientation2, Appearance2,
Damage_State2, Location1,
Velocity1, Orientation1,
Appearance1, Damage_State1

0

Collision-T2 S Location2,
Velocity2,
Orientation2,
Appearance2,
Damage_State2

Location, Velocity,
Orientation, Composition,
Location1, Velocity1,
Orientation1, Appearance1,
Damage_State1, Location2,
Velocity2, Orientation2,
Appearance2, Damage_State2

0

Weapon_Launch-T1 S 3

Weapon_Launch-T2 S 3

DisaggregateRequest-P S 3

ChangeCourse-P S Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation

3
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ChangeCourse-T1 S Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

ChangeCourse-T2 S Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

Collision-P R Location,
Velocity,
Orientation,
Composition

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Orientation,
Composition

0

Collision-T1 R Location1,
Velocity1,
Orientation1,
Appearance1,
Damage_State1

Location, Velocity,
Orientation, Composition,
Location2, Velocity2,
Orientation2, Appearance2,
Damage_State2, Location1,
Velocity1, Orientation1,
Appearance1, Damage_State1

0

Collision-T2 R Location2,
Velocity2,
Orientation2,
Appearance2,
Damage_State2

Location, Velocity,
Orientation, Composition,
Location1, Velocity1,
Orientation1, Appearance1,
Damage_State1, Location2,
Velocity2, Orientation2,
Appearance2, Damage_State2

0

Detonation-P R Velocity,
Composition

Velocity1, Velocity2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Composition,
Location1, Location2

0

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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Detonation-T1 R Velocity1,
Appearance1,
Damage_State1

Velocity, Composition,
Location1, Velocity2,
Velocity1, Appearance2,
Appearance1,Damage_State2,
Damage_State1, Location,
Location2

0

Detonation-T2 R Velocity2,
Appearance2,
Damage_State2

Velocity, Composition,
Location2, Velocity1,
Velocity2, Appearance1,
Appearance2,Damage_State1,
Damage_State2, Location,
Location1

0

DisaggregateRequest-P R 3

ArtyRadioMessage-P R Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation, Composition

3

ArtyRadioMessage-T1 R Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

ArtyRadioMessage-T2 R Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

ChangeCourse-P R Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation

3

ChangeCourse-T1 R Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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Any subset of the interactions in Table 28 may occur concurrently. Next, we show
to resolve the effects of concurrent interactions.

C.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices
the CIT. In practice, a designer constructs a CIT specific to the application. Since a C
unavailable in OMT, we construct an example CIT, shown in Table 29.

A designer specifies policies in the CIT for resolving the effects of concurr
interactions. The CIT consists of sets of concurrent interactions with dependent ef
policies for resolving them and conditions under which the policies are applica
Concurrent interactions that are independent of one another can be resolve
serialization and are not specified in the CIT. Some interactions may be indepe
because they affect disjoint sets of attributes. Other interactions may be indepe
because their effects are applied in different time-steps, for example, interactions se
received by an entity. Yet other interactions are independent because they are re
response pairs. Policies must be specified in the CIT for only the remaining interact
Policies may be specified for classes of interactions (e.g., the last two rows in Table 2
for instances of interactions (e.g., all the other rows in Table 29). An Interaction Res
for the Platoon-Tanks MRE applies the policies in the CIT only if the effects of concur
interactions conflict. If concurrent interactions do not conflict, they may be serialized

ChangeCourse-T2 R Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

TABLE 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

Concurrent Interactions Condition Policy

Any combination of (Detonation-P,
Detonation-T1, Detonation-T2), any
combination of (Collision-P,
Collision-T1, Collision-T2)

Always Damage to Tanks less than sum o
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

DisaggregateRequest-P Always Ignore

ArtyRadioMessage-P, any combination
of (ArtyRadioMessage-T1,
ArtyRadioMessage-T2)

Received,
commands
conflicting

Ignore all except
InitiateStrikeCommand-P

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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C.8 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE main
consistency and resolve concurrent interactions respectively. A CE consists of an
and mapping functions, whereas an IR consists of policies for resolving concu
interactions. Figure 71 shows a JPSD Platoon-Tanks MRE. The MRE can intera
multiple representation levels — the Platoon and Tank levels — concurrently. More
the concurrent representations within the MRE are consistent at all observation time

A CE consists of an ADG and application-specific mapping functions. For
Platoon-Tanks MRE, we presented an ADG in Figure 70 and mapping function
Table 26. In Figure 34 (see Chapter 6), we presented an algorithm for implementing
In §6.3, we discussed how to traverse an ADG and apply mapping functions in ord
keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurr
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concu
interactions in Table 29. In Figure 47 (see Chapter 7), we presented an algorithm
implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. U
this taxonomy, we presented policies for resolving the effects of concurrent interacti

A CE and an IR ensure that an MRE is internally consistent when concur
interactions occur. During a time-step, a number of concurrent interactions may occu

ArtyRadioMessage-P, any combination
of (ArtyRadioMessage-T1,
ArtyRadioMessage-T2)

Received,
commands
non-
conflicting

Delay all except
InitiateStrikeCommand-P by one
time-step

Any combination of
(ArtyRadioMessage-P,
ArtyRadioMessage-T1,
ArtyRadioMessage-T2), any
combination of (ChangeCourse-P,
ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore ChangeCourse-P,
ChangeCourse-T1,
ChangeCourse-T2; Resolve
ArtyRadioMessage-P,
ArtyRadioMessage-T1,
ArtyRadioMessage-T2) as above

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

TABLE 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

Concurrent Interactions Condition Policy
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IR determines the type of each interaction. Next, the IR applies the effect of e
interaction as if the interaction occurred in isolation. In order to do so, the IR permits
interactions to take effect one at a time. When an interaction changes an attribute, t
traverses an ADG and translates changes to dependent attributes by invokin
appropriate mapping functions. The CE maintains a list of changes for each attribute
result of computing the effects of each interaction. Subsequently, the CE applie
effects of all the interactions on each attribute. The CE queries the IR about polici
resolve the effects of dependent concurrent interactions whenever the CE detects co
in the list of changes for an entity. If the IR contains a policy for resolving conflict
changes, the CE applies the changes accordingly; otherwise, the CE assumes the c
are independent and applies them in an arbitrary order. When the changes to all attr
have been applied, the MRE is internally consistent.

FIGURE 71: JPSD Platoon-Tanks MRE

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation
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We demonstrate how designers can employUNIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorpora
UNIFY in Real-time Platform Reference (RPR) [RPR97], a military model that is par
the Department of Defence’s High Level Architecture (HLA). RPR is specified us
OMT [OMT98]. From the RPR specifications, we construct an MRE and show how
maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the R
specifications. We assume that the jointly-executing models in RPR are a Platoon m
and a Tank model. For brevity, we assume that a Platoon consists of only two Tank
shown in Figure 72. From the OMT tables in the RPR specification, we determine
attributes in the representations of the Platoon and Tank models. Next, we captu
relationships among attributes using an Attribute Dependency Graph (ADG) and s
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we se
policies for resolving the effects of concurrent interactions.

In §D.1, we present the tables in OMT. In §D.2, we list steps for incorporatingUNIFY
in RPR. We demonstrate each step in subsequent sections. In §D.3, we construct an
In §D.4 and §D.5, we construct an ADG and select mapping functions for attrib
dependencies in the MRE. In §D.6 and §D.7, we determine and resolve the effec
concurrent interactions. In §D.8, we construct a CE and IR for the MRE.

D.1 OMT Tables
OMT consists of a number of tables for specifying parts of a model. They are:
1. Object Class Structure Table (OCST): Shows the class hierarchy along w

publishable/subscribable information for each class.
2. Attribute/Parameter Table (APT): Lists object attributes and interactio

parameters along their data type, cardinality, units, resolution, accura
accuracy condition, update type and update condition.
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3. Object Interaction Table (OIT): Lists each possible interaction and associa
information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.
5. Complex Data Table (CDT): Lists the definitions of all structured data types.
6. Object Class Definitions (OCD): Describes the role of each entity.
7. Object Interaction Definitions (OID): Describes each interaction.
8. Attribute/Parameter Definitions (APD): Describes each object attribute a

interaction parameter.
We augment the OIT with the class of each interaction. Also, we add two table

OMT to capture attribute relationships and specify policies for concurrent interaction
9. Attribute Relationships Table (ART): Lists each attribute dependency, its typ

its mapping function and requirements and properties of the mapping function
10. Concurrent Interactions Table (CIT): Lists policies for resolving classes a

instances of concurrent interactions.

D.2 Steps
The steps for incorporatingUNIFY in RPR are:
1. Construct an MRE from the OCST and the APT
2. Construct an ADG from the APT and the ART
3. Select Mapping Functions for Dependencies in the ART
4. Determine the Effects of Interactions from the OIT
5. Resolve the Effects of Concurrent Interactions from the CIT
6. Construct a Consistency Enforcer and an Interaction Resolver

D.3 Construct an MRE from the OCST and the APT
We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank m

jointly. Using the OCST for RPR (shown in Table 30), we derive a Platoon fr
AggregateEntity, and a Tank from MilitaryLandPlatform. Our Platoon-Tanks M
consists of the representations of a Platoon and two Tanks, Tank1 and Tank2.

From the APT, we determine the attributes that are part of the concur
representations within our Platoon-Tanks MREs. For brevity, Table 31 shows only pa
the APT for RPR. The table lists attributes only for base classes of Platoon and Tank

Platoon

Platoon-Tanks MRE

Representation

FIGURE 72: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation
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each attribute, the designer may specify information such as its data type, units, reso
accuracy, condition under which the specified accuracy is required and update type.

From the OCST (Table 30) and APT (Table 31), we derive the attributes of a Tank
a Platoon. Table 32 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we
combine a number of logically-similar attributes derived from the OCST and APT (sec
column) into one attribute (fourth column). For example, we combine the attrib
IsFrozen, IsConcealed, FlamesPresent and LifeformState into an attribute called S
We combine such attributes so that we can present a simple MRE, for which an ADG
be presentable and specifying mapping functions will be manageable. Combining si
attributes is consistent with our discussion about assigning nodes of an ADG (§6.1.
node can be assigned to any subset of a representation for which a designer can
how the effects of interactions must be applied. In practice, we expect designers to a
nodes to individual attributes rather than combined attributes.

TABLE 30: Object Class Structure Table for RPR

Base Class 1st Subclass 2nd Subclass 3rd Subclass 4th Subcla
BaseEntity AggregateEntity

EnvironmentEntity

PhysicalEntity MilitaryEntity MilitaryPlatformEntity MilitaryAirLandPlatform

MilitaryAmphibiousPlatform

MilitaryLandPlatform

MilitarySpacePlatform

MilitarySeaSurfacePlatform

MilitarySubmersiblePlatform

MilitaryMultiDomainPlatform

MunitionEntity

Soldier

CivilPlatform CivilAirLandPlatform

CivilAmphibiousPlatform

CivilLandPlatform

CivilSpacePlatform

CivilSeaSurfacePlatform

CivilSubmersiblePlatform

CivilMultiDomainPlatform

Civilian

EmbeddedSystem Designator

EmitterSystem

RadioReceiver

RadioTransmitter

EmitterBeam TrackJamBeam

SimulationManager
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TABLE 31: Attribute/Parameter Table for RPR

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition

A
gg

re
ga

te
E

nt
ity

AggregateMarking structure 1 static

AggregateState enumeration 1 conditional on change

Dimensions structure 1 conditional AggSizeChange

EntityIDs unsigned long 0+ perfect always conditional on change

ForceID enumeration 1 static

Formation enumeration 1 conditional on change

NumberOfEntities unsigned short 1 1 perfect always conditional on change

NumberOfSilentAggregates unsigned short 1 1 perfect always conditional on change

NumberOfSilentEntities unsigned short 1 1 perfect always conditional on change

NumberOfSubAggregates unsigned short 1 1 perfect always conditional on change

NumberOfVariableDatums unsigned short 1 1 perfect always conditional on change

SilentAggregates structure 0+ conditional on change

SilentEntities structure 0+ conditional on change

SubAggregateIDs unsigned long 0+ perfect always conditional on change

VariableDatums structure 0+ conditional on change

B
as

eE
nt

ity

AccelerationVector structure 1 conditional AccelerationChange

AngularVelocityVector structure 1 conditional AngVelocityChange

DRAlgorithm enumeration 1 conditional on change

EntityType structure 1 static

FederateID structure 1 static

IsFrozen boolean 1 TRUE, FALSE perfect always conditional on change

Orientation structure 1 conditional OrientationChange

Position structure 1 conditional PositionChange

VelocityVector structure 1 conditional VelocityChange

M
ili

ta
ry

E
nt

ity

AlternateEntityType structure 1 static

CamouflageType boolean 1 TRUE, FALSE perfect always conditional on change

FirePowerDisabled boolean 1 TRUE, FALSE perfect always conditional on change

ForceID enumeration 1 perfect always static

IsConcealed boolean 1 TRUE, FALSE perfect always conditional on change

M
ili

ta
ry

P
la

tfo
rm

E
nt

ity AfterburnerOn boolean 1 TRUE, FALSE perfect always conditional on change

HasAmmunitionSupplyCap boolean 1 TRUE, FALSE perfect always static on change

LauncherRaised boolean 1 TRUE, FALSE perfect always conditional on change
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D.4 Construct an ADG from the APT and the ART
We construct an ADG for the Platoon-Tanks MRE from the APT and the ART

RPR. Since OMT does not support specifying relationships, we construct an exa
ART for our MRE (Table 33). In practice, we expect a designer to construct an A
specific to the models executed jointly. The specification of the relationship may
accomplished formally; in Table 33, we present informal specifications in the last colu

We construct an ADG for the Platoon-Tanks MRE. From Table 32, which was der
from the APT, we determine the nodes in the ADG. From the ART in Table 33,
determine the arcs in the ADG. The ADG is shown in Figure 73. The interac
dependencies to each attribute exist because interactions with other entities or in
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weigh
dependencies. Dependency classes capture static semantics, whereas weights
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to
cumulative dependency, and equal weights to distributive dependencies that have the
independent attribute. We select these weights in order to keep our subsequent disc
of mapping functions simple. Other weights for these dependencies are possible.

D.5 Select Mapping Functions for Dependencies in the
ART

We select mapping functions to translate attributes among concurrent represent
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions m
translate values or changes in values of attributes from one to another. Additionally

P
hy

si
ca

lE
nt

ity

ArticulatedParametersArray structure 0+ conditional on change

ArticulatedParametersCount unsigned short 1 1 perfect always static

DamageState enumeration 1 conditional on change

EngineSmokeOn boolean 1 TRUE, FALSE perfect always conditional on change

FlamesPresent boolean 1 TRUE, FALSE perfect always conditional on change

HasFuelSupplyCap boolean 1 TRUE, FALSE perfect always static on change

HasRecoveryCap boolean 1 TRUE, FALSE perfect always static on change

HasRepairCap boolean 1 TRUE, FALSE perfect always static on change

HatchState enumeration 1 conditional on change

Immobilized boolean 1 TRUE, FALSE perfect always conditional on change

LifeformState enumeration 1 conditional on change

LightsState enumeration 1 conditional on change

Marking structure 1 static on change

PowerPlantOn boolean 1 TRUE, FALSE perfect always conditional on change

RampDeployed boolean 1 TRUE, FALSE perfect always conditional on change

SmokePlumePresent boolean 1 TRUE, FALSE perfect always conditional on change

TentDeployed boolean 1 TRUE, FALSE perfect always conditional on change

TrailState enumeration 1 conditional on change

TABLE 31: Attribute/Parameter Table for RPR

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition
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FIGURE 73: ADG for the RPR Platoon-Tanks MRE
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TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes
Platoon AccelerationVector BaseEntity Acceleration

AngularVelocityVector AngularVelocity

DRAlgorithm DRAlgorithm

EntityType InitialParameters

FederateID

IsFrozen Status

Orientation Orientation

Position Position

VelocityVector Velocity

AggregateMarking AggregateEntity InitialParameters

ForceID

Dimensions Dimensions

Formation Formation

EntityIDs Composition

AggregateState

NumberOfEntities

NumberOfSilentAggregates

NumberOfSilentEntities

NumberOfSubAggregates

NumberOfVariableDatums

SilentAggregates

SilentEntities

SubAggregateIDs

VariableDatums
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Tank1 AccelerationVector BaseEntity Acceleration1

AngularVelocityVector AngularVelocity1

DRAlgorithm DRAlgorithm1

EntityType InitialParameters1

FederateID

IsFrozen Status1

Orientation Orientation1

Position Position1

VelocityVector Velocity1

ArticulatedParametersArray PhysicalEntity ArticulatedParameters1

ArticulatedParametersCount

DamageState Status1

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

TentDeployed

TrailState

AlternateEntityType MilitaryEntity InitialParameters1

ForceID

CamouflageType Status1

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity

HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes
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Tank2 AccelerationVector BaseEntity Acceleration2

AngularVelocityVector AngularVelocity2

DRAlgorithm DRAlgorithm2

EntityType InitialParameters2

FederateID

IsFrozen Status2

Orientation Orientation2

Position Position2

VelocityVector Velocity2

ArticulatedParametersArray PhysicalEntity ArticulatedParameters2

ArticulatedParametersCount

DamageState Status2

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

TentDeployed

TrailState

AlternateEntityType MilitaryEntity InitialParameters2

ForceID

CamouflageType Status2

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity

HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes
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desirable that mapping functions complete their translations in a time-bound manne
that they be composable and reversible. We show mapping functions for s
dependencies in Table 34. The mapping functions are presented as pseudo-code.
checking has been omitted for brevity. Pseudo-code in the second column of Tab
implements specifications in the last column of Table 33. Mapping functions such as
shown in Table 34 translate values or changes in values of attributes.

TABLE 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR

Dependency Type Specification

Position1 → Position Cumulative The position of the platoon
is the centroid of the
position of its tanks.

Position2 → Position Cumulative

Position→ Position1 Distributive

Position→ Position2 Distributive

Velocity1 → Velocity Cumulative The velocity of the platoon
is the average of the velocity
of its tanks.

Velocity2 → Velocity Cumulative

Velocity → Velocity1 Distributive

Velocity → Velocity2 Distributive

Orientation1 → Orientation Cumulative The orientation of the
platoon is the average of the
orientations of its tanks.

Orientation2 → Orientation Cumulative

Orientation→ Orientation1 Distributive

Orientation→ Orientation2 Distributive

Status1 → Composition Cumulative The composition of the
platoon changes if tanks are
fatally damaged.

Status2 → Composition Cumulative

Composition→ Status1 Distributive

Composition→ Status2 Distributive

Velocity → Position Modelling The position of a platoon or
a tank depends on its
velocity.

Velocity1 → Position1 Modelling

Velocity2 → Position2 Modelling

Acceleration→ Velocity Modelling The velocity of a platoon or
a tank depends on its
acceleration.

Acceleration1 → Velocity1 Modelling

Acceleration2 → Velocity2 Modelling

…

TABLE 34: Mapping Functions for RPR Platoon-Tanks MRE

Dependency Mapping Function

Position1 → Position Position← fd(Position1, Position2)
fl: Position.X← (Position1.X + Position2.X) / 2

Position.Y← (Position1.Y + Position2.Y) / 2
Position.Z← (Position1.Z + Position2.Z) / 2

Position2 → Position
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The mapping functions shown in Table 34 are composable and reversible. More
since they are simple in construction, we expect that they will complete in a time-bo
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation
When an interaction changes the value of any attribute, mapping functions propaga
change in the attribute to dependent attributes. For example, if an interaction chang
Tank-level attribute, Orientation1, the mapping functionfo changes the dependent Platoo
level attribute, Orientation. Subsequently, the mapping functiongo changes the Tank-leve
attribute, Orientation2. Since fo and go are composable, the change to Orientatio1
eventually propagates to Orientation2. Sincefo andgo are reversible, Orientation1 does not
change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 73 and applying
mapping functions in Table 34 ensures that the Platoon-Tanks MRE is consistent
observation times. Next, we determine and resolve the effects of concurrent interact

Position→ Position1 (Position1, Position2) ← gd(Position)
gl: δPosition1.X ← δPosition2.X ← δPosition.X

δPosition1.Y ← δPosition2.Y ← δPosition.Y
δPosition1.Z ← δPosition2.Z ← δPosition.Z

Position→ Position2

Velocity1 → Velocity Velocity← fd(Velocity1, Velocity2)
fv: Velocity.X ← (Velocity1.X + Velocity2.X) / 2

Velocity.Y ← (Velocity1.Y + Velocity2.Y) / 2
Velocity.Z ← (Velocity1.Z + Velocity2.Z) / 2

Velocity2 → Velocity

Velocity → Velocity1 (Velocity1, Velocity2) ← gd(Velocity)
gv: δVelocity1.X ← δVelocity2.X ← δVelocity.X

δVelocity1.Y ← δVelocity2.Y ← δVelocity.Y
δVelocity1.Z ← δVelocity2.Z ← δVelocity.Z

Velocity → Velocity2

Orientation1 → Orientation Orientation← fd(Orientation1, Orientation2)
fo: Orientation.Psi←

(Orientation1.Psi+ Orientation2.Psi)/ 2
Orientation.Theta←

(Orientation1.Theta+ Orientation2.Theta)/ 2
Orientation.Phi←

(Orientation1.Phi+ Orientation2.Phi) / 2

Orientation2 → Orientation

Orientation→ Orientation1 (Orientation1, Orientation2) ← gd(Orientation)
go: δOrientation1.Psi← δOrientation2.Psi←

δOrientation.Psi
δOrientation1.Theta← δOrientation2.Theta←

δOrientation.Theta
δOrientation1.Phi← δOrientation2.Phi←

δOrientation.Phi

Orientation→ Orientation2

…

TABLE 34: Mapping Functions for RPR Platoon-Tanks MRE

Dependency Mapping Function
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D.6 Determine the Effects of Interactions from the OIT
We determine the effects of interactions on the Platoon-Tanks MRE from the OIT

show an augmented OIT in Table 35. The first column lists the name of the interac
The next four columns list the class and affected attributes for the sender and recei
the interaction. We augment each interaction in the OIT with its type (see Chapte
Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain request
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information
the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity.
example, the OIT does not list any interaction corresponding to our Platoon-Tanks
changing its course, because such an interaction is internal to the MRE. InUNIFY, internal
actions are interactions. We add an internal action called ChangeCourse to the intera
in the OIT (see last row in Table 35) to show thatUNIFY addresses internal actions as we
as interactions with other entities. This interaction initiates a change in the course
entity. The sender and receiver of ChangeCourse is the same entity. The class of tha
is Player. The interaction affects the attributes Position, Velocity and Orientation.

The last column in Table 35 lists the type of an interaction. Assigning a type requ
information about the semantics of an interaction. For example, the semantic
CreateObjectRequest could be that the SimulationManager requests an AggregateE
create a new entity as its constituent. If such a request must always be satisfied
AggregateEntity, CreateObjectRequest is a Type 2 interaction. CreateObjectResult
response to a CreateObjectRequest. CreateObjectResult could be Type 0 or Type 1,
assigned it to Type 1 because the SimulationManager may discard an update abo
created object. For the ChangeCourse interaction, we assumed that a change in the
of an entity is a request whose outcome is uncertain.

TABLE 35: Object Interaction Table for RPR

Interaction Sender Class Sender Attributes Receiver
Receiver
Attributes

Interaction Parameters ISR Type

ActionRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs, Action IR

ActionResult AggregateEntity none SimulationManager none ActionResult IR 1

AttributeChangeRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs, AttributeValueSet IR

AttributeChangeResult AggregateEntity none SimulationManager none ObjectID, AttributeChangeResult,
AttributeValueSet

IR 1

Collision PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

CollidingObjectID, CollidingObjectMass,
CollidingObjectVelocity, CollisionType,
CollisionLocation, EventID, IssuingObjectID

IR 0

CreateObjectRequest SimulationManager none AggregateEntity none ObjectClass, AttributeValueSet IR

CreateObjectResult AggregateEntity none SimulationManager none CreateObjectResult IR

MunitionDetonation MilitaryPlatformEntity none PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

ArticulatedPartsArray, ArticulatedPartsCount,
DetonationLocation, DetonationResult, EventID,
FiringObjectID, FinalVelocityVector, FuseType,
MunitionObjectID, MunitionType, QuantityFired,
RateOfFire, RelativeDetonationLocation,
TargetObjectID

IR 0

RemoveObjectRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs IR

RemoveObjectResult AggregateEntity none SimulationManager none RemoveObjectResult IR
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We determine the interactions that our Platoon-Tanks MRE can send and recei
Table 36, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along w
suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction
For example, the interaction ChangeCourse can be sent by an entity of class Base
Since BaseEntity is a base class of Platoon, Tank1 and Tank2, we distinguish the
interaction ChangeCourse sent by these three entities as ChangeCou
ChangeCourse-T1 and ChangeCourse-T2 respectively. In the second column, we indica
whether the Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the
column, we list the attributes affected by the interaction directly, i.e., we list the setaffects
for the interaction. These attributes are determined from the OIT. In the fourth column
list the attributes affected by the interaction indirectly, i.e., we list the setaffects+ for the
interaction. These attributes can be determined from the ADG in Figure 73. Finally
indicate the type of the interaction.

WeaponFire MilitaryEntity none none EventID, FireControlSolutionRange,
FireMissionIndex, FiringLocation, FiringObjectID,
FuseType, InitialVelocityVector,
MunitionObjectID, MunitionType, QuantityFired,
RateOfFire, TargetObjectID, WarheadType

IR 0

ChangeCourse BaseEntity Position,
Velocity,
Orientation

BaseEntity Position,
Velocity,
Orientation

New_Location, New_Velocity, New_Orientation IR 3

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type

ActionResult-P S 1

AttributeChangeResult-P S 1

CreateObjectResult-P S 1

RemoveObjectResult-P S 1

Collision-T1 S Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

TABLE 35: Object Interaction Table for RPR

Interaction Sender Class Sender Attributes Receiver
Receiver
Attributes

Interaction Parameters ISR Type
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Collision-T2 S Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

WeaponFire-T1 S 0

WeaponFire-T2 S 0

ChangeCourse-P S Position,Velocity,
Orientation

Position1, Velocity1,
Orientation1, Position2,
Velocity1, Orientation2,
Position, Velocity,
Orientation

3

ChangeCourse-T1 S Position1,
Velocity1,
Orientation1

Position, Velocity,
Orientation, Position2,
Velocity2, Orientation2,
Position1, Velocity1,
Orientation1

3

ChangeCourse-T2 S Position2,
Velocity2,
Orientation2

Position, Velocity,
Orientation, Position1,
Velocity1, Orientation1,
Position2, Velocity2,
Orientation2

3

ActionRequest-P R 2

AttributeChangeRequest-P R 2

CreateObjectRequest-P R 2

RemoveObjectRequest-P R 2

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type
180



Collision-T1 R Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

Collision-T2 R Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

MunitionDetonation-T1 R Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

MunitionDetonation-T2 R Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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Any subset of the interactions in Table 36 may occur concurrently. Next, we show
to resolve the effects of concurrent interactions.

D.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices
the CIT. In practice, a designer constructs a CIT specific to the application. Since a C
unavailable in OMT, we construct an example CIT, shown in Table 37.

A designer specifies policies in the CIT for resolving the effects of concurr
interactions. The CIT consists of sets of concurrent interactions with dependent ef
policies for resolving them and conditions under which the policies are applica
Concurrent interactions that are independent of one another can be resolve
serialization and are not specified in the CIT. Some interactions may be indepe
because they affect disjoint sets of attributes. Other interactions may be indepe
because their effects are applied in different time-steps, for example, interactions se
received by an entity. Yet other interactions are independent because they are re
response pairs. Policies must be specified in the CIT for only the remaining interact
Policies may be specified for classes of interactions (e.g., the last two rows in Table 3
for instances of interactions (e.g., all the other rows in Table 37). In RPR, m
interactions do not affect any attributes. Although such interactions can be ass
independent, we do not make such an assumption. It is likely that the interactions
internal attributes in the models. Since OMT is meant to be an interface specifica
internal attributes are not listed in the APT. For consistency maintenance, a designe
list internal attributes as well in the APT. Since internal attributes are not listed, we

ChangeCourse-P R Position,Velocity,
Orientation

Position1, Velocity1,
Orientation1, Position2,
Velocity1, Orientation2,
Position, Velocity,
Orientation

3

ChangeCourse-T1 R Position1,
Velocity1,
Orientation1

Position, Velocity,
Orientation, Position2,
Velocity2, Orientation2,
Position1, Velocity1,
Orientation1

3

ChangeCourse-T2 R Position2,
Velocity2,
Orientation2

Position, Velocity,
Orientation, Position1,
Velocity1, Orientation1,
Position2, Velocity2,
Orientation2

3

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type
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not assume that interactions that affect disjoint sets of attributes are independen
example, although ActionRequest-P and RemoveObjectRequest-P affect no attri
hence affecting disjoint sets of attributes, we specify policies for resolving th
interactions. An Interaction Resolver for the Platoon-Tanks MRE applies the policie
the CIT only if the effects of concurrent interactions conflict. If concurrent interactions
not conflict, they may be serialized.

D.8 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE main
consistency and resolve concurrent interactions respectively. A CE consists of an
and mapping functions, whereas an IR consists of policies for resolving concu
interactions. Figure 74 shows an RPR Platoon-Tanks MRE. The MRE can intera
multiple representation levels — the Platoon and Tank levels — concurrently. More
the concurrent representations within the MRE are consistent at all observation time

A CE consists of an ADG and application-specific mapping functions. For
Platoon-Tanks MRE, we presented an ADG in Figure 73 and mapping function
Table 34. In Figure 34 (see Chapter 6), we presented an algorithm for implementing

TABLE 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE

Concurrent Interactions Condition Policy

MunitionDetonation-Ti, Collision-Ti Always Damage to Tanki less than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

RemoveObjectRequest-P, any
combination of (ActionRequest-P,
AttributeChangeRequest-P,
CreateObjectRequest-P)

Same
object

Order all before
RemoveObjectRequest-P

CreateObjectRequest-P, any
combination of (ActionRequest-P,
AttributeChangeRequest-P,
RemoveObjectRequest-P)

Same
object

Order all after
CreateObjectRequest-P

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted
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In §6.3, we discussed how to traverse an ADG and apply mapping functions in ord
keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurr
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concu
interactions in Table 37. In Figure 47 (see Chapter 7), we presented an algorithm
implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. U
this taxonomy, we presented policies for resolving the effects of concurrent interacti

A CE and an IR ensure that an MRE is internally consistent when concur
interactions occur. During a time-step, a number of concurrent interactions may occu
IR determines the type of each interaction. Next, the IR applies the effect of e
interaction as if the interaction occurred in isolation. In order to do so, the IR permits
interactions to take effect one at a time. When an interaction changes an attribute, t
traverses an ADG and translates changes to dependent attributes by invokin
appropriate mapping functions. The CE maintains a list of changes for each attribute
result of computing the effects of each interaction. Subsequently, the CE applie
effects of all the interactions on each attribute. The CE queries the IR about polici
resolve the effects of dependent concurrent interactions whenever the CE detects co
in the list of changes for an entity. If the IR contains a policy for resolving conflict
changes, the CE applies the changes accordingly; otherwise, the CE assumes the c
are independent and applies them in an arbitrary order. When the changes to all attr
have been applied, the MRE is internally consistent.

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

FIGURE 74: RPR Platoon-Tanks MRE

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation
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— Stephen Hawking
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We demonstrate how designers can applyUNIFY to achieve effective Multi-
Representation Modelling (MRM) in hierarchical autonomous agents (HAA) [WAS98B].
Hierarchical autonomous agents employ multiple models to achieve a goal. Examp
the models are a planning model that selects actions that an agent can perform,
perception-action model that senses and changes an agent’s surroundings. A HAA
execute multiple models jointly.

The HAA model we considered is part of a research project undertaken by the V
group at the University of Virginia. The agent, Marcus, has been programmed to cons
complex arrangements such as archways from basic building blocks. Marcus
hierarchical autonomous agent that has two models — a planner model and a perce
action (PA) model. Typically, the planner maintains long-term or abstract representa
whereas the PA system maintains immediate and detailed representation. Each mod
have its own representation of the world in which Marcus operates. Accordingly, e
model may represent building blocks, partially-completed arrangements, obstacles,
and pathways by a number of relevant attributes such as position, orientation and c
Marcus considers relationships among blocks that are stacked or placed next to eac
as an arrangement. We construct an MRE for Marcus and show how to mai
consistency within this MRE when concurrent interactions occur.
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The jointly-executing models in Marcus
are a planner model and a PA model. We
determine the attributes in the planner and
PA representations and construct a Multiple
Representation Entity (MRE) for Marcus, as
shown in Figure 75. Next, we capture the
relationships among attributes using an
Attribute Dependency Graph (ADG) and
select mapping functions to maintain
consistency in the Marcus MRE. Finally, we
select policies for resolving the effects of
concurrent interactions.

In §E.1, we list steps for incorporatingUNIFY in Marcus. We demonstrate each step
subsequent sections. In §E.2, we construct an MRE. In §E.3 and §E.4, we constru
ADG and select mapping functions for attribute dependencies in the MRE. In §E.5
§E.6, we determine and resolve the effects of concurrent interactions. In §E.7
construct a CE and IR for the MRE.

E.1 Steps
The steps for incorporatingUNIFY in Marcus are:
1. Construct an MRE from Planner and PA Representations
2. Construct an ADG for the MRE
3. Select Mapping Functions for Dependencies in the ADG
4. Determine the Effects of Interactions
5. Resolve the Effects of Concurrent Interactions
6. Construct a Consistency Enforcer and an Interaction Resolver

E.2 Construct an MRE from Planner and PA
Representations

In order to construct an MRE for Marcus, we must determine what constitutes
representations of the planner and PA models. In HAAs, the representation of a plan
PA consists of attributes that capture properties of objects that are that are importa
the current goal. In order to achieve a goal, an agent decomposes the goal into tas
sub-tasks. Different models in a hierarchical agent architecture view an agent’s tas
different levels of abstraction. Deciding what tasks an agent must execute will be bas
the agent’s goals and capabilities. Marcus’s goal is to build an archway out of colo
blocks scattered throughout a room. This goal can be refined to the planner tas
build-tower and span-towers-with-block. The PA model accomplishes these tasks
executing tasks such asgoto-block, pick-up-block, put-down-block, stack-block-on-block
andspan-blocks-with-block.

After the tasks and sub-tasks have been identified, the representation for each
can be constructed by identifying the objects relevant to the agent’s tasks. These o
are parts of the environment that are affected by a task. For example, in thebuild-tower
task,tower is a relevant object. Likewise, in thestack-block-on-block task, two blocks are

Planner Representation

M
ar

cu
s 

M
R

E

FIGURE 75: Marcus MRE

PA Representation
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the relevant objects. A model represents objects relevant to its current tasks. Attribut
properties of these objects described using traditional data structures. During
execution of a task, the representation for a model may consist of many attributes for
object in the task. Given Marcus goal of constructing an archway from blocks, we lis
attributes of objects represented by the PA and planner (Table 38).

Wasson addresses how tasks can be decomposed and representation identifi
jointly-executing models in HAAs [WAS99].

E.3 Construct an ADG for the MRE
We construct an Attribute Relationship Table (ART) for the attributes in the plan

and PA representations. We construct an example ART for our MRE (Table 39
practice designers provide ARTs for their applications. The specification of
relationship may be accomplished formally; in Table 39, we present infor
specifications in the last column.

TABLE 38: Attributes of planner and PA (Marcus)

Entity Object Attributes

Planner Tower1 T1.position, T1.orientation, T1.height, T1.width, T1.stacked, …

Tower2 T2.position, T2.orientation, T2.height, T2.width, T2.stacked, …

Arch A.position, A.orientation, A.height, A.width, A.connected, …

PA Block1 B1.position, B1.orientation, B1.height, B1.width, B1.colour, …

Block2 B2.position, B2.orientation, B2.height, B2.width, B2.colour, …

Block3 B3.position, B3.orientation, B3.height, B3.width, B3.colour, …

Block4 B4.position, B4.orientation, B4.height, B4.width, B4.colour, …

Block5 B5.position, B5.orientation, B5.height, B5.width, B5.colour, …

TABLE 39: Attribute Relationship Table for Marcus MRE

Dependency Type Specification

B1.position→ T1.position Cumulative The positions of blocks determine th
position of a tower andvice versa.B2.position→ T1.position Cumulative

T1.position→ B1.position Distributive

T1.position→ B2.position Distributive

B1.orientation→ T1.orientation Cumulative The orientations of blocks determin
the orientation of a tower andvice
versa.

B2.orientation→ T1.orientation Cumulative

T1.orientation→ B1.orientation Distributive

T1.orientation→ B2.orientation Distributive
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We construct an ADG for the Marcus MRE. From Table 38, we determine the nod
the ADG. From the ART in Table 39, we determine the arcs in the ADG. The ADG
shown in Figure 76. The interaction dependencies to some attributes exist be
interactions with the environment may change those attributes.

The ADG in Figure 76 is constructed by Marcus as it progresses towards its
Initially, the ADG in Marcus consists of only nodes corresponding to the attributes a
representation levels. As Marcus stacks blocks to construct a tower or spans tow
construct an arch, it adds arcs to its ADG. If a previously-stacked tower falls apart, a C
Marcus can detect that a relationship among the constituent blocks of the tower no l
holds. Subsequently, the CE changes the values of attributes in the ADG to denote th
tower is no longer stacked. At a future time, the planner model in Marcus can attem
reconstruct the tower by stacking blocks.

E.4 Select Mapping Functions for Dependencies in the
ADG

We select mapping functions to translate attributes among concurrent represent
within the Marcus MRE. Recall from Chapter 6 that mapping functions must trans
values or changes in values of attributes from one to another. Additionally, it is desir
that mapping functions complete their translations in a time-bound manner, and tha
be composable and reversible.

We show mapping functions for some dependencies in Table 40. The map
functions are presented as pseudo-code. Error-checking has been omitted for b
Pseudo-code in the second column of Table 40 implements specifications in the
column of Table 39. The position of a tower is identical to the position of its lowerm
block. Conversely, the position of the lowermost block in a tower is identical to

B1.height→ T1.height Cumulative The heights of blocks determine the
orientation of a tower andvice versa.B2.height→ T1.height Cumulative

T1.height→ B1.height Distributive

T1.height→ B2.height Distributive

T1.height→ T1.stacked Modelling A tower with indeterminate height o
orientation is not stacked.T1.orientation→ T1.stacked Modelling

T1.position→ A.position Cumulative The positions of towers determine th
position of an arch andvice versa.T2.position→ A.position Cumulative

A.position→ T1.position Distributive

A.position→ T2.position Distributive

A.width → A.stacked Modelling A tower with indeterminate width or
orientation is not connected.A.orientation→ A.stacked Modelling

…

TABLE 39: Attribute Relationship Table for Marcus MRE

Dependency Type Specification
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FIGURE 76: ADG for the Marcus MRE
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position of the tower. If the positions of other blocks are desired, then approp
dependencies must be specified, for example, dependencies between the height
lowermost block and the position of the block immediately above it. If either the heigh
the orientation of a tower is invalid, the tower is not stacked. The orientation of a to
can become invalid if its constituent blocks are oriented differently. A similar condit
may be specified for the height of a tower. Similar mapping functions for ot
dependencies can be constructed. Mapping functions such as those shown in Ta
translate values or changes in values of attributes.

The mapping functions shown in Table 40 are composable and reversible. More
since they are simple in construction, we expect that they will complete in a time-bo
manner, thus ensuring that the Marcus MRE is consistent at all observation times. W
an interaction changes the value of any attribute, mapping functions propagate the c
in the attribute to dependent attributes. For example, if an interaction changes the PA
attribute, B1.orientation, the mapping functionfo changes the dependent planner-lev
attribute, T1.orientation. Subsequently, the mapping functiongo changes the PA-level
attribute, B2.orientation. Sincefo and go are composable, the change to B1.orientation
eventually propagates to B2.orientation. Sincefo andgo are reversible, B1.orientation does
not change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 76 and applying
mapping functions in Table 40 ensures that the Marcus MRE is consistent a
observation times. Next, we determine and resolve the effects of concurrent interact

E.5 Determine the Effects of Interactions
We determine the effects of interactions that Marcus can send and receive. Marcu

interact with its environment only at the PA level. The planner model in Marcus does

TABLE 40: Mapping Functions for Marcus MRE

Dependency Mapping Function

B1.position→ T1.position T1.position← fp(B1.position, B2.position)
fp: T1.position← B1.positionB2.position→ T1.position

T1.position→ B1.position (B1.position, B2.position)← gp(T1.position)
gp: B1.position← T1.positionT1.position→ B2.position

B1.orientation→ T1.orientation T1.orientation← fo(B1.orientation, B2.orientation)
fo: T1.orientation← B1.orientationB2.orientation→ T1.orientation

T1.orientation→ B1.orientation (B1.orientation, B2.orientation)← go(T1.orientation)
go: B1.orientation← B2.orientation← T1.orientationT1.orientation→ B2.orientation

T1.orientation→ T1.stacked T1.stacked← p1(T1.orientation)
p1: if (T1.orientation = invalid) T1.stacked= false

T1.height→ T1.stacked T1.stacked← p2(T1.height)
p2: if (T1.height = invalid) T1.stacked= false

…
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interact with the environment apart from initially receiving a goal and finally reporting
the success or failure in achieving the goal. However, the planner interacts with th
level in order to specify sub-tasks. In Table 41, we list the interactions that the planne
PA levels can send and receive. In the first column, we list the name of an interactio
the second and third columns, we indicate the sender and receiver of an interacti
sender or receiver that is not “planner” or “PA”, is external to Marcus and is par
Marcus’ environment. In the fourth column, we list the attributes affected by
interaction directly, i.e., we list the setaffectsfor the interaction. We do not list the se
affects+ for the interaction because this set changes as Marcus adds arcs to its ADG
progressing towards its goal. Finally, we indicate the type of the interaction.

We augment each interaction with its type (see Chapter 7): Type 0 (certain respo
Type 1 (uncertain responses), Type 2 (certain requests), and Type 3 (uncertain req
Assigning a type requires information about the semantics of an interaction. In Ma
PA-level interactions are assumed to be certain. For example, the PA model in Marc
assumed to be able to sense the position of an object correctly. Likewise, if the PA m
requests the underlying hardware to move Marcus, the hardware will not fail to do
Hence, interactions between the PA model and the processor are Type 0 or Type
contrast, planner-level interactions are assumed to be uncertain. For example, Marcu
not be able to pick up a block as per the planner’s request. Hence, interactions betwe
planner model and the PA model are Type 1 or Type 3. Classifying the interactions in
manner reflects the design philosophy of “trusting sensors more than memory”.

TABLE 41: Interactions sent and received by the Marcus MRE

Interaction Sender Receiver affects Type

SenseObject(X) PA processor 2

UpdateObject(X) processor PA X.position,X.orientation,
X.height,X.width, …

0

Move PA processor 2

Swivel PA processor 2

Turn PA processor 2

MoveStatus processor PA 0

SwivelStatus processor PA 0

TurnStatus processor PA 0

PickObject(X) planner PA X.position,X.orientation 3

PutDownObject(X) planner PA X.position,X.orientation 3

StackObject(X, Y) planner PA Y.position,Y.orientation 3

SpanObject(X, Y, Z) planner PA Z.position,Z.orientation 3

GoThroughDoor planner PA 3
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Any subset of the interactions in Table 41 may occur concurrently. Next, we show
to resolve the effects of concurrent interactions.

E.6 Resolve the Effects of Concurrent Interactions
The effects of concurrent interactions can be resolved by implementing applica

specific polices. In practice, a designer selects policies specific to the application
select example policies, shown in Table 42. A designer specifies policies in a Concu
Interactions Table (CIT) for resolving the effects of concurrent interactions. The
consists of sets of concurrent interactions with dependent effects, policies for reso
them and conditions under which the policies are applicable. Concurrent interaction
are independent of one another can be resolved by serialization and are not specified
CIT. Some interactions may be independent because they affect disjoint sets of attri
Other interactions may be independent because their effects are applied in different
steps, for example, interactions sent and received by an entity. Yet other interaction
independent because they are request-response pairs. Policies must be specified in
for only the remaining interactions. An Interaction Resolver for the Marcus MRE app
the policies in the CIT only if the effects of concurrent interactions conflict. If concurr
interactions do not conflict, they may be serialized.

E.7 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE main
consistency and resolve concurrent interactions respectively. A CE consists of an
and mapping functions, whereas an IR consists of policies for resolving concu
interactions. Figure 77 shows an MRE for Marcus. The MRE can interact at mul
representation levels — the planner and PA levels — concurrently. Moreover,
concurrent representations within the MRE are consistent at all observation times.

Travel planner PA 3

ActionStatus PA planner 1

TABLE 42: Concurrent Interactions Table for Marcus MRE

Concurrent Interactions Condition Policy

Type 0, Type 1 Ignore Type 1

Type 2, Type 3 Delay Type 3

Any Interaction Ignored or Delayed Ignored or Delayed entirely, i.e., n
partial effects permitted

TABLE 41: Interactions sent and received by the Marcus MRE

Interaction Sender Receiver affects Type
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A CE consists of an ADG and application-specific mapping functions. We prese
an ADG for Marcus in Figure 76 and mapping functions in Table 40. In Figure 34 (
Chapter 6), we presented an algorithm for implementing a CE. In §6.3, we discussed
to traverse an ADG and apply mapping functions to keep an MRE internally consiste

An IR consists of application-specific policies for resolving the effects of concurr
interactions. For the Marcus MRE, we presented policies for resolving concur
interactions in Table 42. In Figure 47 (see Chapter 7), we presented an algorithm
implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. U
this taxonomy, we presented policies for resolving the effects of concurrent interacti

A CE and an IR ensure that an MRE is internally consistent when concur
interactions occur. During a time-step, a number of concurrent interactions may occu
IR determines the type of each interaction. Next, the IR applies the effect of e
interaction as if the interaction occurred in isolation. In order to do so, the IR permits
interactions to take effect one at a time. When an interaction changes an attribute, t
traverses an ADG and translates changes to dependent attributes by invokin
appropriate mapping functions. The CE maintains a list of changes for each attribute
result of computing the effects of each interaction. Subsequently, the CE applie
effects of all the interactions on each attribute. The CE queries the IR about polici
resolve the effects of dependent concurrent interactions whenever the CE detects co
in the list of changes for an entity. If the IR contains a policy for resolving conflict
changes, the CE applies the changes accordingly; otherwise, the CE assumes the c
are independent and applies them in an arbitrary order. When the changes to all attr
have been applied, the MRE is internally consistent.

Planner

PA

Marcus MRE

Interactions

Interactions

Interaction

Resolver

FIGURE 77: Marcus MRE

Consistency
Enforcer

Planner Representation

PA Representation
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Aggregate Model 24
A model at low resolution or high abstraction.

Aggregation 13,24
Composition of a collection of HREs into a single LRE.

Aggregation-disaggregation 5, 11, 32, 44, 49, 57, 104
An MRM approach in which representation levels are transitioned.

Attribute 19
A property of an entity, which can be used to refer to the entity and manipula
its behavior.

Attribute Dependency Graph 4, 16,57, 104
A graph with attributes as nodes and dependencies among attributes as arcs

Behavior of an Entity 22
The sequence of states for a particular entity.

Behavior of a Model 22
The sequence of states of a model.

Certain Interaction 84, 89
An interaction whose outcome is predictable.

Chain Disaggregation 13,32, 50, 119
Forcible disaggregation of many entities because of LRE-HRE interactions.

* In the spirit ofUNIFY, this chapter is a glossary as well as an index. The numbers to the right of
each term denote pages in which the term is discussed. The bold number refers to the page
which we define the term. Below every index entry is an informal definition for the term.
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Compatible Time-steps 25, 29, 40, 159, 117
If multiple entities never violate any assumptions made by one other during a
time-step, they execute atcompatible time-steps.

Concurrent Interactions 4, 22, 29, 47, 81
Interactions that occur at overlapping times in the simulation.

Concurrent Representations 1, 24, 41
Representations of different simulation entities of the same object or process t
execute jointly and allow interaction at all representation levels.

Consistency Cost 5, 16, 44,105, 107
Cost of maintaining consistency among jointly-executing models.

Consistency Enforcer 4, 16,45, 56, 70, 104
Consists of an Attribute Dependency Graph and appropriate mapping functio
for maintaining internal consistency in a Multiple Representation Entity.

Consistency Maintenance 1, 25
Correlating the multiple entity states for the same object or process so th
relationships among attributes hold.

Cost-effectiveness (R3) 5, 28, 105
Simulation and consistency costs should be low.

Cross-level Interactions 34,43, 51
Interactions whose sender and receiver are at different representation levels.

Cumulative Dependencies 56,60, 63
Attribute dependencies wherein the value of a single attribute depends jointly
the value of many other attributes.

Dependency 22
A static relationship between two attributes.

Dependent Interactions 4, 23, 38, 41, 81
Interactions whose effects are dependent on one another.

Disaggregate Model 24
A model at high resolution or low abstraction.

Disaggregation 13,24
Decomposition of an LRE into its constituent HREs.

Distributive Dependencies 56,60, 64
Attribute dependencies wherein the value of a single attribute influences t
value of many other attributes jointly.
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Effective Joint Execution 1, 16,27, 41, 103
The joint execution of multiple models that satisfies the requirements of mul
representation interaction, multi-representation consistency and co
effectiveness.

Effects of an Interaction 20
The changes caused in the representations of the sender and receivers becau
the interaction.

Entity 2, 19
A description of an object or process in a simulation.

Entity Representation 19
A collection of the attributes of one entity described using the notation of da
structures.

Environment of a Model 19
Objects and processes external to a model.

Executing a Model 21
Simulating the objects and processes that are part of a phenomenon.

Execution of a Multi-model 2
The joint execution of multiple models.

Fundamental Observations 3, 31
Observations that relate the causes of problems in jointly-executing models t
failure in maintaining consistency among the model representations.

Ghosting 41
With multiple models, executingonly one modeland reflecting changes from
that model to other models.

Guidelines for Designers of Multi-models 5, 96
With multiple models, executingonly one modeland reflecting changes from
that model to other models.

Hierarchical Models 60
Models that bear a relationship of being the composition-decomposition
abstraction-refinement of one another.

High Resolution Entity (HRE) 12,24, 32, 50
An entity at a low level of abstraction, or high decomposition.

Independent Interactions 23, 86
Interactions whose effects are the same whether they occur in isolation
concurrently.

Interaction 3, 20,22, 76
The means by which entities exchange information or influence one another.
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Interaction Dependencies 56,61
Attribute dependencies that denote the effects of interactions.

Interaction Resolver 4, 16,45, 89
Resolves the effects of concurrent interactions on a Multiple Representat
Entity by means of policies based on semantic characteristics of interactions.

Internal Consistency with an MRE 41
Attribute dependencies that denote the effects of interactions.

Joint Execution of Multiple Models 2, 24
Execution of multiple models at overlapping times, possibly with the exchang
of information among the models.

Low Resolution Entity (LRE) 12,24, 32, 50
An entity at a high level of abstraction, or high composition.

Mapping Consistency 5, 47
When entity properties common to different models are translated such th
repeated translations in a given period do not cause abnormal behavior in
entity during that period, the models exhibit mapping consistency.

Mapping Inconsistency 32, 44, 49, 119
When repeated translations among attributes cause intolerable discontinuitie
the behavior of different models, the models exhibit mapping inconsistency.

Mapping Functions 4, 16,25, 29, 41, 65, 159, 104
Methods used to correlate the multiple representations of the same object
process.

Model 2, 21
An abstraction of some phenomenon that incorporates the behavior of obje
and processes participating in that phenomenon.

Modeling 2, 19
A method to study real-life phenomena.

Modeling Dependencies 56, 60,61
Attribute dependencies inherent in the nature of the object or process be
modeled.

Multi-model 2, 24,24
For some phenomenon, the union of multiple models that may differ in executi
and representation.

Multiple Representation Entity (MRE) 3, 16,41, 54, 56
A conceptual entity that can interact at multiple representation levels
concurrently by maintaining attributes at different representation levels.
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Multi-representation Consistency (R2) 5, 28, 104
Jointly-executing models must be related and consistent with one another.

Multi-representation Interaction (R1) 5, 27, 44, 104
Entities in each model may initiate and receive interactions that may b
concurrent and dependent.

Multi-representation Modeling (MRM) 2, 19,24, 159
The joint execution of multiple models.

Network Flooding 33, 51, 119
High consumption of network resources because of a large number of messa

Receiver of an Interaction 20
The entity that receives an interaction.

Relationship between Attributes 19
Indicates that if the value of one attribute changes, the value of the other is like
to change.

Representation 2, 19, 116
A collection of the objects and processes participating in a phenomen
described using some rigorous notation.

Representation Level 24
The conceptual context in which a model executes.

Request Interaction 84, 86, 88
An interaction concerned with actions that may take place in the future.

Resolving Concurrent Interactions 23, 36, 47, 54, 85, 88, 159, 117
Computing the effects of concurrent, possibly dependent, interactions.

Resolution 24
A representation level in a hierarchical model.

Resolution Level 24
Resolution.

Response Interaction 84, 86, 88
An interaction concerned with actions that have taken place in the past.

Reversible Mapping Functions 25, 47, 48, 68
Mapping functions that return the original attribute when composed.

Selective Viewing 5, 11, 44, 49, 57, 104
An MRM approach in which the most detailed model is simulated at all times.

Sender of an Interaction 20
The entity that initiates an interaction.
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Simulation 2, 21
A method to execute a model, usually on a computer with some combination
executing code, control/display interface hardware and interfaces to real-wo
equipment.

Simulation Cost 5, 16, 44,105, 108
Cost of simulating jointly-executing models.

Taxonomy of Interactions 4, 16,83
A classification of interactions according to semantic characteristics
interactions.

Temporal Consistency 5, 45
When multiple entities have consistent views of another entity at overlappin
simulation times, the entities exhibit temporal consistency.

Temporal Inconsistency 53, 119
When multiple entities have differing views of an entity at overlapping
simulation times, they exhibit temporal inconsistency.

Thrashing 33, 50, 119
Repeated transitions by an entity because it transitions representation lev
frequently.

Time-step 21, 38
The duration of time between two consecutive observation times of a model.

Transition Latency 33, 50, 119
Delay encountered when performing an aggregation or disaggregation.

Uncertain Interaction 84, 89
An interaction whose outcome is unpredictable.

UNIFY 4, 3, 27, 31, 41, 159, 116
A framework for effective MRM.
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QUOTATION, n.

The act of repeating erroneously the words of another. The words erroneously rep
— Ambrose Bierce,The Devil’s Dictionary
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