Consistency Maintenance in
Concurrent Representations

A Dissertation
Presented to
the Faculty of the School of Engineering and Applied Science
at the

University of Virginia

N

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Anand Natrajan

© Copyright by
Anand Natrajan
All Rights Reserved

January 2000

APPROVAL SHEET

This dissertation 15 submitted in partial fulfillment of the
requirements for the degree of

Dactor of Philoggphy (Computer Science)

I

ST :
Anand Matrajan

This dissertation has been read and approved by the Examining Committee:
||I 3 '_:I /! /

A fE

[i -"”

FPaul E Re:mn!ﬁs .Ir EThLa]a Advisor)

(A7 %ﬁﬁ /

Gﬂh%m {Committeg Chalrman)

Aola F{.J/Aus

)y

V % *~1 Martin
a"lﬁ J"]J'J’l,-"l.r“ﬁ.f’lﬂ

Ji(“jﬁ 1. Sulli w:m _

A YL

i'{uml.m . Williams

Accepted Tor the School of Engineering and Applied Science:

B, N2

Dean Richard W. Miksad
School of Engineering and Applied Science

January 2000

One often hears of writers that rise and swell with their subject, though it
may seem but an ordinary one. How, then, with me, writing of this Leviathan?
Unconsciously my chirography expands into placard capitals.
Give me a condor’s quill! Give me Vesuvius’ crater for an inkstand!
Friends, hold my arms! For in the mere act of penning my thoughts of this
Leviathan, they weary me, and make me faint with their out-reaching
comprehensiveness of sweep, as if to include the whole circle of the sciences,
and all the generations of whales, and men, and mastodons, past, present,
and to come, with all the revolving panoramas of empire on earth,
and throughout the whole universe, not excluding its suburbs. Such, and so
magnifying, is the virtue of a large and liberal theme! We expand to its bulk.
To produce a mighty book, you must choose a mighty theme.
No great and enduring volume can ever be written on the flea,
though many there be who have tried it.
— Herman MelvilleMoby-Dick

Abstract

Multi-Representation Modeling (MRM) involves executing multiple models of the
same phenomenon jointly. MRM is a technique in modeling and simulation for capturing
the combined semantics of multiple models. Previous MRM approaches, such as selective
viewing and aggregation-disaggregation, have encountered problems such as chain
disaggregation, temporal inconsistency and mapping inconsistency. Eliminating these
problems has been a difficult task for MRM designers. We eliminate these problems by
showing how to achieve MRM effectively, i.e., correctly, consistently and inexpensively.
Our thesis is that MRM can be effective. Maintaining consistency among the concurrent
representations of jointly-executing models is our approach for effective MRM.

We developed a frameworkINIFY, to achieve effective MRMUNIFY satisfies three
MRM requirements: multi-representation interaction, multi-representation consistency
and cost-effectiveneskt enables designers to construct solutions for application-specific
multiple models.UNIFY is based on four fundamental observations that reduce the
problem of joint execution to the problem of maintaining consistency among the
representations of multiple models when dependent concurrent interactionsldidatiy.
consists of processes and techniques such as Multiple Representation Entities (MRES),
Attribute Dependency Graphs (ADGs) and a taxonomy of interactions. An MRE
maintains concurrent representations. An ADG captures relationships among attributes in
concurrent representations. An ADG and application-specific mapping functions that
translate attributes across representations constitute a Consistency Enforcer that maintains
internal consistency within an MRE. Our taxonomy of interactions provides a way to
classify interactions based on their semantic characteristics. This classification presents
policies that can be encoded in an Interaction Resolver for resolving the effects of
dependent concurrent interactions on an MRE.

UNIFY contributes to the practice of modeling and simulation. We show how
designers can apply techniqgues WNIFY. We present guidelines for maintaining
consistency among concurrent representatiddbliFY is the first known general
framework for achieving effective MRM.

Acknowledgements

It is a myth that a dissertation is the soul-wrenching creation solely of its author’s time,
toil and tenacity. Many people conspired to drag this author kicking and screaming
towards his goal. | thank these people for conspiring to do so.

| am thankful to Paul Reynolds, my advisor and friend, for giving me guidance and
counsel, and for having faith and confidence in me. His patience in reading draft after draft
of every paper, proposal and idea | wrote up continues to amaze me. No one should be
subjected to the torture of reading my early attempts at technical writing, and thanks to
Paul, no one will. | appreciate Paul’s fine balance between giving me the freedom to
pursue what fired me and reining in my imagination when it got the better of me. | thank
him for always being willing to meet me whenever | barged into his office.

| am grateful to my committee members for their comments and suggestions. | have
benefitted greatly from their advice. | thank Worthy Martin and James French for lending
a sympathetic ear and putting my toils in perspective. It has been a pleasure working with
my colleagues, in particular, Anh Nguyen-Tuong, Rashmi Srinivasa, Sudhir Srinivasan
and Glenn Wasson. Many of the ideas in my work originated in discussions with them. |
am deeply grateful to them for investing time and energy discussing ideas with me and
tolerating my many opinionated digressions. Gabriel Ferrer, John Karro, Allison Powell
and Rashmi Srinivasa deserve credit for reading sections of my work. Their incisive
comments made me re-think how | presented my ideas. Any errors that remain in this
presentation are attributable to my negligence or stubbornness.

| thank the Defense Modeling and Simulation Office, US Army SIMTECH and Janet
Morrow for making it possible for me to do my research.

This dissertation would not have been possible without Rashmi Srinivasa, my wife and
friend. Her support and encouragement has seen me through tumultuous times. | thank her
for simultaneously brandishing a sword to quell the demons of my insecurities, a spoon to
bake delectable desserts and a wand to bring joy to my life in so many different ways.

| thank my parents, Subramanian and Shanta Natrajan, and brother, Arvind Natrajan,
for their unflagging belief that despite their incomprehension about what | do, | must be
saving the world. | am indebted to my parents for inculcating in me the dedication and
discipline to do whatever | undertake well. I cannot thank my brother enough for showing
me what it is to be a free spirit.

| have been fortunate to have many friends who cherish me despite my eccentricities. |
risk doing them a disservice by not mentioning all of them here, but plead paucity of
space. | thank Glenn Wasson for goading me through weight-lifting, imploring me to spike
the volleyball, teaching me about baseball and being a sink for my bile during our coffee
klatsches | thank Anh Nguyen-Tuong for letting me ramble about programming
languages at three in the morning, putting me in my place at racquetball and being a friend
to me in my early days at UVa. | thank Suresh Balasubramaniam, Karine Boulle, Aaron
Cass, John Jones, Gopal Kumar, Sally McKee, Venkataraman Pallassana, John Regehr,

Prakash Vachaspati, Ravichandran Vancheeswaran, Murtuza Vasowalla, Aruna
Viswadoss, Soumya Viswanathan, Chenxi Wang and Jennifer Wong for many good times.
Finally, I am thankful for the many diversions | have enjoyed during my sojourn here.
Without them, crossing over to the realms of insanity would have been entirely within
reach. My various hobbies, my books, my cooking, and beautiful, beautiful Charlottesville
have connived to ensure that the road to my goal was not as bumpy as it could have been.

Chapter 1
1.1
1.2
1.3
14
1.5
1.6

Chapter 2
2.1

Abstract

Acknowledgements

There is a time for some things, and a time for all things;
a time for great things, and a time for small things. ...
But all in good time.
— Miguel de Cervante®on Quixote

Table of Contents

Tableof Contents

List of Figures

List of Tables

Listof Symbols.

Introduction

Backgr

ound

UNIFY — AN OVEIVIEW. oo e e e e e e

Requirements for Effective MRM

Claims

Evaluation

Outline

Related Work

MRM Applications
Multi-Resolution Graphical Modelling.

211
2.1.2
2.1.3
214
2.1.5
2.1.6

and Contributions 5

Hierarchical Autonomous Agents. 9
Blackboard Systems 9

Cache Coherence e

Abstract Data Types and Object Inheritance
Views in Databases and Integrated Environments

2.2

2.3
2.4

Chapter 3
3.1
3.2
3.3

3.4
3.5
3.6

Chapter 4
4.1

4.2

2.1.7 Nested Climate Modelling 10

2.1.8 Integrated Molecular Modelling. 10
2.1.9 Multi-Level Computer Gamescciiiiiea.... 10
2.1.10 Battlefield Simulations 11
2.1.11 MRM Applications Summary. 11
Multi-Model Execution. 11
2.21 Selective VIEWING oottt 12
2.2.2 Aggregation-Disaggregation. 12
2.2.2.1 Full Disaggregation. 13
2.2.2.2 Partial Disaggregation. 13
2.2.2.3 Playboxes 14
2.2.24 Pseudo-Disaggregation. 14
2.2.3 \Variable Resolution Modelling. 15
Maintaining Consistency among Concurrent Representations. 16
Chapter SUMMaArY 17
Foundation 19
MoOdel . . e 19
INtEracCtioNS 22
Multi-models. 24
3.3.1 Cross-model Relationships. 25
3.3.2 Mapping FUNCLIONS 25
3.3.3 TIMe-StePS .. oottt 25
Evaluation. 26
Assumptions and Rationale. L, 28
Chapter SUMmary e e 30
Fundamental Observations 31
Problems with Aggregation-Disaggregation. 32
4.1.1 Mapping INCONSIStENCY e 32
4.1.2 Chain Disaggregation i, 32
4.1.3 Transition LatencCy 33
414 Thrashing 33
415 NetworkFlooding.......... 33
4.1.6 Cross-LevellInteractions. 34
4.1.7 Summary of Problems with Aggregation-Disaggregation 34
Fundamental Observations 34
4.2.1 Fundamental Observation 1l, 35
4.2.2 Fundamental Observation2 36
4.2.3 Fundamental Observation3 38

4.3

Chapter 5
5.1
5.2
5.3
5.4

5.5
5.6
5.7

Chapter 6
6.1

6.2
6.3

6.4

4.2.4 Fundamental Observation 4, 38

Chapter Summary 40
Multiple Representation Entities. 41
Descriptionof an MRE. 42
Challenges. 43
Rationale. 44
Executionof an MRE 45
5.4.1 Maintaining Consistencyc.coiiiiiin. 45
54.1.1 Temporal Consistency.c.ouuiiin.n. 45
5.4.1.2 MappingConsistencyc.c ... 47
5.4.2 Resolving Concurrent Interactions. a7
5.4.3 Storing AttributesinaCore 47
5.4.4 Comparing against Alternative Approaches. 49
5.4.4.1 Comparing against aggregation-disaggregation 49
5.4.4.2 Comparing against selective viewing 49
BenefitsS Of MRES 50
Limitations of MRES e 52
Chapter SUMmary i e e 54
Consistency ENfOrCers e 56
Constructing an Attribute Dependency Graph 57
6.1.1 Assigning Nodes to Attributes 58
6.1.2 Assigning Arcs to Dependencies 59
6.1.3 Assigning Semantics to Dependencies. 59
6.1.3.1 Cumulative and Distributive Dependencies 60
6.1.3.2 Interaction and Modelling Dependencies. 61
6.1.3.3 Selecting Dependencies 61
6.1.3.4 Properties of Dependency Classes 62
6.1.3.5 Examples of Dependency Classes 62
6.1.3.6 Dependency Weights. 62
6.1.3.7 Interaction Semantics 65
6.1.4 Summary of Attribute Dependency Graphs 65
Selecting Mapping Functions 65
Traversing an ADG. 66
6.3.1 Algorithm for Traversingan ADG 66
6.3.2 CyclicDependencies. i 68
6.3.3 Unplanned Dependenciesciiiiniienn... 69
6.3.4 TraversalPath 69
Possible Implementations of a Consistency Enforcer. 70
B.4.1 AS-IS .. 71

\Y

6.5

Chapter 7
7.1
7.2
7.3
7.4

7.5

7.6

7.7

Chapter 8
8.1
8.2
8.3

Chapter 9
9.1

6.4.2 Spreadsheets 71

6.4.3 Attribute Grammars 71
6.4.4 Mediators 72
6.4.5 ConstraintSolvers. 73
Chapter Summary 73
Interaction Resolvers 75
INteractions 76
Serialization 76
Abandoning Isolation 78
Switches — ASimple System 79
7.4.1 Unconstrained System i 79
7.4.2 Constrained System 80
7.4.3 Dependent Concurrent Interactions 81
7.4.4 Complexity 82
A Taxonomy of Interactions iiiinnn.. 83
7.5.1 Properties of a Taxonomy of Interactions. 83
7.5.2 Interaction Characteristicsand Classes. 84
75.2.1 Requestand Response. 84
7.5.2.2 Certainand Uncertain. 84
7.5.2.3 Combining Characteristics 85
7.5.3 Evaluating the Taxonomy 85
7.5.4 Resolving Effects of Concurrent Interactions. 85
7.5.5 Policies for Resolving Effects of Interactions. 88
Constructing an Interaction Resolver 89
7.6.1 OperationofanlIR 89
7.6.2 AnExampleIR. 91
Chapter Summary 95
ApplyindINIFY: A ProCess. e 96
Guidelines for MRM DesSignerst 96
UsingUNIFY with a Specification Methodology. 98
Process for Effective MRM 100
Evaluation. 103
EvaluatingJNIFY in terms of MRM Requirements 103
9.1.1 Multi-Representation Interaction 104
9.1.2 Multi-Representation Consistency 104
9.1.3 Cost-Effectiveness. 105
9.1.3.1 ASSUMPLIONSo 105
9.1.3.2 Consistency CoSt. 107

vii

9.1.3.3 Simulation CoSt. 108

9.1.34 ExpectedCoSts i 109
9.1.3.5 Experimental Costs. 109
9.1.3.6 Summary of Cost-Effectiveness 111
9.1.4 Summary of Evaluation in Terms of MRM Requirements. 114
9.2 ApplyingUNIFY to ExistingModels. 114
9.21 MilitaryModels 114
9.2.2 Autonomous AgentModel 115
9.3 LIMItations 116
9.4 Chapter SuUMmMary e e 117
Chapter 10 CoONCIUSIONS. i e e e 118
10.1 ContribUtiONS. 119
10.2 Future WOrK 120
Appendix A Examples of Multiple Representations. 122
Appendix B Joint Task Force Prototype i 130
Appendix C Joint Precision Strike Demonstration 149
Appendix D Real-time Platform Reference. 167
Appendix E Hierarchical Autonomous Agents., 185
Indexed GloSsary 194
References. 200

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

A foolish consistency is the hobgoblin of little minds ...
— Ralph Waldo Emerso8eglf-Reliance

List of Figures

Our Approachto MRM. e 4
Full Disaggregation. 13
Partial Disaggregation. 14
PlaybOX . . . o 14
Pseudo-disaggregation 15
Possible compatible time-steps. 26
Mapping INCONSISTENCYo e 32
Chain Disaggregation 33
Fundamental Observation 1 35
Reducing transition overheads by limiting propagation of transitions . . . 37
Concurrent multi-level interactions 37
Dependency considerations i 38
Time-steps — Equaland In-phase 39
Time-steps — Equal but not In-phase. 39
Time-steps — Unequal and not In-phase 39
Compatible Time-Steps. e 40
Eliminating time-step differentials 40
AN MRE . .. 42
Multi-representation Interaction. 42
Executionof an MRE 46
T-OINt eNTILY 46
Core attributes. 48

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

Eliminating Chain Disaggregation 50

Reducing Network Flooding.o 51
SIMple ADG 57
Platoon-Tanks MRE e 58
Nodes in the ADG for the Platoon-Tanks MRE 59
Dependencies in the ADG for the Platoon-Tanks MRE 60
Dependency Classes in the ADG for the Platoon-Tanks MRE. 63
Cumulative Weights 63
Distributive Weights 64
Mapping Value Spaces 66
Mapping ChangesinValues 66
Algorithm for ADG Traversal. e 67
Applying the Effects of an Interaction 68
Propagation of Interaction Effects 69
Clients and Server. e 76
SWItChES 79
State Transition Diagram 80
Constrained Switches 80
NeW States 80
Constrained State Transition Diagram 81
Transitions on Concurrent Interactions. 81
Classes of Interactions 85
Concurrent Interactions Affecting Sets of Attributes 86
Independent Concurrent Response and Request Interactions. 87
Algorithm for Resolving Interactions. 91
Process for Effective MRM 101
Entity in Synthetic Application. 107
AD — Consistency COSt.o oo 107
SV —Consistency COStot 108
UNIFY — Consistency COSt.o e 108
(Left to Right) AD, SV andNIFY — SimulationCost 108
Expected COStSot 109
Simulation Cost varying with Number of Interactions. 111
Consistency Cost varying with Number of Interactions. 111
Simulation Cost varying with Rate of Simulation 112
Consistency Cost varying with Rate of Simulation 112

Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:

Simulation Cost varying with Number of Sub-entities. 112

Consistency Cost varying with Number of Sub-entities. 113
Simulation Cost varying with Number of Levels. 113
Consistency Cost varying with Number of Levels 113
AD, SV andUNIFY — Cost Comparisonccouun... 114
Marcus and Archway 115
MRE for planner and PA system representations. 116
Platoon-Tanks MRE e e 131
ADG for the JTFp Platoon-Tanks MRE 135
JTFp Platoon-Tanks MRE. 148
Platoon-Tanks MRE e e 150
ADG for the JPSD Platoon-Tanks MRE. 154
JPSD Platoon-Tanks MRE 166
Platoon-Tanks MRE e e 168
ADG for the RPR Platoon-Tanks MRE 172
RPR Platoon-Tanks MRE e s 184
Marcus MRE. e 186
ADG forthe Marcus MRE 189
Marcus MRE. e 193

Xi

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:

There is no excellent beauty that hath not
some strangeness in the proportion.
— Francis BaconQf Beauty

List of Tables

Evaluation of Domains employing MRM. 11
Summary of Assumptions made by MRM approaches 45
Comparison among MRM approaches. 50
Summary of Benefits of MRES. 51
Summary of Limitationsof MRES 54
Comparison among MRM approaches. 55
Assigning Cumulative and Distributive Dependencies. 61
Effects of an Interaction 70
Example Concurrent Interactions 91
Effects of Concurrent Interactionso, 92
Example Attribute Relationship Table 99
Example Concurrent Interactions Table 99
Cost Comparison among MRM approaches. 109
Object Class Structure Table for JTFpo . 132
Attribute/Parameter Table for JTFp it 132
Attributes of Platoon, Tap&nd Tank (JTFp) 136
Attribute Relationship Table for Platoon-Tanks MRE in JTFp 139
Mapping Functions for JTFp Platoon-Tanks MRE. 139
Object Interaction Table for JTFp. e 141
Effects of Interactions for JTFp Platoon-Tanks MRE 142
Concurrent Interactions Table for JTFp Platoon-Tanks MRE 146
Object Class Structure TableforJPSD. 151

Xii

Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41.:
Table 42:

Attribute/Parameter Table forJPSD 152
Attributes of Platoon, Tap&nd Tank (JPSD) 155
Attribute Relationship Table for Platoon-Tanks MRE in JPSD 158
Mapping Functions for JPSD Platoon-Tanks MRE 158
Object Interaction Table for JPSD 160
Effects of Interactions for JPSD Platoon-Tanks MRE 161
Concurrent Interactions Table for JPSD Platoon-Tanks MRE 164
Object Class Structure TableforRPR 169
Attribute/Parameter Table forRPR. 170
Attributes of Platoon, Tap&nd Tank (RPR). 173
Attribute Relationship Table for Platoon-Tanks MRE in RPR. 176
Mapping Functions for RPR Platoon-Tanks MRE 176
Object Interaction Table forRPR 178
Effects of Interactions for RPR Platoon-Tanks MRE. 179
Concurrent Interactions Table for RPR Platoon-Tanks MRE. 183
Attributes of planner and PA (Marcus) 187
Attribute Relationship Table for Marcus MRE. 187
Mapping Functions for Marcus MRE. 190
Interactions sent and received by the MarcusMRE 191
Concurrent Interactions Table for Marcus MRE. 192

Xiii

Education that consists in learning things and not the meaning of them
is feeding upon the husks and not the corn. — Mark Twain

... the learned have the right and the duty to use an obscure language that is

comprehensible only to their fellows. — Umberto Hdwe Name of the Rose

List of Symbols

a, b,v Attribute

Vo, V1, - Value for attribute

da, dvq, OV, Change to an attribute

<a, da> Tuple of attributea and changéa to a
PQTHE,T,T,S,S, ... Entity

PQR Set of attributes

r Relationship

P-Q Relationship between attribute sBtandQ

f,g Mapping function

1, 3,11, 1o, ... Interaction

l.affects Effects determined by semantics of interaction
|.affects Effects of interaction determined by dependencies
|.affects’ Effects of interaction

E(I) Effects of interaction

leJ Concurrent occurrence of interactidrsndJ

E(I) 0 EQJ) Applying E(I) andE(J) in some sequential order
E(1), E(J) Applying E(I) beforeE(J)

6t tivg, G G, o, Uy Observation time, simulation time

[ti, ti+q] Time-step

T Duration of time-step

AP(t) Changes to attribute setduring time-step [ti-1, t]
T, A T8, ™ Sequence of observation times

Rep Rep', Rep® Set of all attributes in a model

Rel Rel, ReP Set of all relationships in a model

Int, Int", Int® Set of all interactions in a model

Model Model®, ModeP
Levef® LeveP
Reft)

Model
Representation level
State of a representati®epat timet

Xiv

Relt)

Int(t)

Int(t)k
Modelt)
F(Reqt), E(1))
RepSeq
RelSeq
IntSeq

Rep/

ReM
ReFross-modeI
IntM

ModeM

0

O

R(a)

W(@)

Zy,2y, 23

Relationships ifRelthat hold at time

Set of interactions iimt sent or received at tine
KM interaction inint(t)

Modelat timet

Function that applieB(l) to stateRef{t)

Sequence of representation states

Sequence of relationships that hold

Sequence of set of interactions sent or received
Set of all attributes in a multi-model

Set of all relationships in a multi-model

Set of cross-model relationships in a multi-model
Set of all interactions in a multi-model
Multi-model

Vector sum

Transition in a state diagram

Read operation on attribute/varialale

Write operation on attribute/variabde

Schedule of operations

XV

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.
— William Shakespearelamlet

Chapter 1

Introduction

Integrating multiple, independently-developed models of overlapping phenomena is
the crux of multi-model design. Experience shows that this integration is a hard problem
because of semantic mismatches between the models, and because current approaches
make sub-optimal trade-offs between run-time performance and consistency of the
models. Current practice involves employing one of two basic approaches: selective
viewing, which may compromise performance for consistency, and aggregation-
disaggregation, which may compromise consistency for run-time performance. Often, the
precise conditions under which integration can be done effectively are not entirely clear.
This dissertation addresses the integration of independently-developed models in a
manner that reconciles demands for run-time performance and consistency of the models
when concurrent interactions occur.

In this dissertation, we present a new approddhlIFY, for integrating multiple
models. The main contributions of this work are two-fold. First, we show thdtFY
improves on the run-time performance of selective viewing while simultaneously
improving on the consistency provided by aggregation-disaggregation. In other words, it
achieves a better balance of these competing concerns than either of the two approaches in
use today. Our thesis is that multiple models can be integrated such that their joint
execution is as consistent as selective viewing but with lower costs than selective viewing
or aggregation-disaggregation. An approach that satisfies our thesis achieves “effective”
joint execution. In this dissertation, we present requirements for effective joint execution,
and show how current approaches fail to satisfy them. We define concurrent
representations as the representations of jointly-executing models. We define maintaining
consistency as ensuring that the states of representations do not conflict. Effective joint
execution of multiple models can be achieved by maintaining consistency among their
representations. Consistency maintenance among concurrent representations is the
cornerstone oNIFY.

The second contribution of this work is identifying the conditions under which
multiple, independently-developed models can be integrated. This knowledge enables

designers to produce models that can be composed later into a multi-model. Our work
shows that existing models can be integrated only to the extent that they satisfy these
conditions. The extent to which existing models do meet these conditions is not known,
but the difficulty that designers experience in practice suggests that there is room for
improvement. We present four fundamental observations about jointly-executing models,
which form the basis of the techniques and processes that are gaNIBlY. We apply
UNIFY to existing models and present guidelines for multi-model designers.

1.1 Background

Modelling is a method to study a phenomenon without involving the phenomenon
itself. A model captures essential parts of a phenomenon, such as its constituent processes
and interacting objects, which are called entities. Typically, models have representation,
which is a means of describing objects and processes within a model. Simulation is a
technique to execute models, typically on a computer. Modelling and simulation provide
the opportunity to study a phenomenon relatively inexpensively, reproducibly and, by
reducing the number of controlling factors, at a convenient level of abstraction.

Multiple models executing jointly may capture combined semantics that cannot be
captured by any one model alone. Multiple models may be constructed in order to study
different parts of a phenomenon. The multiple models together constitute a multi-model.
When the multiple models execute at overlapping times and exchange information with
one another, they are said to execute jointly. Davis and other researchers advocate jointly
executing multiple models of a phenomenomyiz93]. Constructing and maintaining a
new model for every combination of semantics may involve high cost and effort on the
part of designers. In contrast, simple and well-designed models executing jointly may be
able to capture such semantics. Effective joint execution of well-designed models can lead
to a multi-model that satisfies its users’ requirements. Constructing well-designed models
is an important task; however, we restrict our work to the effectiveness of joint execution.
Multi-representation modelling (MRM) is the joint execution of multiple models of the
same phenomenon.

Currently, two basic approaches exist for executing multiple models jointly: selective
viewing and aggregation-disaggregation. We explain these approaches with a brief
example. Consider a chemical reaction for which two models exist: a molecular model,
Model®, and an atomic modelModeP. Since the reaction can be studied from both
perspectives, it may be required for the models to execute jointly. In the selective viewing
approach, the more detailed model of the two, in this dasdeP, is executed alone. The
execution ofModel is emulated by selecting a view, i.e., filtering information, from the
state ofModeP when necessary. Since or§odeP is executed, maintaining consistency
between the two models is straightforward. However, sinteleP is more detailed,
executing it entails higher resource consumption tkiaalel*. Moreover, sincéModel is
not executed, selective viewing does not capture the combined semantics of the two
models. In the aggregation-disaggregation approach, as far as possible, the less detailed
model of the two, in this casdodel’, is executed alone. When more detail is required, the
execution ofModel is suspended anblodeP is executed. Subsequently, when detail is
not required, the execution dflodeP may be suspended and the executiorMufdel
resumed. Sincélodel® is less detailed, executing it entails lower resource consumption

cost thanModeP. Since the currently-executing model may change at different times,
maintaining consistency between the models is important for maintaining semantic
continuity. However, for reasons that we will explain in 84.1, maintaining consistency in
this manner is hard, i.e., it can be error-prone and resource-intensive. Moreover,
aggregation-disaggregation does not capture the combined semantics of the two models
because at any given time only one of the models is executed.

Both these approaches are based on sound principles; however, we show that they can
fail to achieve effective MRM in many instancesgRv97]. Selective viewing is based on
the principle that high detail is more important than performance or abstraction.
Aggregation-disaggregation is based on the principle that performance and abstraction can
be gained by providing high detail infrequently. Rigidly adhering to one principle or the
other has caused MRM to become ineffective in many instances. With our approach,
UNIFY, we show how to balance these competing principles, thus eliminating problems
inherent in alternative approaches.

1.2 UNIFY — An Overview

UNIFY is a framework for maintaining consistency among representations of jointly-
executing models. It is based on four fundamental observations that capture general
characteristics of jointly-executing models g®\97]. Current MRM approaches
encounter a number of problems because they have failed to appreciate these
characteristics. The fundamental observations indicate that consistent MRM can be
achieved at a lower cost than other approaches by maintaining consistency among
multiple representations when concurrent interactions occur.

When multiple models of the same phenomenon execute jointly, significant problems
can arise if the models conflict. Eliminating or avoiding these conflicts has been a hard
problem for MRM designers. Some multi-models may satisfy their users’ requirements
despite such conflicts. However, we believe that maintaining consistency among the
representations of a multi-model is a systematic and disciplined approach for constructing
multi-models that satisfy their users’ requirements. This approach benefits multi-models
that require consistency, as we will show in the rest of this dissertation. This approach
benefits multi-models that tolerate relaxed or no consistency as well, because it shows how
other requirements for effective joint execution can be satisfied.

We avoid problems encountered in current approaches by making multiple
representations of an entity co-exist at all times within a Multiple Representation Entity
(MRE). For example, in Figure 1,,&s an MRE for an entity in multiple model®jodef
andModeP. An MRE is a contrast to selective viewing and aggregation-disaggregation,
wherein either the entity itviodel® or the entity inModeP, but not both, would exist at
any given time. As we will show in 82.1, designers in many domains, such as multi-
resolution graphical models, hierarchical autonomous agents and molecular modelling
have adopted approaches similar to creating MREs. MREs, a pdifiéfY, maintain the
representations of multiple models at all times.

An MRE permits concurrent changes to any of its representations. Changes to states of
representations occur as a result of interactions among objects and processes. Interactions
are means by which objects and processes communicate or try to influence the behaviour
of one another. Interactions may change multiple representations of objects or processes.

Multiple Representation Entity;E

ModeP* .
" Interactions | Model* Representation

Esr — interactions | ModeP Representation

FIGURE 1: Our Approach to MRM _
One challenge IMJNIFY is maintaining consistency among multiple representations

when the state of any representation changes. In Figure 1, wheteEacts with either E

or E3, the multiple representations within Enust be consistent. A Consistency Enforcer

(CE) maintains consistency among the multiple representations within an MRE by
capturing relationships among parts of the representations. A CE consists of an Attribute
Dependency Graph (ADG) and mapping functions. An ADG captures dependencies
among representations. When the state of a representation changes, a CE traverses an
ADG to determine how the state of other representations must change. The CE performs
the actual changes by invoking application-specific mapping functions that translate
changes in one attribute to changes in others. As paJt\NdFY, we show how to construct

an ADG, select mapping functions and construct a CE for an MRE.

Another challenge iUNIFY is ensuring that the effects of interactions that occur at
overlapping simulation times are applied correctly. For example, in Figures, E
behaviour must be meaningful even whep &d & interact with § concurrently
Interactions occurring at overlapping times are called concurrent interactions. Concurrent
interactions may be dependent, i.e., have related effects, for example, precluding or
enhancing one another. Traditionally, concurrent interactions have been serialized, i.e.,
applied one after another in some arbitrary order. However, serialization can cause
incorrect behaviour because the effects of dependent concurrent interactions are not
reflected meaningfully. For example, in a model of a chemical reactipmdy represent
some quantity of an acid, Enay represent a reagent angld&catalyst. Adding a reagent
or catalyst is an interaction in this model. When bogteBd & are added to E the rate of
the reaction may increase more than the sum of the increases caused by adding either E
E; alone. Serialization can capture the sum of the increases, but not the increase caused
when both & and K are added. Therefore, in this model, serialization produces incorrect
results. As part ofUNIFY, we present a taxonomy of interactions that captures the
semantic relations among concurrent interactions and presents mechanisms to resolve
them. Also, we show how to construct an Interaction Resolver (IR) for an MRE in order to
resolve the effects of dependent concurrent interactions.

MREs, ADGs, a taxonomy of interactions, and processes for constructing a CE and an
IR are part ofUNIFY. Multi-model designers can achieve consistent MRM at lower cost
than other approaches by applying these techniques and processes.

1.3 Requirements for Effective MRM

In jointly-executing models, entities in all models must interact consistently and cost-
effectively. Although these requirements seem self-evident, alternative techniques for
MRM often fail to satisfy them. We measure the success of an MRM approach by
analysing whether the approach satisfies these requirements.
Often, multi-models are unsatisfactory because they become inconsistent or expensive.
An effective MRM approach must satisfy at least the following reasonable requirements:
R1: Multi-representation Interaction : Entities in each model may initiate and
receive interactions that may cause changes to the entities concurrently.
Dependent concurrent interactions must be permitted.

R2: Multi-representation Consistency The representations of jointly-executing
models must be consistent with one anotA@mporal consistencgequires
that two entities interacting with a third entity at overlapping simulation times
have consistent views of the third entitylapping consistencyequires that
entity properties common to different models be translated such that repeated
translations in a given period do not cause abnormal behaviour in the entity
during that period. Multi-representation consistency is interesting only if the
multiple models are related to one another.

R3: Cost-effectivenessThe costs of simulating multiple models and maintaining

consistency among them should be lower than alternative approaches.

These requirements represent the conditions under which multiple models can be
integrated effectively. We will evaluatdNIFY and alternative MRM approaches such as
aggregation-disaggregation and selective viewing with regard to these requirements. We
will consider an MRM approach sufficient only if it satisfies all three requirements.

1.4 Claims and Contributions

UNIFY benefits the practice of modelling and simulation because it enables designers
to build consistent multi-models with lower run-time costs than other approaches. We
have examined the problem of joint execution of multiple models in detail, and created
general and useful techniques for consistency maintenance in concurrent representations.
Rather than conceiving a detailed solution for every application we analysed, we
concentrated on a process that MRM designers may modify for their applications.

We present a sufficient and practical framework for MRM. Our framewdMIFY, is
a sufficient approach to MRM because it satisfies the three requirements for MRM: R1,
R2 and R3. Moreovelt)NIFY is a practical approach to MRM because it can be applied in
conjunction with a methodology for specifying models.

The major contributions of our work are the fundamental observations, MREs, ADGs,
the taxonomy of interactions, a cost study and the guidelines for designers. All of these
contributions further the existing practice in modelling and simulation. The taxonomy of
interactions offers a spectrum of solution choices for resolving concurrent interactions in
any domain. We expediINIFY to be useful in a variety of domains, such as hierarchical
autonomous agents, climate modelling and graphical modelling.

A substantial benefit of our work to multi-model designers is a set of guidelines for
consistency maintenance. The guidelines lead designers from their joint execution

requirements to the design of consistent MREs. We augment Object Model Templates — a
methodology for specifying objects and the interactions among them — with
specifications for concurrent interactions. IncorporatibNIFY into an existing
specification methodology enables designers to understand our work in terms of
techniques already familiar to them. The guidelines provide designers with an easy
reference for incorporating consistency maintenance in their models.

Our work will benefit many modellers. Designers may incorporate consistency in their
applications by following our guidelines. Analysts may examine the justification behind
the guidelines. Our analyses of MRM approaches cautions modellers entering the field of
MRM: joint execution is neither trivial nor easy. Finally, we have laid the foundation for
future explorations and refinements.

1.5 Evaluation

In this dissertation, we show how multi-model designers can achieve consistency
similar to selective viewing but at a lower cost than either selective viewing or
aggregation-disaggregation. We show how designers can employ an ADG, mapping
functions, a taxonomy of interactions and policies for concurrent interactions in order to
maintain consistency within an MRE when concurrent interactions occur. We measure the
costs involved in executing multiple models jointly and show that these costs are lower in
UNIFY than in selective viewing and aggregation-disaggregation. We showJiiwyY
satisfies the requirements for effective MRM, R1, R2 and R3, while other approaches do
not even if they make similar assumptions as we do. We apply the techniques and
processes IMUNIFY to four multi-models in order to provide empirical evidence that
UNIFY is a practical framework. Finally, we show hoWNIFY can be applied in
conjunction with Object Model Template, a methodology for specifying multi-models.

The three MRM requirements, R1, R2 and R3, capture desirable goals for the joint
execution of multiple models. Satisfying these requirements supports our thesis that a
multi-model can be constructed in a consistent manner and with reduced run-time costs.
The requirements themselves do not outline an approach for effective MRM. In other
words, approaches other theNIFY for achieving effective MRM are possible. Finally,
the requirements may be part of a larger set of requirements for the joint execution of
multiple models. Identifying the members of the larger set is a topic for future work.

Our work presents a general approach for effective MRM. We do not address how
effective MRM can be achieved for specific models. However, we do present the
conditions under which such models may be executed jointly. We provide techniques and
processes that designers can employ to satisfy most of these conditions. We have been
unable to provide techniques for achieving compatible time-steps (discussed in §83.3.3).
Although this inability is a limitation of our work, we show how compatible time-steps
eliminate inconsistencies caused by time-step differentials, thus benefiting multi-model
designers. We regard our work as a preliminary step towards a detailed framework that
guides designers in the design of their multi-models. We expecUN#EY, with future
additions, will be that framework.

We envision designers routinely constructing simple models that can be integrated and
jointly executed as a multi-model. A number of issues must be resolved before this vision
becomes reality. For example, constructing models can be complex, verifying them can be

difficult and reconciling the semantic differences between them can cause problems. Our
work addresses only one of these important issues: the joint execution of the models. Our
work focusses on consistency maintenance in concurrent representations. We show that
maintaining consistent representations for multiple models that execute jointly leads to
effective MRM.

1.6 Outline

In Chapter 2, we briefly present applications that adopt the approach of maintaining
concurrent representations. Detailed discussions of these applications are in Appendix A.
We present alternative MRM approaches wherein concurrent representations are not
maintained. Also, we present work related to key conceptdNiFY. In Chapter 3, we lay
the foundation fotUNIFY by introducing and defining terms that we will use throughout
this dissertation. Also, we discuss the criteria that we will use to evaluate MRM
approaches. In Chapter 4, we present and justify some fundamental observations about
MRM. These observations arise from empirical studies of many MRM applications. Any
solution to the MRM problem must incorporate these observations. Our approach
recommends maintaining consistency among concurrent representations of multiple
models. We present our framework-based approach to MBMIFY, in Chapter 5 and
discuss the technical challenges with such an approach. In Chapter 6, we address the first
challenge — keeping multiple representations consistent when interactions change any
representation. In Chapter 7, we address the second challenge — resolving the effects of
concurrent interactions. In Chapter 8, we present a process for applying the techniques
that are part ofJNIFY and present guidelines for designers of multi-model applications.

In Chapter 9, we evaluateNIFY and briefly present case studies of applying it. We
present the case studies in detail in Appendices B, C, D and E. We conclude in Chapter 10
by discussing the contributions of our work to the practice of modelling and simulation
and presenting some areas for future work.

The vision of one man lends not its wings to another man.
— Kabhlil Gibran,The Prophet

Chapter 2

Related Work

Multi-Representation Modelling (MRM) — the joint execution of different models of
the same phenomenon — has been explored in applications in a number of domains, from
multi-resolution graphics and battlefield simulations to climate models and molecular
models. In most of these domains, MRM has proven beneficial for some applications no
matter what MRM approach has been used. In 82.1, we present example applications that
employ multi-models. In 82.2, using examples from battlefield simulations, we describe
alternative MRM approaches, wherein all but one model may suspend execution. In §82.3,
we describe work that has influenced our approach.

2.1 MRM Applications

We present a sampling of domains in which MRM in some form has been employed.
For these domains, MRM has been considered beneficial for many applications. A detailed
discussion of domains employing MRM is in Appendix A along with evaluations of
whether the MRM approaches satisfy R1, R2 and R3.

2.1.1 Multi-Resolution Graphical Modelling

In multi-resolution graphical modelling, the system maintains multiple
representations, devels of detail of an object and renders the appropriate representation
depending on the object’s distance from the viewamngk 76]. Coarser levels of detail for
an object employ fewer polygons, thus reducing the time required to render the object.
Moreover, coarse levels of detail depict the object satisfactorily when the perceived size of
the object relative to the viewing area is small, for example, when the object is distant
from the viewer. In multi-resolution graphical models, researchers concentrate on
generating levels of detail automatically before run-time; at run-time, an appropriate level
is selected for visually-appealing renderingAg®5] [HECK94] [HECKO7] [LUEBKE97]
[PUuPP®7]. A few applications permit a user to change a level of detail at run-time, thus
requiring re-generation of other levels of detatf@®194] [LEE98] [ZORINI7].

2.1.2 Hierarchical Autonomous Agents

Hierarchical autonomous agents jointly execute multiple layers (e.g., a deliberative
layer [SACER74] and a reactive layer [6RES7]) in order to utilise the capabilities of each
layer [ALBUS97] [BON97] [FIRBY87] [GATI2] [HANKSO0] [LAIRD91] [SIM94] [WAS98A].
Multiple layers enable an agent to pre-plan some of the steps required to fulfill its goal yet
exhibit robust behaviour when unexpected or urgent situations occur. Usually, each layer
maintains representation about the agent’s goal or surroundirrysof&86] [BRILL98].
Eliminating inconsistencies among dependent parts of the representations for multiple
layers is an open issue.

2.1.3 Blackboard Systems

In blackboard systems suchldsarsay-ll , many processes write to and read from
a single data structure, called a blackboardNEN80]. Hearsay-Il translates spoken
sentences into the corresponding alphabetic representdatamnsay-1l s blackboard is

a multi-model; each layer is a different model of a spoken sentence. Layers corresponding
to sentence fragments such as phonemes, words and phrases execute jointly to produce
multiple interpretations of one sentence. Each interpretation is a consistent view of the
sentence. Multiple interpretations are ranked by a credibility metric; the most credible
interpretation is the best translation of the spoken sentence. However, maintaining
multiple interpretations of a sentence is resource-intensive.

2.1.4 Cache Coherence

In a multi-processor configuration, each processor may access a fast local cache in
order to reduce accesses to slow main memory. Processors may read and modify copies of
main memory data stored in their caches. Ensuring that processors access correct versions
of cached data is the cache coherence probleenfi96] [ARCH86]. The main memory
copy and each cache copy of a datum are concurrent representations of a variable.
Processes issue interactions in the form of read and write operations to any copy. Caches
and main memory copies bear simple relationships, such as equality, with one another.

2.1.5 Abstract Data Types and Object Inheritance

In polymorphic languages, data may have multiple typesR[iB5]. Some languages
supportad hocpolymorphism, wherein a datum may be defined multiply, e.g., a union
[KERN88] [STROWIL] or a perspective [GLD80] [STEFIK86]. Unions and perspectives
permit one representation of a datum to be viewed in different ways. Unions and
perspectives are not expressive enough to capture relationships among multiple
representations. Object-oriented languages such as Smalltalke3NgR], Simula-67
[DAHL66] [BIRT73] and C++ [SROU91] support inclusion polymorphism, wherein a
datum may belong to different classes. The languages rely on the typing mechanism and
the contexts in which the datum is used to determine its class. Object-oriented languages
capture limited relationships, such as inheritance, among parts of representations.

2.1.6 Views in Databases and Integrated Environments

In relational database applications, data are abstracted into relations, which essentially
are tables whose rows are tuples and columns are values for members of tqme3
[ASTRA76] [STONE76] [LINTONB4]. In object-oriented databases, data are abstracted as
relationships among entities HEN76] [BALZER85]. A view in a database is derivative,

i.e., the view is a set of relations derived from existing relations or relationships
[CHAMT75]. A view in an integrated environment is constructive, i.e., the database is
constructed from individual views [fR87]. Changes to a view must be translated to
changes in the databasenB1] [HOR36].

2.1.7 Nested Climate Modelling

In nested climate modelling, Limited Area Models (LAMs), which predict regional
climate, execute jointly with Global Circulation Models (GCMs), which predict wide-
ranging climate changes. The joint execution produces more accurate predictions of the
weather than either alone [@RGI90] [GIORGI91] [RISBEY96]. Typically, GCM data for
large geographic areas are translated to LAM input. LAMs supplied with this input data
perform further computations to predict weather for small geographic areas. Ideally, LAM
data should be translated to GCM input as well in order to account for local factors that
may influence global climate. However, translating GCM data for LAM input is common,
but the reverse translation is an open problem.

2.1.8 Integrated Molecular Modelling

When theoretical studies on the potential energy surfaces for chemical reactions of a
large system are carried out, low-computation low-detail models, such as molecular
mechanics models, are used initially for most of the system, and high-computation high-
detail models, such as molecular orbital methods, are used subsequently for a small part of
the system [MTSu96] [SVEN96A] [HUMBEL96] [SVEN96B]. Such integrated models
enable researchers to study interesting aspects of a reaction in detail without incurring the
cost of modelling the entire reaction in detail. Integrated molecular models permit
interactions at multiple levels and are remarkably consistent with one another. Also,
reported resource consumption is low.

2.1.9 Multi-Level Computer Games

In a number of commercial computer games, players control characters inhabiting a
world displayed at multiple resolutions. Usually, a player interacts at the most detailed
resolution level, with the other resolution levels existing solely to provide the player with a
wider or less-cluttered view of the game world. In a few games, the player may transition
to less-detailed resolution levels and interact at those resolution levels. Typically, players
can interact at only one resolution level at a time. In most games, all processing takes
place at the most detailed resolution level.

10

2.1.10 Battlefield Simulations

A number of battlefield simulations require the joint execution of multiple models, for
example, training models and analysis models [AMG95)0\i993] [DAvIs98] [DIS93]
[DoD94] [REYN94]. Typically, battlefield simulations employ an approach called
aggregation-disaggregation to ensure that entities interact at the same representation level.
Aggregation-disaggregation enables many independently-designed simulations to execute
jointly. However, aggregation-disaggregation scales poorly with large numbers of jointly-
executing models or interacting entities; it can preclude concurrent multi-representation
interactions, give rise to inconsistencies among the multiple representations, and increase
resource consumption.

2.1.11 MRM Applications Summary

In Table 1, we evaluate the MRM approaches employed in the above domains with
regard to our MRM requirements of multi-representation interactions (R1), multi-
representation consistency (R2) and cost-effectiveness (R3). The evaluation here is
intentionally brief; it is meant to highlight shortcomings of previous work. Detailed
evaluations of these domains are in Appendix A. In Table 1, darkly-shaded cells signify
that a domain satisfies a requirement. Lightly-shaded cells signify that a domain satisfies a
requirement poorly. Unshaded cells signify that a domain does not satisfy a requirement.
An ideal MRM approach for each domain will have all three cells shaded darkly.

TABLE 1: Evaluation of Domains employing MRM

Domain R1 R2 R3

Multi-Resolution Graphical Modelling

Hierarchical Autonomous Agents

Blackboard Systems

Cache Coherence

Abstract Data Types and Object Inheritance

Views in Databases and Integrated Environment

Nested Climate Modelling

Integrated Molecular Modelling

Multi-Level Computer Games

Battlefield Simulations

2.2 Multi-Model Execution

MRM approaches such as selective viewing and aggregation-disaggregation execute
only one model at a time. Iselective viewingonly the most detailed model is executed.
In aggregation-disaggregatigrat any given time, only one model is executed; depending

11

on the interactions among entities, the system may change the currently-executing model
by transitioning among models. Wariable Resolution Modellingporocesses are modelled

at different resolution levels. At any time, a user may choose to model processes or sub-
processes at higher or lower detail. The system transitions among multiple process models
in order to satisfy the user’s request. In the following sections, we critique each approach

briefly. Most of the examples in these sections are from battlefield simulations because of

our experience and familiarity with that domain.

2.2.1 Selective Viewing

With selective viewing, only the most detailed model is executed, and all other models
are emulated by selecting information, or views, from the representation of the most
detailed model [BviS93]. Selective viewing is employed when modelling a phenomenon
in detail at all times is considered necessary. Low-resolution views of a multi-model are
generated from the most detailed model. While this approach may be suitable for games
because available processing resources can execute the most detailed model at near-real-
time, for more complex models, selective viewing has many disadvantages.

First, executing the most detailed model incurs the highest resource usage cost.
Proponents of selective viewing may argue that the smallest detail can affect the execution
of the complete model (e.g., a butterfly flapping its wings in Columbia can affect the
weather of Western Europe). While this argument may be valid in some cases, for most
models, most of the details can be abstracted reasonably in order to conserve resources.

Second, the most detailed model is likely to be the most complex model. One of the
main benefits of modelling is to make reasonable simplifications in order to study a
phenomenon efficiently. Executing the most detailed model adds complexity instead of
reducing it.

Third, executing the most detailed model may limit the opportunities for performing
some types of analyses. Abstract models enable a user to make high-level decisions
regarding the multi-model. These high-level decisions are likely to change the behaviour
of many entities, thus enabling broad analyses of the multi-model. Enabling equivalent
analyses in a detailed model requires making corresponding low-level decisions. These
low-level decisions may not exist or may be difficult to make. Thus, the equivalent
analyses in a detailed model may be impossible or infeasible.

Fourth, some multiple models may not bear hierarchical relationships with one
another, i.e., none of them is the most detailed model. Selective viewing implies that the
most detailed model is a monolithic model. For non-hierarchical models, the monolithic
model must be created by capturing all the details of all the models. Such a monolithic
model requires additional design effort and is likely to be very complex.

The philosophical question of what is the most detailed model can entrap designers
into adding ever-increasing detail to a model by refining entities in the model increasingly.
However, even assuming a designer can escape this trap eventually, selective viewing is
not suitable for the execution of a multi-model because of the above disadvantages.

2.2.2 Aggregation-Disaggregation

Inconsistencies can arise in a multi-model when a low resolution entity (LRE), e.g.,
corp, interacts with a high resolution entity (HRE), e.g., tank. A common MRM approach

12

is to change the resolution of an entity dynamically to match the resolution of other
interacting entities. This dynamic change is callaggregation (HREs » LRE) or
disaggregationLRE —» HRES). Aggregation-disaggregation ensures that entities interact
with one another at the same level by forcibly changing their representation levels
[SMITHO4]. Typically, if an LRE interacts with an HRE, the LRE is disaggregated into its
constituents, which interact at the HRE level. LRE-LRE interactions would be at the LRE
level. A disaggregated LRE may be re-aggregated so that it can interact subsequently at
the LRE level. We critique the variations on aggregation-disaggregatia N

2.2.2.1 Full Disaggregation

Full disaggregation involves disaggregating an LRE into its constituent HREs. In
Figure 2, LREs L and L, are disaggregated when they interact with an HRE. Typically,
full disaggregation occurs when an LRE establishes contact (e.g., sensor, line-of-sight)
with an HRE. Full disaggregation ensures that all entities interact at the same
representation levels. However, full disaggregation is often too aggressive — although
only some HRESs that constitute an LRE may be involved in a particular interaction, all the
constituent HREs will be disaggregated. Moreover, full disaggregation leads to chain
disaggregation — cascading disaggregation of interacting LREs when one of them
interacts with an HRE (e.g., the disaggregation of LR The large number of entities
instantiated in full disaggregation may place a high demand on system resources.
Accordingly, full disaggregation is restricted to small-scale multi-modelsj@5a].

[OO\ [OO o~
00, oo;»/ 00\
o \OO/
Ly L, - Ly L
3

L3

FIGURE 2: Full Disaggregation

2.2.2.2 Partial Disaggregation

Partial disaggregation attempts to overcome the main limitations of full disaggregation
by disaggregating an LRE partly rather than entirely. As seen in Figure 3, a partition is
created inside LRE 4such that only a part of 4is disaggregated into HREs that interact
with the disaggregated constituents of LRE the remaining part of 4is left as an LRE
to interact with LRE ls. For example, in theBBS/SIMNET [HARDY94] [BURD95]
linkage, aBBS entity that engages S8IMNET entity is partitioned such that one part
disaggregates and fights a disaggregate-level battle iISIMBIET world, while the other
part remains aggregated and fights aggregate-level battlesBB 8world.

As seen in Figure 3, partial disaggregation has the potential to control chain
disaggregation. This potential depends on how easily a partition can be constructed inside
an LRE. The criteria for constructing the partition must be chosen carefully to prevent
partial disaggregation from degenerating into full disaggregation.

13

FIGURE 3: Partial Disaggregation

2223 Playboxes

A common aggregation-disaggregation variant is to demarcate a pre-determined
region of the simulated domain, calleghkaybox within which only HREs can participate
[KARR94]. Conceptually, the playbox may be defined in any domain, for example, a
spatial domain such as a simulated battlefield. Entities inside the playbox are
disaggregated while those outside remain aggregated. An LRE that crosses into the
playbox must be disaggregated; likewise, when all the disaggregated constituent entities of
an LRE leave the playbox, they are aggregated into the LRE. The playbox is typically
static in terms of location and boundaries, although it can be dynamic.

o
\ \
() @ ()
~
‘\reoy N/
\\ 00, (00
@ | T
\ L, |

- — — — — 1

FIGURE 4: Playbox

Playboxes may force entities to disaggregate unnecessarily, for example, when an
entity enters a playbox but does not interact with others in the playbox (e.g., LRE L
Figure 4). Furthermore, thrashing can occur when the trajectory of an entity causes it to
enter and leave the playbox rapidly. Cross-level interactions across the boundary of the
playbox (e.qg., interactions between the disaggregaseahtd LRE L in Figure 4) must be
addressed separately. Additionally, static playboxes artificially constrain the region in
which LREs and HREs may interact meaningfully. Projects that use playboxes are
Eagle/BDS-D [STOBERI5], Abacus/ModSAF [Cox95] andAIM [SEIDEL95].

2224 Pseudo-Disaggregation

Consider a situation where an HRE requires the attributes of the constituent HREs of
an LRE but does not interact with them. For example, an Unmanned Airborne Vehicle
(UAV) may obtain aerial pictures that are processed for details of entities observed in an
area. Since LREs are a modelling abstraction, any LRE in the UAV picture must be
depicted as its constituent HRESs. In this case, disaggregating the LRE is wasteful since
only a perception of the constituent HRESs is required. In pseudo-disaggregation, an HRE
receives low-resolution information from LREs andternally disaggregates the

14

information to obtain high-resolution information. For example, in Figure 5, the UAV is an
HRE that pseudo-disaggregates LREgsdnd L,. Pseudo-disaggregation is applicable
when the interaction is unidirectional, i.e.; Bnd L, do not interact with the UAV. The
algorithms used by the UAV to disaggregatgdnd L, locally must be similar to the ones

L, and L, would use to disaggregate themselves, if required. Each HRE must incorporate
rules to disaggregate every LRE in the simulation. Pseudo-disaggregation is employed by
JPSD CLCGF [CALD95B], TACSIM/CBS [SMITH95], Eagle/BDS-D [STOBER95],

ALSP [WEAT93] and others [ALEN96].

[00) (00
\OO/ \00

Ly L2
FIGURE 5: Pseudo-disaggregation

2.2.3 Variable Resolution Modelling

In Davis’s Variable Resolution Modelling (VRM), designers construct families of
models that support dynamic changes in resolutioa/[802] [DAvIS93]. For example, a
coarse model of weather prediction may include season and geographical location. A
model at a finer resolution may include temperature variations, cloud patterns and wind
directions. A model at yet finer resolution may include rates of temperature changes, range
of temperatures and so on. Designing with VRM in mind facilitates the construction of
models that can execute at any desired level of resolution.

VRM involves building tunable process hierarchies, while MRM involves making
multiple models execute jointly. It is possible for a simulation to incorporate both
philosophies. For example, in a multi-resolution simulation, various aggregate-level and
disaggregate-level entities may interact with one another. Users may vary the resolution at
which the simulation proceeds. There are two aspects to this variability: one, the
interactions among entities, which is our focus, and two, the resolution of simulation
processes, which is Davis’'s focus. We address issues that arise when aggregate-level
entities interact with disaggregate-level entities. Davis addresses issues that arise when
one wishes to observe phenomena such as invasions or stratagems at variable resolution.
Designers may describe the movement of a single tank either by a very high-level process
or by low-level sub-processes that involve factors like fine-grained terrain conditions and
availability of fuel. Here, the motion of the tank is a VRM process, but the interaction of
the tank with other tanks or platoons is an MRM issue.

VRM is related to MRM because a process at multiple resolution levels is likely to
require multiple representations. Many VRM researchers argue for the existence of
multiple resolutions [BvIS98] [HARSHI2] [HILL92A] [HILL 92B] [HORRI2]. However, in
VRM, users are expected to transition among models during execution rather than execute
multiple models concurrently. VRM complements MRM; the relationships among

15

hierarchical resolution levels for a process are mapping functions that translate attributes
among multiple representations.

2.3 Maintaining Consistency among Concurrent
Representations

We presenUNIFY briefly in order to discuss work that has influenced our approach to
MRM. UNIFY includes the concept of a Multiple Representation Entity (MRE) which is a
technique to maintain concurrent representations based on four fundamental observations
about MRM [REYN97]. MREs are internally consistent and interact at multiple
representation levels concurrently. A Consistency Enforcer (CE) consisting of an Attribute
Dependency Graph (ADG) and application-specific mapping functions maintains
consistency among multiple representations in an MRE. An Interaction Resolver (IR)
based on our taxonomy of interactions resolves the effects of dependent concurrent
interactions [MT99]. MRESs reduce simulation and consistency costs9N|.

Determining whether a multi-model is satisfactory is ultimately a form of the Turing
test [TURING50] because only end-users can determine whether the multi-model meets
their requirements. Crucial to a multi-model is the effective joint execution of its
constituent models. We believe effective joint execution can be achieved by maintaining
consistency among concurrent representations. Consistent concurrent representations
enable consistent concurrent behaviour since behaviour is influenced by sta#9[H
Approaches like Temporal Logic of Actions support the notion that behaviour is
influenced by state [AM94] [ABADI95]. The definition of consistency is application-
dependent. For some applications, consistency may be bi-modal (i.e., the representations
are consistent or inconsistent), whereas for others it may be multi-modal (i.e., the
representations are consistent to some degree). For yet other applications, consistency may
be similar to determining the effectiveness of a real-time system that schedules tasks
according to their deadlines and their expected valugsNBD8].

Dependency graphs similar to our ADGs have been used to capture cause-effect
relationships in Petri Nets [BER77] [PETRI62], dataflow models [ENNIS80] [ACK82]
[Davis82] [GAJskI82] [GRIM93], object-oriented design [R191] [SHLAER92] and
logical time systems [aM78]. Since attribute relationships can be viewed as constraints
[ALLEN92] [HILL92A] [HORRO2], a CE may be implemented as a constraint solver.
Typically, a constraint solver operates in the Herbrand universerAR94] [SARASIL].
Although constraint solving in the Herbrand universe can be compl&iH82A]
[FRUHO2B] [V AN96], constraint solving in other domains can be simplifiedARA93]
[GARCIA93] [FREEQO] [JAFFAR92] [CORMEN89]. A CE may be implemented as a set of
mediators. The relationships among attributes at multiple representation levels may be
realized by mediators, which capture behavioral relationships in complex systems
[SuLL94]. A CE may be implemented as an attribute grammar, which is a means of
propagating changes among dependent attributesufK68] [KNUTH71] [REPSB4]
[BESHB5] [DEMERSB5] [REPB6] [HORB6].

Interactions are common in many domains, for example, database transactions and
operations [BWA76]; processor interrupts; cache operationsNN96]; reads and writes
to shared memory in parallel processing systems; operations, events and actions in object-
oriented and process modellingyR91] [SHLAER92] [ALHIR98]; method invocations and

16

function calls in object-oriented systems; messages in distributed processing systems and
logical time systems [AM78]; accesses to a blackboardRiEAN80]; and exceptions in
programming languages f§#&D75] [BARNES80] [Liskov79] [STROWI1] [YEMINI8S].
Resolving the effects of interactions, transactions, events or operations that overlap in time
is a well-known problem. The effects of concurrent interactions in MRM are similar to
race conditions. In both casesagssez-faireapproach can lead to unpredictable, and often
incorrect, effects. Many synchronisation primitives have been proposed to eliminate race
conditions, such as locks, semaphores, barriers and monitor®7#] [SLBI1]
[TANEN92] [BRINCH78]. These primitives lead to policies that resolve concurrence by
curbing it, i.e., concurrent operations are transformed into non-concurrent operations even
if they should not be transformed this way.

A traditional policy for resolving concurrent events, operations, transactions or
interactions is serialization — imposing an order on thensWk/6] [HAER83].
Serialization is often a valid policy when the concurrent events or transactions are
logically independent. Traditionally, database systems serialize independent transactions
[BERN81] [PAPA86G] [BRAHMAQ0]. Cache coherence models also serialize independent
operations on cache blocks ENN96] [ARCH86]. Object and process modelling
techniques either require that one action execute in a state at a time or recommend
partitioning the states in which concurrent events can occur and then reflecting the effects
of those events simultaneouslyAR98] [Rum91] [SHLAER9Z2]. Either approach assumes
the concurrent events are independent. In logical time systems such as Lamport time
[LAmM78], virtual time [EFF85], vector clocks [MTT89], PDES [RJ190] and isotach
systems [WWLL 93], independence is tied to a notion of concurrence, i.e., two events are
assumed independent if it cannot be determined that there exists a cause-effect
relationship among them.

The effects of some concurrent interactions may not be captured by any serial order.
For example, the semantics of one interaction may interfere with the semantics of another
interaction such that one or the other or both may be fully or partially excluded, ignored,
delayed or even enhanced. Some database schemes utilise semantic information about
transactions to reorder concurrent transactions, possibly non-serializahbRIfR]
[BARGI1] [GARCIA83] [KORTH88] [LYNCH83] [MUNSONO6] [WEIHL88] [THOM9S].
However, even these approaches assume that the interactions are logically independent.
Some concurrent interactions may be logically dependent, i.e,dbeaurrentoccurrence
is a factor in determining their effects. We classify such interactions and evaluate our
approach based on criteria for a good taxonomyd®4] [How97].

After considering specification methodologies such as DFDs, PERT charts, IDEFO-3,
UML [A LHIR98] [FOWLER97] [TEXEL97], OOA [HLAER92] and Rumbaugh’'s Object
Modelling Techniques [BM91], we chose the High Level Architecture’s Object Model
Template (OMT) [OMT98] as a base for presenting our techniques in a manner useful to
designers of multi-models. OMT permits designers to specify object classes and
interactions [JPSD97] [JH97] [RPR97].

2.4 Chapter Summary

A number of domains employ some form of multi-representation modelling (MRM)
with varying degrees of success. We presented some MRM applications and summarised

17

their strengths and deficiencies using the metrics of multi-representation interactions (R1),
multi-representation consistency (R2) and cost-effectiveness (R3). Common approaches
for MRM involve executing the most detailed model or transitioning from one model to
another. These approaches can make the multiple models inconsistent and incur high
costs. Maintaining consistent representations of multiple models can be more effective
than alternative approaches to MRM. We explore that thought in subsequent chapters.

18

If you have built castles in the air, your work need not be lost;
that is where they should be. Now put foundations under them.
— Henry David Thoreau

Chapter 3

Foundation

Multi-Representation Modelling (MRM) is a means of capturing the combined
semantics of jointly-executing models. The joint execution of multiple models brings up
issues of conceptual and representational differences among the models. MRM involves
the resolution of such differences. MRM includes but is not restricted to models that are
executed as computer programs, called simulations. In this chapter, we lay the foundation
for discussing our frameworkUNIFY, by defining key concepts such as model,
representation and interactions. We state and justify assumptions we make in our work and
describe our evaluation strategy.

3.1 Model

Modelling is a way to study a phenomenon without undertaking the phenomenon
itself. A modelcaptures the semantics of selected concepts, objects and processes of a
phenomenon in terms of other well-defined concepts, objects and processes. Objects and
processes in a phenomenon are cadlatitiesin a model. Theepresentatiorof an entity
is a means of describing the entity and its properties. The representation of a model is the
union of the representations of entities. Anything that is not part of the model is part of the
model’s environment An attribute is an element of the representation of an entity that
captures a property of the entity. ralationshipbetween two attributes indicates how the
value of one attribute changes when the value of the other attribute changes. In a valid or
consistent model, the relationships among attribdtels, i.e, the values of attributes
change in accordance with the relationships among them. Therefore, for each relationship,
there must exist functions that translate changes in one attribute to changes in other related
attributes. At a given instant of time, the values of the attributes and the relationships
among the attributes reflect the phenomenon being modelled.

A model may change over time when the phenomenon it models changes. The state of
a model is a set of values such that each member is a well-defined value assigned to an
attribute. When the state of a model changes, the values assigned to its attributes may

19

change, although the relationships among attributes continue to hold. Changes in attribute
values are caused by interactions. iAteractionis a communication between entities. An
interaction is initiated by an entity called tsendeyand directed towards an entity called

the receiver The sender and receiver may be part of the same model, in which case the
interaction is internal. Either the sender or the receiver may be part of the environment or
another model, in which case the interaction is external. We do not need to differentiate
between internal and external interactions. Effectsof an interaction are the changes
caused by the interaction to the sender and receiver — typically, to their attributes. We
define interactions more rigorously in 83.2.

The preceding informal notions are characteristic of what model designers routinely
assume. Now, we take a more formal view based on Object Modelling Technique
[Rum91], Object Oriented Analysis FRAER92], Object Model Template [OMT98] and
Unified Modelling Language [AHIR98] [FOWLER97]. Let Repbe the set of all attributes
of all entities in a model. LeRelbe the set of all relationships that hold in the model. Each
relationshipr [0 Rel is a mapping between sets of attributes belongingRep i.e.,

r:P - Q, whereP, Q I Rep Let Int be the set of interactions whose sender, receiver or
both are part of the model. We define a model as a tuple of representations, relationships
and interactions.

Model = [ORep Rel I

Our model is similar to an object model in Object Modelling Technique (@MTIn
OMTQR, the object model describes the structure of objects in the system: their identity,
attributes, mutual relationships and operatid®spcorresponds to the set of identities and
attributes of OMR objects.Rel corresponds to the set of relationships among @MT
objects.Int corresponds to the union of operations, events and actions as defined in
OMTgR. An OMTR, object operation refers to an interaction for which the receiver is the
same OMT object that defines the operation. In OMTa dynamic model is a state
diagram describing those aspects of the system concerned with time and the sequencing of
operations. External stimuli that may change the model are called events igAMT
other words, OMT, events are interactions for which either the sender or receiver is
outside the model. Finally, in OM{; a functional model describes changes within each
state of the state diagram in the dynamic model. The changes within a state are called
actions in OMk. OMTR, actions are interactions for which the sender and receiver may
not be defined in terms of ONyTobjects; the sender and receiver both are the “system”.

Our model is similar to an information model in Object Oriented Analysis (OOA). In
OOA, the information model consists of objects, object attributes and relationships among
objects.Repcorresponds to the set of OOA objects and their attribiRekcorresponds to
the set of relationships among OOA objects. An OOA state model is a state diagram in
which a transition from one state to another is caused by an OOA event. A process model
in OOA describes changes within each state of the state diagram in the state model. These
changes are called actions, and are interactions for which the sender and receiver both are
the “system”Int corresponds to the union of events and actions as defined in OOA.

" Rumbaughet al use the acronym OMT for Object Modelling Technigue. To resolve a name
conflict with the High Level Architecture Object Model Template, we refer to Rumbaugh’s
Object Modelling Technique as OMTand the HLA Object Model Template as OMT.

20

In the High Level Architecture [AMG95], models are specified using the Object
Model Template (OMT). OMT enables a designer to specify class hierarchies for objects,
attributes of classes, interactions and parameters of interacRapsorresponds to the
set of OMT object instances along with their attributes. OMT enables specifying
interactions for which the sender and receiver are distinct OMT object instances, but not
interactions for which either the sender or the receiver is outside the model or interactions
for which the sender and receiver are the same OMT object instami@ecludes all these
interactions, and hence is a superset of the set of OMT interactions. OMT does not include
specifications for relationships among objects.

Our model is similar to a model in Unified Modelling Language (UML). In UML, a
model consists of entities, relationships among entities and interactions among entities.
Repcorresponds to the set of UML objects and their attribuRedcorresponds to the set
of links and associations among UML objedist corresponds to the union of scenarios,
interactions and object operations as defined in UML. A structural model in UML
describes the static behaviour of a model, whereas a behavioral model describes the
dynamic behaviour of the model.

All of the above models, including ours, assume tRapz . If Rep=10, then
Rel=0 as well. Repz [0 indicates that representation exists for a modeRé&p= [,

Rel= 0 describes a model in which attributes are unrelated.

When a modeéxecutesit simulates the progress of the phenomenon being modelled,
implying the passage of time. Accordingly, when a model executes, time becomes an
integral part of the model. We define a model at a particularttase

Model(t) = [(Ref), Rel(t), Int(t)d

As a model executes, its state and the relationships among attributes may change.
These changes may happen continuously; however, for most practical executions of
models, these changes happen at discrete times. Discretizing time is a common technique
in model execution. Accordingly, there exists a sequence of tifrefiy, tq, t, ...), such
that at eacht;, the representation and relationshipsModel are defined. At other times,

i.e., 0t O T, Mode(t;) may be undefined or may be the sama/asle(t;) wheret; [T and

tj is the largest instant ifi such that; <t;. The individual times il may be regarded as
observation times at which the model may be verified for consist@nisymonotonically
increasing. The interval between two consecutive timedimme-stepdenoted byf,],
where tj, t;,; O T. The durations of time-steps in a particular model may vary, i.e.,
Dti, ti+l! tj’ tj+l OT,i ¢j, it is not guaranteed thml - ti = tj+1 - tj'

The execution of a model on a computer is callesiiaulation A simulation is a tuple
of the representation, relationships, interactions and observation times for that model.

Simulation= [ORep Rel Int @

We define representation and relationships for model execu@epSednd RelSeq
are the sequences of states and relationships that hold during model execution.

RepSeq= (Rep) Rep(t), Ref(t), ...)
RelSeqg= (R€ly), Rel(t), Rel(t), ...)

Reqt) is a set of values assigned to attributeRepat timet, i.e.,Reft) is the state of
the model at timd. Relt) is the set of relationships that hold at tiheA relationship

21

ridRel r:P - Q, P, QU Repholds at all observation times, 1.t O T, P(t) - Q(t),

where P(t), Q(t) [0 Redt). A dependencys an indicator of a relationship between two
attributes. Theébehaviour of a modek the sequence of states of that modebAAI95]

[LAM94] [HOP79]. Consider two modelé\ and B that have the same representation,
relationships and interactions. If attributestimndB have different sequences of values or

the same sequences of values but at different times, fheand B have different
behaviours. The sequence of states for an entity is a subset of the sequence of states of a
model, i.e., théehaviour of an entitis a subset of the behaviour of the model.

3.2 Interactions

In most models, entities and the environment exchange information with one another
or influence one another. Models do not execute in isolation; typically, stimuli from the
environment may influence behaviour of a model, and conversely, a model may generate
stimuli that affect the environment. Amteractionis a communication that causes a
change in the behaviour of its sender or receiver or both.

Entities cause a change in the behaviour of one another by means of interactions. In
other words, interactions cause a change in the sequence of states of entities. We regard
interactions with one sender and multiple receivers as multiple instances of an interaction
from one sender to one receiver. An interaction that causes a change in the state of its
receiver changes the receiver’s behaviour. Moreover, an interaction that does not change
its receiver’s state may well cause a change in behaviour. A receiver must evaluate
whether the interaction affects it or not and apply the changes caused by the interaction if
necessary. The evaluation and consequent action of the receiver take a finite, non-zero
amount of time. Thus, the behaviour of the entity given the occurrence of an interaction is
different from the behaviour of the entity if that interaction never occurred. An interaction
that changes only the relationships in a model will cause the state of the model to change
as well because of the changed relationships. We do not differentiate between interactions
that change the state and interactions that change the relationships in a model.

Interactions may cause changes to the values of attributes. The semantics of an
interaction and the dependencies among attributes determine the effects of an interaction.
When the changes caused by an interaction are applied to individual attributes, the
interaction takes effect. For an interactin.affectsis the set of tuples of attributes and
changes to values of attributes caused by the semanticdfdf causes only a read to an
attribute value, the attribute is not iraffects If | causes a write to an attribute value, the
attribute and its changes are liaffects l.affectd is the set of tuples of attributes and
changes to attributes dependent on the attributekaiffiects l.affects’ is the set of
attributes transitively changed byi.e., l.affects’= I.affects .affects.

Concurrent interactionsare those interactions that occur during overlapping
simulation time intervals. Interactions that occur one after another, i.e., do not overlap in
time, aresequentialnteractions. In logical time systems, two interactions are concurrent if
one does not “happen-before” the otherfl.78]. However, by this definition, interactions
that occur at different times may be concurrent. In applications involving databases,
caches and shared resources, two interactions are concurrent if they occur at overlapping
times. We consider interactions as concurrent if they occur during the same time-step. Our
definition of concurrence may exclude some concurrent interactions of logical time

22

systems, but includes concurrent interactions in databases and caches. Interactions that
occur at the same real time are simultaneous. In practical models, time is discrete, not
continuous. Therefore, while real time-steps are of zero duration, time-steps in practical
models are of non-zero duration. Thus, many interactions that are not simultaneous but
happen to occur during the same time-step will be considered concurrent. The “false
simultaneity” introduced by concurrent interactions may be reduced by a finer granularity
of time within a model.

Concurrent interactions may be dependentdépendent interactiofis one whose
effects are predicated on the occurrence of another interactiomdé&pendent interaction
is one that is not dependent on any other interaction. For example, two interactions may be
related by cause and effect, i.e., one interaction causes the other. In such a case, the former
interaction is independent of the latter, but the latter is dependent on the former.
Concurrent interactions may be dependent solely on account of their concurrence, i.e., if
the interactions were not concurrent, they would be independent.

With our definition of interactions, we definlitSeqas a sequence of sets of
concurrent interactions. Each set contains interactions that occurred during one time-step.
Int(t;) is the set of interactions that occur in time-stepnt(t;), is the KM interaction that
occurs in the time-stefp. No ordering is implied b¥; it is used solely to distinguish one
interaction from another in that time-stefgt; Lk, Int(t;), O Int. Int(t;) consists ofn+1
interactions, i.e[Int(t)0=n;+1.1 ¢ Jindicates that andJ are concurrent interactions.

Int(t;) = {Int(t)ye Int(t;) = ... Int(ti)ni}

IntSeq= (In{ §), Int(ty), Int(ty), ...)

Concurrent interactions may cause concurrent changes to entities. Let the effect of an
interactionlint(t;),, on a state of a model be the chartgént(t;),). E(Int(t;),) is the set of
changes irint(ti)k.affectg Applying the effect of an interaction is equivalent to computing
changes to attribute values caused by the interaction, i.e., applying the effect of interaction
Int(tj)), on the representationReft;)) is equivalent to computing a function
F(Reqt;), E(Int(t),)). Applying the combined effects of all the interactions in one time-
step results in the state of the model at the next time-step.

Rep(f.1) = F(Rep(1), E(Int(t)))
Applying the effects of concurrent, possibly dependent, interactions is caliet/ing
the effects of the interactions. LE{l « J) denote the concurrent effects of interactidns
and J, and E(1) ¢ E(J) denote their sequential effects. Concurrent interactions can be
resolved in different ways including, but not limited to, applying the effects of interactions
in an arbitrary order. When interactions are independent, their effects when concurrent are
indistinguishable from their effects when sequential.

E(Int(t)g* Int(t); .. * Int(t),) = E(Int(t),) 0 E(Int(t),) O ... 0 E(Int(t),)

The effects of concurrent independent interactions can be resolved by applying the
effects of individual interactions one after another. This policy for resolving the effects of
concurrent interactions is callegrialization If it can be determined that at all time-steps,
concurrent interactions are independent, then serialization is a valid policy for resolving
the effects of concurrent interactions. When interactions are dependent, their effects when
concurrent may not be the same as their effects when sequential. The effects of dependent

23

concurrent interactions may be predicated on the occurrence of one another during the
same time-step. In such cases, serialization may resolve the effects of such interactions
incorrectly; other policies for resolving the effects are necessary.

3.3 Multi-models

Multiple models of the same phenomenon may execute jointly with one another.
Simple, well-designed models executing jointly may capture all the facets required for a
particular study of a phenomenon without a designer having to construct one model that
captures exactly those facets. Given that the multiple models are simplifications of the
same phenomenon, entities common to the models must be correlated or made consistent.
However, correlating the entities can become a very significant problem if the models
make different assumptions about the processes, objects, environment, the rate of progress
of the phenomenon and the accuracy at which the phenomenon is modelled.
Inconsistencies among models may undermine the reasons for executing them jointly.

We use the termepresentation leveb describe the level of abstraction of a model. If
some models are compositions/decompositions or abstractions/refinements of one another,
their representation levels are also caltedolution levelsor resolutions An aggregate
model is a relatively low-resolution (high-abstraction, low-decomposition) model,
whereas a disaggregate model is a relatively high-resolution (low-abstraction, high-
decomposition) model. Adigh Resolution EntityfHRE) is an entity at a low level of
abstraction (high decomposition), antd@v Resolution Entityl RE) is an entity at a high
level of abstraction (low decomposition). Classification of an entity as an HRE or LRE
depends on its resolution level relative to other relevant entities. The resolution levels form
a hierarchy, with the highest level being the most abstract or most aggregate one, and the
lowest level being the most refined or most disaggregate éwggregationis the
composition of a collection of HREs into a single LRE, adisaggregationis the
decomposition of an LRE into its constituent HRESs.

Multi-representation modellingMRM) is the joint execution of multiple models of
the same phenomenon. We call the union of several models of the same phenomenon a
multi-model A multi-model may consist of several models; however, for ease of
exposition, we will consider an example multi-model consisting of two modeldotfef*
and ModeP are two models of the same phenomenon, then a multi-mbteleM
constructed from them is defined as:

Model" = Rep", Rel", Int"'D
Reg' = Reg 0 Ref’
Rel" = Rel"0 ReP O Ref"> Mo

Int™ = Int* 0 Int®

Rep andRef® are callectoncurrent representationsVe construcRep” by including
all of the attributes irRepA andRep?, after disambiguating name conflicts. For an attribute
a,alRep* a0 Ref =alRep”.

24

3.3.1 Cross-model Relationships

Refross-modefg the set of relationships required in order to make the multiple models
consistent with one another. Sindel* andModeP model the same phenomenon, they
may represent overlapping sets of objects or processes. In such Rega@nd Ref®
must be correlated. Correlating the representations in a multi-model is calhsistency
maintenancelf Ref0ssModel 11 thenModer andModeP are independent of each other
because their representations are not related to each other. Then, consistency maintenance
reduces to ensuring that the individual models are self-consistéef[PSSM0deL [the
representations of the models are related. A cross-model relatiansHRefross-mode|s 5
mapping r:P -~ Q such that PORef QU Ref OP O Ref 0QURep. We
construcReM by including all of the relationships iRel*, ReP andRef0ss-modelj o for
a relationship, r 0 Re Or 0 ReP Or 0 Refross-modek r 1 ReM.

3.3.2 Mapping Functions

A mapping functionassociated with a relationship among attributes translates the
changes in one attribute to changes in related attributes in such a manner that the
relationship continues to hold. We assume that designers can construct appropriate
mapping functions for each relationship RefS3Mdel Mapping functions encode
application-specific semantics about the relationships among representations. Mapping
functions are necessary for any MRM approach, including ours.

A requirement for mapping functions is that at every observation time, they must
ensure that a relationship holds by translating value spaces or changes in values of
attributes, as necessafyr O Refoss-model- p o p Q 0 Ref, a mapping functiof
may exist such that, iP(t;)) - Q(tj) holds, thenP(tj.;) — Q(tj+1) holds. For exampléf,
may be of the formt, tj,q, Q(ti+1) = f(Q(Y;), P(t;), AP(t;)), where AP(t;) is the set of
changes to values iR(tj)). Sincef ensures that holds [t; [™, f must complete its
computation within a time-step. In other words, a lower-bound value for an observation
timetj,, is the sum of the value gfand the time taken fdrto complete.

All mapping functions must beomposablelf mapping functionsf and g translate
attribute set$ to Q andQ to Rrespectively, invokindg andg in succession must translate
P to R. Attribute relationships are transitive, i.€.,- QUIQ - RO P - R Composable
mapping functions capture transitive dependencies among attributes. If mapping functions
are composable, the effects of an interaction propagate to all dependent attributes.

Mapping functions must beeversible Consider mapping function$ and g:

Oty i1, G+, Q1) = Q). P(L), AP(t)) andP(ti+2) = 9(P(ti+1), Q(ti+1), AQ(ti+1))- If no
interactions occur during the time-steps §.4] and [t;.1, ti+o], then invokingf andg in
succession must result ®(tj,») = P(tj)) within tolerable approximation. Reversibility is
desirable for mapping functions because it ensures that a change does not propagate back
to an attribute. Therefore, Q) changes as a result of a changeRothen reversible
mapping functions ensure tHatdoes not change again as a result of the char@e to

3.3.3 Time-Steps

We assume that the time-steBIs Mbdel* and ModeP are compatibleCompatible
time-stepsneans that i, T8 andT are the sequences of times associated Mitdel,

25

ModeP andModeM respectively, theModel* andModeP are defined for all times ifi™.
T is constructed by interleavin®* and TE. Accordingly, times that are common to both
TA andT® (albeit labelled differently) are included ﬂ% only once. IfTM = TA 0 TB, then
Model® must be defined for all times iff andModeP must be defined for all times iff*.

If ™M = TA 1 TB, thenModel® andModeP are defined for alt 0 TV. Figure 6 shows two
ways to construct™.

™ | | I | []
tOA tlA t2A t3A

T8 | | | | I | | [|
tOB tlB t2B th

™=TADTE | [1] [| | [|
tOM t1|\/| th t4M

TM=TANTB | [[
tOM t1|\/| t2M

FIGURE 6: Possible compatible time-steps

No matter howT™ is constructed, some interactions in eachraf andInt® must be
re-organised as if occurring in time-steps defined by timed™h For example, let
to t A O TA If 42 0 ™, then interactions occurring in the time-steg[t,”"] must
be re-organised as if occurring irto’ﬁ, tzA]. This re-organisation increases “false
simultaneity”. In like fashion, lety®, ;" O T4, andt,® O T2 such thatty” < t,® < t;”. If
to™, 2, toB O ™, then interactions occurring irigl’, t;] must be re-organised into two
sets, one occurring irtd, t,5], and the other occurring irtg?, t,4]. This re-organisation
decreases “false simultaneity”. ¥ = TA = TB;

RepSel = (O, 0 T"|(Rep' 0 Rep)(t))
Relsed = (Ot O T"|(Rel'(t,) O Ref(t)))
IntSed' = (Ot O T"|(Int"(t;) Int®(t))))

3.4 Evaluation

In this dissertation we will show howJNIFY, our approach for consistency
maintenance among concurrent representations satisfies R1, R2 and R3, our requirements
for effective MRM.

A model must satisfy its users’ requirements. Examples of user requirements are the
accuracy of the model, the detail captured by the model and the rate at which the model
progresses. The most accurate model of a phenomenon is the phenomenon itself; practical
models are simplifications that may fail to imitate the phenomenon in some respects. The
Turing test [TURING50] for a model is whether end-users are satisfied that the model

26

captures the facets required for study. Likewise, for a multi-model, end-users must
determine whether it meets their requirements. A multi-model can satisfy its users’
requirements if its constituent models satisfy the users’ requirements and the joint
execution of the multiple models is effective.

Satisfactory multi-modél Satisfactory models Effective joint execution
Our work concentrates on effective joint execution of multiple models. In contrast, OMT
OOA and UML guide a designer in constructing a model to meet users’ requirements.

Requirements for models and multi-models must indicate how users can be satisfied.
For training models, training experts may indicate satisfaction by assessing how well the
model reflects reality. A term used often in the training communitiais fight, which
signifies an engagement in which no party can deduce and utilize information about the
training system (that they could not deduce in a real situation) to gain an unfair advantage.
For example, due to an artifact of simulation, an aircraft may be perceived for some time
after having been destroyed. This artifact could be employed to draw additional fire and
thus force consumption of ammunition without sustaining losses. Similarly, crews in tank
simulators have been reported to identify other tanks as being controlled by computer-
generated forces rather than by humans by tracking their movements. The fair-fight
concept is relevant to modelling since models approximate reality and there is potential to
exploit knowledge of these approximations. In MRM, where a basic theory is still
developing, arbitrary design choices may violate the fair-fight concept.

It is important to understand the difference between an unfair fight and what military
analysts call théog of war The fog of war refers to circumstances — typically large
numbers of concurrent events — that make it difficult to maintain a coherent picture of the
battle, leading to unexpected events. Unfair fights, on the other hand, result from
shortcomings in the design of a system and have no counterparts in a real-life
phenomenon. Often, inconsistencies in a model are assessed incorrectly as being a part of
the fog of war. While creating simulations that pass the Turing test is difficult, an
important goal of designers should be to reduce the discrepancies that cause a simulation
to fail the test [BTTY94].

Our work concentrates on the effectiveness of joint execution of multiple models. Our
approach, calletNIFY, is meant to guide designers towards effective MRM. Whether an
MRM approach is effective or not can be evaluated on the basis of how well it meets three
requirements, listed in 81.3 and below:

» Multi-representation Interaction (R1) : The multi-model must permit concurrent

interactions at multiple representation levels.

The interactions that occur ModeM must be the interactions that could occur either
in Model® or in ModeP, i.e., Int must belnt® O IntB. If Int™ meets this condition, it
means that the joint execution of both models does not restrict the execution of either
model. Effective joint execution of multiple models requires that entities at different
representation levels initiate and receive interactions that may cause their behaviour to
change. Many MRM approaches do not satisfy R1. For example, in selective viewing, if
ModeP is the most detailed model, then the only interactions permittddtif are the
ones inIntB. In aggregation-disaggregation, in each time-step*bfeither interactions in
Int® or interactions inInt®, but not both are permitted. In Chapter 7, we present a
taxonomy for resolving the effects of concurrent interactions in order to accommodate
multi-representation interaction.

27

» Multi-representation Consistency (RJ: The multiple representations must be

consistent with one another.

ReM must hold at all observed times in the multi-model. Moreover, it must be the case
thatRefross-modek [or else consistency maintenance and joint execution are too trivial
to be interesting. In Chapter 6, we present a technique for maintaining consistency among
multi-models by showing how to construBtef"0ss-model AJ)PIication-specific mapping
functions associated with each relationship Ref55"Mo% myst be supplied by the
designer. The mapping functions are required for consistency among multiple
representations. Consistent representations are necessary for the consistent behaviour of a
multi-model since the state of an entity influences its behavioamB4]. Motivating the
choice of finite automata for designing systems, Hopetait say [HOP79]:

The state of the system summarizes the information
concerning past inputs that is needed to determine the
behaviour of the system on subsequent inputs.

The inputs and state of a finite automaton are interactions and representation of a
model. Since the multiple representations in a multi-model determine the behaviour of the
multi-model, maintaining consistency among the representations is required for effective
joint execution.

» Cost-effectiveness (R3)The costs of simulation and consistency maintenance

must be low.

Simulation costs and consistency costs tend to be trade-offs, as we will see in
Chapter 9. Simulation cost is the expenditure of resources in order to simulate entities,
possibly at multiple representation levels. Consistency cost is the expenditure of resources
in order to ensure that the multiple models meet consistency requirements. The resources
expended may be computational, network or memory. In selective viewing, simulation
costs are high whereas consistency costs are low since only the most detailed model is
executed at all times. In aggregation-disaggregation, simulation costs are relatively low
whereas consistency costs are high since the representations must be kept consistent when
transitioning among models. We measure simulation cost and consistency ddksti Fox,
selective viewing and aggregation-disaggregation, and showJidi%Y reduces the total
cost of simulation and consistency maintenance.

3.5 Assumptions and Rationale

Our approach for effective MRMUNIFY, makes some assumptions about jointly-
executing models. We have presented these assumptions in context earlier in this chapter;
we discuss them in detail here.

Existence of representatian& representation exists for an entity and can influence

the behaviour of the entity.

Typical models have representations; most designers consider representing entities in a
model natural and intuitive. In some contexts, researchers claim that entities must not have
a representation at all. For example, Brooks’s description of subsumptive behaviour in
autonomous agents involves agents maintaining no representaRomkB36]. However,

a representation is beneficial towards an agent’s operatian[B6]. Generally, entity
state influences entity behaviourgAbi95] [LAM94] [HOP79]. Therefore, our assumption
about the existence and influence of representation is reasonable. We have not investigated

28

in any detail the consequences of eliminating this assumption. Davis’s work on variable-
resolution process models is closer to a non-representational approach than our work
[DAvIs92] [DavIS98].

Existence of satisfactory modelsdividual models meet their users’ requirements.

The problem of linking independently-designed components into a composite system
is hard enough without the additional complexity of the components falling short of
meeting their individual requirements [AEN98]. Simply put, a bad model cannot be
improved by jointly executing it with other models. Accordingly, we limit the scope of our
work to the joint execution of models that meet their users’ requirements.

Existence of mapping functian¥here exist mapping functions to translate the

representation of one model to the representation of other models.

Mapping functions are application-specific methods that capture the semantics of
relationships among representations. Since capturing these semantics is essential for
consistency of a multi-model, mapping functions are necessary for any approach to MRM.
Since mapping functions are application-specific, instead of specifying their semantics,
we derive requirements for their use from example multi-representation models. Mapping
functions must translate attribute values and changes to attribute values from one
representation to another. Additionally, they must complete their translations in a time-
bound manner so that the multiple models appear consistent at all observed times. The
specifications of consistency and observed times depend on the application.

Existence of policies for concurrent interactioridere exist policies for resolving

the effects of dependent concurrent interactions.

Designers must resolve the intertwined semantics of interactions in order to be able to
relate them to one another. Concurrent interactions that are dependent on one another may
have effects that cannot be captured by serialization or any other straightforward policy.
Designers must decide beforehand how the effects of dependent concurrent interactions
must be resolved and subsequently applied. Without a clear understanding of the
semantics of interactions, designers cannot expect any MRM approach to be effective.
Therefore, similar policies are necessary for any approach to MRM.

Existence of compatible time-stefi$ie time-steps at which the models execute are

compatible.

When multiple models execute jointly, the multiple simulation times must be
compatible. Simulation time is a fundamental property of most models. Simulation time is
tied to the progress of the phenomenon being modelled. Simulation time may or may not
be real, logical, linearly-increasing, monotonic or uni-dimensional. If the multiple models
adopt the same sequences of times, they are likely to be compatible and may be expected
to execute jointly with few problems. However, the greater the variance between the
sequences of times among the multiple models, the greater the difficulty of ensuring
effective joint execution.

Alternative approaches, such as selective viewing and aggregation-disaggregation,
cannot guarantee effective MRM even if they make similar assumptions as above because
they continue to violate R1, R2 or R3. Therefore, we believe that our assumptions are
reasonable for a framework for effective MRM.

29

3.6 Chapter Summary

MRM, the joint execution of multi-models, presents users with combined semantics
that may not be captured by the independent execution of the multiple models. MRM
requires designers to invest effort to ensure that the combined semantics meet users’
expectations. In particular, ensuring that representations of multi-models are consistent
when concurrent interactions may occur is crucial for effective MRM.

UNIFY is a framework for designers who require multi-models for their applications.
Even if designers are capable of constructing individual models that meet their users’
requirements, they can find constructing multi-models difficult. Designers can construct
multi-models by ensuring that the joint execution of the multiple models is effective. An
approach for effective MRM must satisfy the requirements of multi-representation
interaction, consistency and cost-effectiveness.

In the next chapter, we identify problems with aggregation-disaggregation, a popular
approach to MRM. After analyzing why these problems occur, we make some general
observations about MRM.

30

If a man will begin with certainties, he shall end in doubts;
but if he will be content to begin with doubts, he shall end in certainties.
— Francis Bacon

Chapter 4

Fundamental Observations

We present four fundamental observations regarding Multi-Representation Modelling
(MRM). These fundamental observations are the first of their kind relating to MRM; they
support a framework for addressing MRM issues.

Often, characteristics of models make joint execution difficult. One model may be at a
lower resolution because its entities are very abstract, whereas another may be at a higher
resolution because its entities are very refined. Assumptions about objects, events,
interactions and environment may be different. The fundamental processes in the model
may have different algorithms because of differences in resolution. The models may
progress with different systems of simulation time: discrete-event, time-stepped or
continuous. Also, the time-steps at which the models progress may be vastly different.

Often, current approaches to MRM either place too many restrictions on the models or
introduce new problems. For example, selective viewing is too restrictive because it
requires that all representation, relationships and interactions be expressed at the highest
resolution level. Aggregation-disaggregation introduces many problems, as we see in §4.1.

In this chapter, we explore problems in current approaches, and present and
substantiate four fundamental observations about MRM. The fundamental observations
we present here are exactly thalbservationsAlthough they are presented informally, we
present strong arguments for their existence. We arrived at these observations after
analysing the causes of ineffectiveness in many models. Our observations are fundamental
because any general solution to the MRM problemsttake them into account. They
address the general ineffectiveness of joint execution of multiple models, the necessity of
maintaining consistency among concurrent representations of the same entity, the
dependence among concurrent interactions and temporal consistency. These observations
focus the problem of joint execution to the core problem of how to maintain consistency in
the multiple representation levels of a single entity. Our framewdMlFY, is based on
these fundamental observations.

31

4.1 Problems with Aggregation-Disaggregation

Aggregation-disaggregation, a common approach to MRM, ensures that entities
interact with one another at the same representation level by forcing one entity to be
transformed to the level of the other. Typically, if a Low Resolution Entity (LRE) interacts
with a High Resolution Entity (HRE), the LRE is disaggregated, i.e., decomposed into its
constituents. LRE-LRE interactions would be at the LRE level. A disaggregated LRE may
be aggregated so that it can interact subsequently at the LRE level. Aggregation-
disaggregation causes simulations to incur considerable resource costs, thus violating R3.
Problems such as chain disaggregation, network flooding and transition latency put
unacceptable burdens on the resources needed to run a simulation. Moreover, aggregation-
disaggregation can cause mapping inconsistencies between levels, thus violating R2
[NATO5] [NRC97]. Finally, in most variants of aggregation-disaggregation, the multiple
models do not execute truly jointly since the system transitions among models as required.
In the following sub-sections, we discuss problems with aggregation-disaggregation.

4.1.1 Mapping Inconsistency

Mapping inconsistency occurs when an entity undergoes a sequence of transitions
between representation levels resulting in a state it could not have achieved in the
simulated time spanned by that sequence. Any scheme in which entities transition between
representation levels (e.g., aggregation-disaggregation) must translate attributes between
levels consistently. The translation should not lead to incorrect or unintended changes in
the attributes. Poor translation strategies cause discontinuities or “jumps” in the state of
entities. In Figure 7, when entity L is aggregated to interact with an LRE, the positions of
its constituent HREs are lost. Subsequently, when L is disaggregated to interact with an
HRE, a standard algorithm or doctrine reconstructs the positions of the HRE{G4]
[FRANCE93] [DAVIS93]. However, the reconstructed positions may result in “jumps” in the
constituents of L. In general, mapping inconsistencies arise if the translation strategies
utilise outdated, inaccurate or insufficient attribute information.

N
L Ll 00\

FIGURE 7: Mapping Inconsistency

4.1.2 Chain Disaggregation

Chain disaggregation occurs when a number of entities are forced to disaggregate
because a disaggregate-level entity interacts with an aggregate-level entity. Consider an
HRE H interacting with an LRE L. Typically, L would be disaggregated to interact with H
at the disaggregate level. However, other LREs interacting with L may have to
disaggregate, possibly leading to further disaggregations. Figure 8 illustrates the problem.

32

The interaction between can H and L force all LREs to disaggregate in order to be able to
interact at the same level. The forced disaggregation caused by the initial contact is called
chain disaggregation or spreading disaggregationLfA96] [CALD95B] [PETTY95]
[STOBERO5]. Chain disaggregation causes the number of simulated entities to increase
rapidly. The increased cost of simulating these entities translates to increased load on
processors and the network.

~
H H [©O ~~
00~ 00
- Jr 09,
() 188as) &
() (e
— 00

\ /

FIGURE 8: Chain Disaggregation

4.1.3 Transition Latency

Aggregation and disaggregation incur time overheads while performing the various
steps involved when entities transition between levels. Examples of these steps are set-up,
generation of disaggregate values from aggregate values and initiation of protocols to
adjust disaggregate values for specific situations. Transition latency, the time taken to
effect an aggregation or disaggregation, can be unacceptably high if these steps are
complex [ROBKIN92]. High transition latencies are incompatible with real-time
constraints, for example, in human-in-the-loop simulations, because they may cause
perceptual or conceptual inconsistencies. An entity that does not change position during a
transition period, and then suddenly undergoes a large displacement at the end of the
transition period causes a perceptual inconsistency. A conceptual inconsistency may be
caused when it takes so long for an entity to disaggregate in order to comply with a request
made by another entity that the request becomes obsolete.

4.1.4 Thrashing

When an entity undergoes rapid and repeated transitions from one level to another, it
thrashes. For example, an LRE, L, may disaggregate on commencing interactions with an
HRE, H. When H moves out of range, L may revert to the aggregate level. However, H's
varying proximity to L may cause L to change levels frequently, thus incurring the
overheads associated with making a level change and raising the costs of simulation and
consistency maintenance. Thrashing depends on the policy that triggers a change of level.
Thrashing must be addressed by any MRM approach. High transition latencies compound
the problems caused by thrashing because they cause some entities to spend considerable
amounts of time just changing levels.

4.1.5 Network Flooding

The network is projected to be a bottleneck in distributed simulations, especially when
models consist of large numbers of entitieg [FEN95] [REDDY95] [HOFERI5]. Network

33

resources may be strained by aggregation and disaggregation. Each entity created during
disaggregation could be a sender/receiver of messages, thus increasing network traffic.
Also, aggregation and disaggregation typically requires the exchange of many control
messages — an overhead that must be incurred every time a change of level occurs. These
messages can reduce the effective throughput of the network. Frequent changes of level
and large numbers of entities may put an unacceptable burden on the network.

4.1.6 Cross-Level Interactions

In many systems, some interactions may span multiple representation levels. For
example, two entities at different representation levels could engage in combat indirectly
(as in long-range artillery fire). Disaggregation is not triggered because of the indirect
nature of the engagementTherefore, the sender and receiver of the interaction are at
different representation levels. We refer to such interactions as cross-level interactions.
Since the participants in cross-level interactions are entities at different representation
levels, it is difficult to reconcile the effects of such interactions. Cross-level interactions
occur when requirement R1 is not satisfied.

4.1.7 Summary of Problems with Aggregation-Disaggregation

Often, problems with aggregation-disaggregation occur because designers make
convenient rather than correct decisions about the joint execution of multiple models.
Examples of such decisions are: permitting cross-level interactions, permitting
interactions only within a playbox and pseudo-disaggregating. When a multi-model grows
in terms of the number of its constituent models, the kinds of interactions that entities may
receive, or the different scenarios under which the models execute, such decisions can lead
to ineffective joint execution. For example, cross-level interactions are difficult to
reconcile, playboxes lead to thrashing and pseudo-disaggregation leads to a condition
where entities must be able to disaggregate all entities in the model.

An approach for joint execution of multiple models based on correct decisions is
necessary. Such an approach will avoid the pitfalls of merely convenient decisions, and
satisfy three basic requirements for MRM: multi-representation interaction, multi-
representation consistency and cost-effectiveness. This approach must be based on
fundamental characteristics of joint execution. In 84.2, we present four fundamental
observations about MRM. These observations highlight fundamental characteristics of
joint execution. In Chapter 9, we show how our framework for MRNNIFY, satisfies the
three basic requirements for MRM and avoids the pitfalls of other approaches.

4.2 Fundamental Observations

After analysing the causes for ineffectiveness in a number of multi-models, we made
four fundamental observations about the joint execution of multiple models. These
observations focus on entity interactions, effects of concurrent interactions, dependencies
among concurrent interactions and time-step differentials. The fundamental observations

" Forcing a disaggregation could lead to chain disaggregation, and is therefore undesirable.

34

influence our choice of the techniques that are patNfFY: Multiple Representation
Entities, Attribute Dependency Graphs and a taxonomy of interactions.

42.1 Fundamental Observation 1

Two entities must interact at a representation level common to both so that the
semantics of their interactions are meaningful to both. Therefore, the objects and
processes corresponding to each entity must be modelled at all the representation levels at
which the entity can interact. When entities interact at common representation levels, they
avoid cross-level interactions.

FO-1: For effective joint execution, objects or processes should be modelled at
representation levels at which they can interact.

FIGURE 9: Fundamental Observation 1

Consider the joint execution of two models with entitie, &1d B, at different
representation levels J.and Lg respectively, as shown in Figure 9. Essentially, FO-1
states that for most applications, in order to interact with each other, eighenust be
represented atd-or Eg must be represented ajyLIn other words, for effective joint
execution, a combination of vertical and horizontal links must be followed.

To see why this observation is true, consider a military training simulation. Hgre, E
may be a division of tanks being modelled in a low-resolution simulation whjleky be
a single, self-contained (manned) tank simulator. Typically, division-level engagements
are simulated by equations that take the relative strengths of the engaging parties into
account; actual firing of weapons and destruction of individual tanks are not simulated. In
contrast, individual tank engagements are simulated on the basis of actions taken by the
parties involved in the engagement (e.g., the human crew of the tank). These involve
simulation of detailed actions such as sighting, target acquisition, firing, detonation and
damage assessment.

In general, models at different representation levels are designed for different purposes
and consequently, have different foci. What is relevant at one level may not be relevant at
another, therefore may not be modelled there. The crew members inside an individual tank
simulator expect to see individual targets through their sensors. Presenting them with an
aggregated view of a tank division will be ineffective (if visual fidelity of the engagement
is an effectiveness criterion).

Similar incompatibilities arise in other dimensions of resolution such as time and
space. Time-steps vary from nanoseconds to minutes. When two models with disparate
time-steps are executed jointly, the one with the smaller time-step may interpret a lack of
response from the other as inaction when in fact, the other will report its action only at the
end of its larger time-step. Likewise, terrain representation may vary between models. A
simple mathematical mapping function may suffice to translate terrain coordinates
between systems. However, sometimes such functions do not exist or are inadequate (e.g.,

35

when one model executes in two-dimensional space while the other executes in three-
dimensional space). Further, the difference in resolution (e.g., meters versus kilometers)
can lead to inconsistencies similar to those observed with time-step differentials.

A technique used to resolve these incompatibilities is to prowidéges between
representation levels. In the two-level case of Figure 9, a bridge is a diagonal link. Such
bridges are useful only in special cases; they are not general techniques for effective joint
execution of multiple models. Pseudo-disaggregation can be such a bridge. For example, a
perceiver of an aggregate entity could apply a local translation function to obtain a
disaggregated view of the aggregate entity. This technique works well as long as
perception is the only interaction — it fails if the perceiver also engages the perceived in
combat since the perceived units do not respond to events (e.g., attack, defend, retreat). To
achieve a completely realistic engagement, the perceived units must respond as if they
were being modelled as individual entities themselves. Thus, while bridges may suffice for
joint execution in some cases, in general, entities must be modelled at the appropriate
representation levels to achieve the required effectiveness.

Interactions may occur at any level at any time. In order to satisfy FO-1, entities must
either (i) maintain representations at all levels at all times, or (ii) dynamically transition to
the appropriate level as required. We take the first approach. The second approach,
aggregation-disaggregation, has high associated overheads, as noted in 84.1.

4272 Fundamental Observation 2

The high cost of dynamic transitions between representation levels can be reduced by
reducing (i) the cost associated with a single transition, and (ii) the number of transitions.
The cost associated with a single transition is application-specific. Here, we focus on
reducing the number of transitions. Limiting the propagation of transitions, for example,
by controlling chain disaggregation, results in significant reductions in overhead. Ideally, a
transition should be restricted to a single entity and not propagate at all. Restricting
transitions implies that entities must be able to resolve concurrent interactions (i.e.,
interactions occurring within simulated periods that overlap) at multiple levels. Resolving
concurrent interactions means that the effects of these interactions must be combined
without compromising effectiveness.

FO-2: The effects of concurrent interactions at multiple representation levels
must be combined consistently.

In Figure 10, entity i must resolve concurrent interactions with entitigsaiad & in
order to limit the propagation of the transition. Concurrent interactions could be serialized,
i.e., processed sequentially and atomically. This approach fails in the context of real-time
interactions whichmustappear to take effect concurrently. Serializing the interactions
removes the appearance of concurrence.

Alternatively, interactions could be processed in parallel and their results combined.
Although apparently reasonable, this approach has several pitfalls as well. The subtleties
of these pitfalls are best explained by an example. Consider the following scenario
(Figure 11): LRE and LRE are two platoons of tanks, engaged in battle. At the same
time, LRE, is engaged by two individual tanks — HREnd HRE. The battle between
LRE; and LRE is simulated at the aggregate level while the battle between | REE;
and HRB is simulated at the disaggregate level. During a particular time-step; LRE

36

_Ea ~>_Es = Ec, [Ea l«—{ Ep <~ : |
I I I E
C
Y Y Y Y
[= =~ ~—{Ep] [~~{Ep]
Chain Disaggregation Eliminating Chain Disaggregation

~ FIGURE 10: Reducing transition overheads by limiting propagation of transitions
inflicts 50% attrition on LRE. The 50% attrition may be interpreted as the destruction of

two of the four tanks in LRE During the same time-step, HREnd HRE destroy two

tanks in LR@T. How should these two results be combined? Depending on the amount of
overlap in the two interactions, the final result could be a reduction insRfrength by

50% (complete overlap), 75% (partial overlap) or 100% (no overlap). For the most part,
this choice must be made arbitrarily and the result assumed to be realistic. Unfortunately,
apparently reasonable choices may lead to an unfair fight. The no-overlap choice does not
account for the case where LREHRE; and HRE may have fired at the same tanks in
LRE;, whereas the complete overlap choice penalises any co-ordination betwegn LRE
HRE; and HRE in picking targets from LRE As another example, consider a time-step
during which LRE expends 75% of its ammunition fighting LREHRE; and HRE also
engage LRE during this time-step, causing LREo expend 40% of its ammunition. At

the end of the time-step, LR&ill have expended 115% of its ammunition!

The problems above occur because the effects of an interaction are computed
assuming that the interaction is isolated, i.e., it is the only interaction that occurs in a time-
step. For some concurrent interactions, assuming they occur in isolation causes their
combined effects to be computed incorrectly, leading to ineffective joint execution.

r— — "
Aggregatq LREp (<=]
level A
LR LTTTEEERE LREp{-- - ooone
Disaggregate
level r— = . HRE
h &
-~ "IN HRE

FIGURE 11: Concurrent multi-level interactions

T Typically, platoon-level engagements are specified in terms of percentage attrition, whereas
tank-level engagements are specified in number of tanks lost.

37

42.3 Fundamental Observation 3

Often, consistency problems
arise during joint execution becaus
a key property of interactions ig§ LRE1 [
ignored when the interactions are

LRE,

isolated. That property isteraction % HRE
dependence — an interaction’s ¥R 7 1
existence or effects depend on \\

another interaction. Consider the &\\\ ™ HRE,

more detailed view of Figure 11 _ _

shown in Figure 12. In a time-ste FIGURE 12: Dependency considerations

durationt, LRE, interacts with LRE, reducing the ammunition of a constituent tank (P)

by 25%. In effect, P fires at LREuringt. Also, int, LRE, interacts with HRE because

P fires at HRE. Both interactions involve the firing of a weapon byrPthe same time-

step Clearly, this is physically impossible (indicated in Figure 12 by tank P having two

turrets). By permitting such an outcome, the simulation permits an unfair engagement.
The problem arises because two interactions that occur at overlapping simulation

times involve a common entity, thus affecting each other’s outcome. The two interactions

of interest, the aggregate-level interaction between {RiEd LRE, 1;, and the

disaggregate-level interaction between tank P in LREd HRE, |,, both involve tank P

firing. Since P can fire only once, andl, are dependent. Therefore, the results generated

by applying their effects independently are incorrect.

FO-3: Concurrent interactions may be dependent.

Interactions that overlap in (i) simulation time, and (ii) the set of interacting entities,
may be dependent because they can affect the outcome of one another. For example in
Figure 12, one interaction precludes the other. If two interactions that are dependent are
executed independently, effectiveness will be compromised when the results of these
interactions are combined.

4.2.4 Fundamental Observation 4

In 84.2.3, we have shown that the fundamental issue underlying consistent
combination of concurrent interactions is dependence among interactions. Time-step
differentials aggravate the inconsistencies created due to dependency issues. Two
interactions can be dependent if they overlap in time. The greater this overlap, the higher
the potential for inconsistency.

FO-4: Time differentials may cause inconsistencies.

We elaborate on the problem of time differentials with a simple example. {en#
E, be two entities that can change an attributéor this discussion it does not matter
whether or not Eand E are entities that describe the same object or process. During their
time-steps, Eand B send interactions that caugé change; the changes may depend on
the previous value of. Thus, during each time-step, each entity readserforms some
computation and writes t0

Let the models for Eand E both execute initially with time-steps of equal duration,
i.e., TS(R) = TS(E) = t. Furthermore, we synchronise the executions dufid E so that

38

all time-step boundaries for these entities occur at the same time. In Figure 13, each bar
represents a time-line for one of the entities. Vertical breaks in the bar denote time-step
boundaries. It is simple to ensure thatd&hd E, are temporally consistent, i.e., they have

the same view ofv. At the end of each time-step, we reconcile the changes vy
computing some function of the effects of Bnd E. At the start of the next time-step,

both E and E read thesame valu®f v, no matter how we resolve the concurrent changes

of the previous time-step.

TS(E) =T | | |

TS(E) =1 | | |

FIGURE 13: Time-steps — Equal and In-phase

Now let us assume that we neglected to synchronise the time-stepsaoties,. The
shaded areas in Figure 14 denote times whearifl 5 are temporally inconsistent. The
inconsistency arises becausg(#hich lags in terms of time-steps) continues to compute a
change tov based on the value read at thiart of E;’s time-step, whereasEmay have
changed at the end of Es time-step, which occurred before the end gfsEime-step.
The implications of temporal inconsistency can be different for different applicatigns. E
may write a new value fov at the end of its time-step, thus causingsEcomputation to
become “stale”. Emay discard its computation and read the new value bbwever,
may be forced to do so at the end of every time-step, thus rendering it redundant.

TS(E) =1 | | |

TS(E) =1 | | |

FIGURE 14: Time-steps — Equal but not In-phase
Temporal inconsistency is exacerbated if the durationscdiriel B’s time-steps are
different. In Figure 15, BEs time-step duration ig/5, whereas Es time-step duration
remainst. At the end of each of its time-steps, &rites tov, therefore, for most of its
time-step, g uses outdated valueswfThe increase in temporal inconsistency can be seen
by the increase in the length of the shaded regions.

TS(E) =1 | | |

TS(E) =15 | [[[[[[| | I |

FIGURE 15: Time-steps — Unequal and not In-phase
If E; and B have equal time-step durations, they can be temporally consistent.

However, this requirement unnecessarily forces the time-step durationtotiet, or the
time-step duration of Eto be 1/5. If a difference in E and B's views of v at an
observation time changes the behaviour of neithgrnér E,, then the temporal
inconsistency isolerable Letdv be a tolerable variance in the valuewvadluring the time-

step [y, ts] for E; (Figure 16). At the end of each time-stdp, 4], [t1, to], ..., [ts, t5] for

E,, if the value ofv changes by less thatdv, then | and E are temporally consistent

39

with respect tov. If during all time-steps Eand E are temporally consistent, then &nd
E, execute atompatible time-steps

TSModeP)=1 | [[

TSModeP) =1/5 | | [[[[[| | [|

th t ot oty oty oty g

FIGURE 16: Compatible Time-steps
Even if time-steps are made equal, temporal inconsistency may arise if the entities do
not read the same value wfat the start of each time-step. Consider Figure 17, in which
some time-steps have been labelled. Suppgsadtifiesv during the time-step between
t, andt, without readings beforehand. In effect, fexecutes with the value efread in the
previous time-step. That value may have been changed,suBsequently. Therefore,
during the time-step betweepandt,, E; and B may be temporally inconsistent.

TSEY=1/5 | | | | | | | | | I |

TS(E)=1/5 | | | | | | | | | I |

h 4 B 13
FIGURE 17: Eliminating time-step differentials

While proper design of models can remedy temporal inconsistency caused by cases
such as the last one, temporal inconsistency caused by the previous cases may undermine
the joint execution of multiple well-designed models. When executing legacy simulations
such as AWSIM/ModSAF Eagle/BDS-D and BBS/SIMNET jointly, time-step
differentials are common. Low-resolution simulations typically use equations with
coefficients derived from historical data aggregated over periods ranging from several
minutes to days [KRR83] [EPST85]. Hence, time-steps of several minutes to a few hours
are typical for such simulations. On the other hand, high-resolution simulations such as
CCTT/SIMNET tanks execute at the millisecond time-step levelMR95]. Resolving
time-step differentials may be a very difficult problem, especially for legacy systems.
FO-4 indicates that we must direct future simulation efforts towards solving this problem
if we are to achieve effective multi-representation modelling.

4.3 Chapter Summary

The fundamental observations highlight the basic issues that must be addressed by any
general, scalable approach to multi-representation modelling (MRM). These observations
are a foundation for a successful approach to effective MRM. The fundamental
observations address the issue of how models may interact, how dependent concurrent
interactions may cause inconsistency and why resolving time differentials is important.
These observations arise from the experience of analysing many models and determining
why joint execution of these models becomes ineffective.

The key to multi-representation modelling is employing a holistic approach that is
designed to solve issues of consistency. In the rest of this dissertation, we present one such
approachUNIFY, based on the fundamental observations.

40

All for one, one for all!
— Alexandre Dumadhe Three Musketeers

Chapter 5

Multiple Representation Entities

A Multiple Representation Entit{MRE) incorporates concurrent representations of
multiple models. MREs are a part &fNIFY, our framework for effective MRM. The
viability of an MRE rests on three key assumptions: (i) the presence of mapping functions
that translate attributes from one representation to another, (ii) the presence of policies to
resolve the effects of dependent concurrent interactions and (iii) compatible time-steps.
Similar assumptions are not sufficient to make alternative approaches viable for effective
MRM because the approaches continue to violate R1, R2 and R3. We believe that our
assumptions are reasonable because without them the semantics of multi-models are not
clear, ancho MRM approach can be effective.

Our thesis is that MRM can be effective. Effective MRM can be achieved by
maintaining consistency among concurrent representations. Traditional approaches to
MRM, such as aggregation-disaggregation and selective viewing, violate R1 because they
simulate only one model at any given time. Typically, attributes in the representation of the
simulated model are updated as a result of interactions, but attributes in representations of
other models arghostedli.e., updated only in response to updates in the simulated model.
Ghosting violates R1 because it constrains the kinds of interactions among entities within
models by disallowing interactions with non-simulated models. Entities must be capable
of interacting at multiple levels (R1), and must be represented at all levels at which they
interact (FO-1). Therefore, for effective joint execution of multiple models, the
representation of each model must exist at all times. We call representations that exist at
all times and permit interactions at all levels concurrent representations. Maintaining
concurrent representations means preserving the representations, as opposed to discarding
or ghosting them. MRES are our technique for maintaining concurrent representations.

Maintaininginternal consistency— consistency among concurrent representations —
within an MRE when concurrent multi-representation interactions occur is a key challenge
in UNIFY. For concurrent representations to be consistent with one another, changes to
one representation must propagate to the other representations. We assume the presence of
appropriate mapping functions to translate changes from one representation to another.

41

The effects of concurrent multi-representation interactions must be resolved and applied to
the representations. We assume that a designer can construct policies to resolve the
intertwined semantics of such interactions. Lastly, we assume that the time-steps at which
multiple models execute are compatible. Provided a designer can satisfy these
assumptions, we show how to maintain internal consistency within an MRE.

In 85.1, we describe MREs. In 85.2, we present challenges with MREs. In 85.3, we
discuss why our assumptions are necessary and sufficiebiNGFY, but insufficient for
other MRM approaches. In 85.4, we describe the execution of an MRE broadly, deferring
detailed descriptions to Chapters 6 and 7. In 85.5 and 85.6, we present the benefits and
limitations of MREs. We summarise in 85.7 with a table that compares MRM approaches.

5.1 Description of an MRE

A Multiple Representation Entitymaintains A
concurrent representations. The representation ¢
each model in a multi-model exists within an MRE Representatio
at all times. Consider a multi-modelodel,
consisting of two modelsModel® and ModeP ModeF
(Figure 1;\3}.Red"' is an MRE.Rep/(t)) is the state
of Model” at time t;, i.e., it is a meaningful
assignment of values to each attributeRapA and

Rep’ at timet;. RepSeY is a sequence of states iur
ModeM.

MRE

FiGurE 18: An MRE

RepM RepAD ReﬁS
Ot 0TV, Rep'(t,) = (Rep' O Rep)(t)
RepSel = (Rep'(t,), Rep'(ty), Rep'(ty), ...)

Multiple Representation Entity,E

Levef*
e Levef
interactions

interactions ‘ S==—_ _ LeveP

Es Ty T, T3 Ty

FIGURE 19: Multi-representation Interaction
Figure 18 shows an MRE for the representation&lofiel* andModeF. Recall from
83.1 that the representation of an entity is a subset of the complete representation of a
model. An MRE may maintain a subset Beg* and Re® to describe one object or
process present in both models. For example, in Figure 19, P is an entity that describes an

42

object inModel* and T;_, are entities that describe the same objedvlimdeF. E, is an
MRE consisting of the representations of P and,Tthus describing the same object at
multiple representation levels.

Each MRE either maintains or efficiently furnishes the state at all desired
representation levels. Moreover, an MRE permits interactions at all representation levels at
all times. By definition, an MRE satisfies R1. An entity in either model interacts with
another entity at a representation level common to both. Let the representation levels for
Model® andModeP beLevef* andLeveP respectively. Let Ebe alevef* entity and & be
aLeveP entity (see Figure 19). Fand g interact at_evef*, which means that Fand P
interact. Likewise, § and g interact atLeveP, which means that f£and T,_, interact.

MREs disallow cross-level interactions (see 84.1.6). For examplecalBnot interact
directly with T;_4. Likewise, i cannot interact directly with P.

5.2 Challenges

The challenge with MREs is maintaining consistency among representations when
concurrent interactions occur (R2). This challenge can be divided into three issues:

1. How must internal consistency be maintained when a representation changes?

2. How must the changes caused by concurrent interactions be resolved?

3. How must time-step differentials be addressed?

The representations of jointly-executing models must be consistent at all observation
times. In Figure 19, for Eto be internally consistent, any change to the representation of
P must affect the representations qgflas well andvice versaAn interaction between E
and E may result in a change to the representation of P. This change must propagate to
T1.4 i.e., the interaction must affect the representations f @s well. Likewise, an
interaction between £and E may result in changes to the representations;of. These
changes must propagate to P. Propagating changes requires a technique for capturing
relations among attributes, and functions that translate changes to attributes.

An MRE must remain consistent at all observed times even when concurrent
interactions occur. In Figure 19, if JEand B interact with § concurrently, the
representations of P and,} may change concurrently. It may be extremely difficult to
reconcile these concurrent changes when they propagate to the other representation level.
For example, an interaction betweepdnd g (or P) may preclude an interaction between
Esand g (or Tq_4). As another example, the effects of interactions betweganl g (or
P) and between £and F (or T;.,) may be enhanced when the interactions occur
concurrently. In both these cases, the naive solution of “adding up” the effects of these
interactions is incorrect because the interactions are dependent on one another.

Temporal inconsistency caused by time-step differentials must be eliminated. If the
time-steps forModel® and ModeP in Figure 19 are different, it becomes difficult to
determine whether two interactions at different representation levels are concurrent or not.
Consequently, the effects of these interactions are hard to resolve. While equal and in-
phase time-steps may eliminate temporal inconsistency, requiring that all jointly-executing
models progress at equal time-step durations is overly restrictive. Accordingly, we assume
that the time-steps of multiple models acenpatible not necessarilgqual

43

5.3 Rationale

We made three assumptions in order to overcome the challenge of consistency
maintenance among concurrent representations: (i) the presence of mapping functions, (ii)
the presence of policies for concurrent interactions and (iii) the presence of compatible
time-steps. As we show in 85.4, these assumptions are necessary and sufficient to maintain
consistency within an MRE when concurrent interactions occur. We make two arguments
for the reasonableness of these assumptions.

First, without any of these assumptions, the semantics of multi-models are not evident.
These assumptions require designers to incorporate application-specific knowledge into
the joint execution of multiple models. Alternative approaches to MRM make similar
assumptions. For instance, selective viewing requires mapping functions to translate
attributes from one representation to another. These mapping functions are invoked only
once — when constructing the representation for the most detailed level. Likewise,
aggregation-disaggregation requires mapping functions to translate attributes from one
representation to another during aggregation and disaggregation. Concurrent interactions
may be dependent whether they are at the same or different representation levels.
Therefore, selective viewing and aggregation-disaggregation require policies for resolving
the effects of dependent concurrent interactions. In selective viewing, since only the most
detailed model is executed at all times, time-steps are trivially compatible. Similarly, in
aggregation-disaggregation, only one model is executed at all times. Therefore, at any
instant, time-steps are trivially compatible.

Second, alternative approaches cannot guarantee effective MRM despite making
similar assumptions. For effective MRM, an approach must satisfy the requirements of
multi-representation interaction (R1), multi-representation consistency (R2) and cost-
effectiveness (R3). Despite making assumptions about the presence of mapping functions,
policies for resolving effects of interactions and compatible time-steps, selective viewing
and aggregation-disaggregation cannot guarantee effective MRM. Since selective viewing
and aggregation-disaggregation execute only one model at a time, they disallow multi-
representation interactions, thus violating R1. Selective viewing satisfies R2 trivially
because consistency must be maintained within the representation of only one model.
Aggregation-disaggregation can violate R2 because of mapping inconsistencies among the
representations of multiple models. In aggregation-disaggregation, when one model is
executed, attributes in the representations of other models are lost or ghosted. If the
attributes are lost, then transitioning representation levels may cause discontinuities in the
values of attributes even if mapping functions exist. Finally, selective viewing and
aggregation-disaggregation result in high costs. Since selective viewing involves
simulating the most detailed model at all times, simulation cost is expectedly high.
Aggregation-disaggregation reduces simulation costs by transitioning to a low-detalil
model whenever possible. However, aggregation-disaggregation incurs high consistency
cost. The high costs in either case violate R3.

Table 2 summarises the assumptions made by various MRM approaches.

44

TABLE 2: Summary of Assumptions made by MRM approaches

Assumptions Selective | Aggregation- UNIFY

Viewing Disaggregation

Mapping functions quuired Required Required
initially

Policies for_resolwr_\g Required Required Required

concurrent interactions

Compatible time-steps Trivial Trivial Required

54 Execution of an MRE

An MRE permits concurrent interactions at multiple representation levels and
maintains consistency among the multiple representations. Execution of the MRE entails
applying the effects of any interaction consistently to attributes at all levels of the MRE.
Therefore, during each time-step, the effects of interactions at multiple representation
levels must be resolved and applied to the concurrent representations in an MRE.
Recalling our definitions from Chapter 3 and 85.1:

Rep'(t,,) = F(Rep"(t), E(Int"(t)))

ORep'(t,1) = F(Rep O Rep)(t), E(Int’(t) « Int?(t)))

A Consistency Enforcer and an Interaction Resolver are responsible for maintaining
consistency among concurrent representations (Figure 20)nt@raction Resolve(IR)
for an MRE is a module that determinB@nt’\(t;) « Int5(t,)), Ot 0 T, i.e., it resolves the
effects of concurrent interactions. @onsistency EnforcgiCE) for an MRE is a module
that generate@eﬁ"(tiﬂ), Ot O ™ i.e., it maps the effects of interactions from one level
to another. For example, if{Eeceives concurrent interactions from &nd &, the IR
resolves their effects. The resolved interactions may change the representation gf P or T
or both subsequently. When an interaction changes attributes in one representation, the CE
changes related attributes in the other representation appropriately. Subsequendydf E
E3 view E; concurrently, they receive consistent views gfffom the representations of P
and T, A CE and an IR have application-specific and application-independent
components; in our work, we present the latter.

54.1 Maintaining Consistency

A CE maintains internal consistency in an MRE. In effect, a CE ensures that an MRE
exhibits temporal consistency and mapping consistency. In the following sub-sections, we
show how an MRE exhibits consistency.

54.1.1 Temporal Consistency

An MRE exhibits temporal consistency if the changes caused by interactions are
applied consistently to all representation levels. If the multiple representations within an

45

Multiple Representation Entity;,E

Levef* N
@ “interactions] T[S [~~~ = Levef
2
Q
x
5 <—><Con5|stency Enforce
©
© / f \‘ VN_‘evep
L
= | leveP | |E
3 interactions Wk Ts

LA__A__A__A

FIGURE 20: Execution of an MRE _
MRE are mutually consistent, the MRE Is temporally consistent. Entities viewing a

temporally consistent MRE at overlapping times receive consistent views of the MRE.
For a valid and consistent modellt; 0 T™, ReM(t) must hold. Let there be a
relationshipr [Rel\"(t) such thatr: P(tj) - Q(t;), where P(t;), Q(tll\)/ID Rert;). Let an
interaction IntV (t)k occur Suppose P(tj) O attributes in Int™(t;)y. aﬁect@ and
AP(t;) O changes innt™ (t)-affects’ such that applyind\P(t;) to P(t;) results inP(tj.q).
Forr to hold, mapping functions must generai®(t;) such that applying\Q(t;) results in
Q(t;+1) eventually. Consequentliyholds at observation timg 4, i.e.,r O Ref\"(tiﬂ).
Mapping functions are necessary for translating the
attributes in one representation to the attributes in
another. Translating attributes means translatialyie board
spaces changes in valuesr typesof attributes from _
one representation to another. For example, consider nail
the T-joint in Figure 21. One model may represent the boargq
T-joint with attributes such as connectedness, position
and orientation. Another model may represent it as a
pair of boards and a nail, each with attributes suc FIGURE 21: T-joint entity
position and orientation. A mapping function must translate the positions of the boards to
the position of the T-joint. Likewise, another mapping function must perform the reverse
translation — from the position of the T-joint to the positions of the boards. Such mapping
functions must take the values of some attributes and change them to the values of other
attributes. Another pair of mapping functions must translate the orientation of the T-joint
to the orientations of the boards avide versaThese translations may be computationally
less complex if the changes in orientations rather than the values of orientations are
translated. Finally, consider the attribute of connectedness for a T-joint. Assume the
system can infer that a T-joint is connected if the positions of two boards and a nail
overlap. A mapping function that translates the positions of the boards and nail to the

T-joint

" Naturally, if the boards and nail happen to lie in those positions without the boards having been
nailed, the system may infer incorrectly that the T-joint is connected. Resolving this issue is out
of the scope of our work, and for the purposes of this discussion, irrelevant.

46

connectedness of the T-joint must translate the types of the attributes as well as the values.
Finally, translations by mapping functions must complete before the time-step ends.

5.4.1.2 Mapping Consistency

An MRE exhibits mapping consistency if mapping functions are reversible (see
83.3.2). An interaction initiates translations caused by mapping functions. Sequences of
interactions initiate repeated translations. Repeated translations must not cause
discontinuities or “jumps” in concurrent representations (see 84.1.1). Reversible mapping
functions ensure that repeated translations do not cause such discontinuities.

An MRE supports the design of reversible mapping functions. For the T-joint of
Figure 21, letf translate the board positions to the T-joint position, gnidanslate the
T-joint position to the board positions. Provided no interactions occtitrégnslates the
current values of the board positions to a value for the T-joint position, ghteanslates
the value of the T-joint position to new values for the board positions, the new and
previous values for the board positions must be within tolerable error. If either function
could have generated a number of possible values for the resultant attributes, the previous
values of the resultant attributes may be taken into account in order to generate the new
values. For example, if the T-joint is rotated by 28@vokingf on the values of the board
positions may result in the original T-joint position. Subsequently, invokimgay result
in board positions corresponding to no rotation, thus resulting in an intolerable change to
the board positions. In contrastgtook the orientation attribute or the previous values for
the board positions into account, then the new positions would correspond correctly to the
rotated T-joint position. Irrespective of the detaflandg must be reversible for the MRE
to exhibit mapping consistency.

5.4.2 Resolving Concurrent Interactions

Dependent concurrent interactions may occur because an approach satisfies R1. An
MRE permits concurrent interactions at multiple representation levels. Entities at any
representation level may initiate and receive interactions that change the appropriate
representation. If entities at different representation levels interact, the effects of
concurrent interactions at multiple levels must be resolved, i.e., the effects of these
interactions must be applied to all levels consistently (FO-2). However, concurrent
interactions may be dependent (FO-3). The effects of dependent concurrent interactions
must be resolved in a meaningful manner, i.e., in @ manner consistent with requirements.

An IR is responsible for resolving the effects of concurrent interactions in an MRE.
We assume that designers understand the semantics of interactions in their applications
well enough to classify them and specify policies for resolving their dependent effects.
Without such an understanding, arbitrary policies such as serialization must be chosen to
resolve the effects of interactions. Arbitrary policies often fail to resolve the effects of
dependent concurrent interactions meaningfully. In Chapter 7, we show how designers can
construct an IR for an MRE.

5.4.3 Storing Attributes in a Core

Since an MRE incorporates concurrent representations, it makes a high demand on
resources such as memory to store representations. Although conceptually it is

47

straightforward to think of MREs as using memory for each representation, memory may
be conserved by storing a small set of attributes at all times and generating other attributes
on demand. In Figure 22, the MRE stores a set of attributes at all times from which it can
generate all attributes at all desired levels in a timely manner on demand. This set of
attributes, thecore setor core, may be updated on every interaction to keep the MRE
internally consistent. Attributes in the core must be chosen such that they are sufficient for
generating all the attributes in the MRE. The core set must be stored at all times in the
simulation, but the other attributes may be discarded when they are no longer necessary.

For some applications, a core set of attributes that is smaller than the set of all
attributes at all representations can exist. For example, if a molecular and atomic model of
a compound execute jointly, the position and orientation attributes in the molecular model
may determine the position attributes in the atomic model uniquely \acel versa
Therefore, storing either the molecular position and orientation or the atomic positions in
a core may be sufficient to maintain internal consistency in an MRE for that compound.
Since the core is a subset of all the attributes at all levels, we develop criteria that identify
attributes that should be in the core. We have identified four such criteria: reversibility,
decreasing validity with time, cost ratio and frequency of access. These criteria are
independent but may conflict with one another. In such a case, appropriate weights must
be assigned to the criteria to aid selection of the core attributes.

Attribute generation functions
/' \ =
Levef® — Y,
- — — = — — — m
View || [
Consistent
] Multiple-
| Representati
Core
- LeveP pm [
View | 4
> Attributes for Views -7

FIGURE 22: Core attributes

Reversibility: For many attributes, it is important that reversible mapping functions
translate the values at one level to the values at another level. However, in many cases
reversible mapping functions may be hard to find or encode. In such cases, when the
attributes require reversibility but reversible mapping functions cannot be found, the
attributes must be included at all representation levels in the core. Consider an application
for which the position attribute requires reversibility but reversible mapping functions
cannot be found. The position of the aggregate may be computed by averaging the
position of the disaggregate entities. Likewise, a doctrine or template may be applied to
the aggregate position to determine disaggregate positions. However, these translations are
relevant only when the entities are not perturbed by other interactions. If the positions of
the disaggregate entities change by small amounts because of disaggregate-level
interactions, then it is not possible to generate those new positions from the aggregate
position. Since perfectly reversible mapping functions cannot be found, the position
attributes at both levels must be stored in the core.

48

Decreasing validity with time: Another criterion is whether the attribute’s validity
decreases or not with time. The attribute could be stored in the core when it is useful and
when its validity goes below a threshold it could be removed from the core.

Cost ratio: Cost ratio is the ratio of the cost of maintaining the attribute to the cost of
generating it. If the cost of maintaining the attribute is measured by the amount of memory
it consumes and the cost of generating it is measured by the time it takes to generate it,
then this criterion reduces to a space-time trade-off. If the cost of maintaining the attribute
is measured by the amount of time required to change its value, the comparison lies
between the time to effect a change and the time to generate the attribute. Whether the
attribute should be stored in the core or not depends on the cost ratio being larger than,
smaller than or equal to one.

Frequency of accessOur fourth criterion is the frequency with which the attribute is
accessed. If the frequency is high, then it may be judicious to store the attribute in the core.

5.4.4 Comparing against Alternative Approaches
We compare the execution of an MRE against alternative MRM approaches.

5441 Comparing against aggregation-disaggregation

Are MREs a variant of aggregation-disaggregation? During aggregation, mapping
functions translate disaggregate attributes to aggregate attributes. During disaggregation,
the translation occurs in reverse, i.e., mapping functions translate aggregate attributes to
disaggregate attributes. Similar translations occur in an MRE. The translation during
aggregation loses information that must be re-generated during disaggregation. This re-
generation is a common source of mapping inconsistency. The question is whether the
translations in an MRE can cause mapping inconsistency similarly.

MREs maintain attributes at all representation levels at all times. In aggregation-
disaggregation, attributes are either discarded or ghosted after a translation. In an MRE,
attributes aall levels are retained after a translation. Consequently, mapping functions can
utilise previous values of attributes in order to generate new values, thus avoiding mapping
inconsistency. Moreover, an MRE permits interactions at all representation levels at all
times, and incurs lower consistency costs than aggregation-disaggregation.

5.4.4.2 Comparing against selective viewing

Are MREs a variant of selective viewing? In selective viewing, only the most detailed
model is executed at all times. Attributes in the multiple representations within an MRE
may be construed as the attributes in the representation of the detailed model in selective
viewing. The question is whether an MRE is a modular variant of selective viewing.

An MRE does not incur unnecessary simulation costs. For example, suppose a platoon
model executes jointly with a model of its constituent tanks. In selective viewing, only the
tank model executes. Platoon-level interactions must be translated to possibly many tank-
level interactions, each possibly changing the representations of the corresponding tanks.
In an MRE, platoon-level interactions change the representation of the platoon. Changes
to the platoon representation propagate to the tank representations. Therefore, as
compared to selective viewing, an MRE incurs a lower simulation cost at the expense of a

49

higher consistency cost. In addition, an MRE permits interactions at all representation
levels at all times.

TABLE 3: Comparison among MRM approaches

Requirements Selective | Aggregation- UNIFY
Viewing Disaggregation
R1: Mul_tl-representatlon No No Yes
Interaction
R2: Mulh-representaﬂon Trivially Possible Possible
Consistency
R3: Cost-Effectiveness High Cost of | High Cost of Low Costs
(see Chapter 9) Simulation Consistency
5.5 Benefits of MREs

Consistent concurrent representations can eliminate or reduce many of the problems
with other MRM approaches. In 85.4.1, we showed how MREs eliminate temporal and
mapping inconsistencies. Now, we show how MREs eliminate or reduce the remaining
MRM problems discussed in 84.1. Recall that LRE stands for a Low Resolution Entity
and HRE stands for High Resolution Entity.

Eliminating Chain Disaggregation: MREs eliminate chain disaggregation. An MRE
does not disaggregate, and does not force other entities to disaggregate. Therefore, as
Figure 23 shows, MREs do not cause chain disaggregation.

~ ~
[OO\ ~ ~
00~ 00)
\OO/
-
(00 '~ [VIRE
00~/ 00 -~
() (e

FIGURE 23: Eliminating Chain Disaggregation

Eliminating Transition Latency : MREs eliminate transition latencies encountered in
aggregation-disaggregation. MREs do not transition among representation levels, i.e., they
do not aggregate or disaggregate. Therefore, they do not require protocols for initiating
aggregation or disaggregation. Consequently, transition latency is not an issue with MRESs.

Eliminating Thrashing: MREs eliminate thrashing because they do not transition
representation levels. Thrashing occurs when an entity aggregates and disaggregates
repeatedly in a short period of time because it moves in and out of a playbox or interacts
with entities at different representation levels. Thrashing causes the entity to consume
significant processing resources just transitioning levels. Since MREs interact at different
representation levels without effecting a transition, MREs do not thrash.

50

Reducing Network Flooding MREs reduce network flooding. Selective viewing
introduces a large number of entities in the simulation. Likewise, a disaggregated LRE in
aggregation-disaggregation introduces a large number of entities in the simulation. As
Figure 24 shows, increasing the number of entities in the simulation increases the number
of interactions among entities. Since interactions are implemented often as messages on a
network, aggregation-disaggregation causes network flooding. MREs capture a benefit of
aggregation — introducing fewer entities — thus reducing network flooding.

MRE - > MRE

FIGURE 24: Reducing Network Flooding

Eliminating Cross-level Interactions. MREs eliminate cross-level interactions by
permitting interactions among entities at all representation levels. With MREsyef*
entity never interacts with heveP entity; Levef* entities interact with one another, and
LeveP entities interact with one another. Since entities interact at representation levels
common to them, MREs eliminate cross-level interactions. Entities must negotiate the
representation level at which they will interact beforehand. If entities interact at more than
one level at a time, “double-interactions” can occur. For example, if an MRE A interacts
with an MRE B atLevef* as well asLeveF, then a double-interaction occurs when A
sends two distinct sets of interactions, one at each level, for the same event. If A and B
interact at one level but not both, double-interactions are prevented.

Summary of Benefits Table 4 summarises the benefits of MREs by comparing how
various MRM approaches address the above issues.

TABLE 4: Summary of Benefits of MREs

Toee | goression | ey
Temporal Inconsistency Absent Present Eliminated
Mapping Inconsistency Absent Present Eliminated
Chain Disaggregation Inherent Possible Eliminated
Transition Latency Non-existent Possible Eliminated
Thrashing Non-existen{ Possible Eliminateg
Network Flooding High Possibly high Reduced
Cross-level Interactions Non-existent Possible Eliminated

51

5.6 Limitations of MREs

MREs are a technique for capturing the combined semantics of jointly-executing
models. An MRE does not show how to design a better model. In the context of an MRM
approach, this limitation is not serious; we show that MREs are no worse than alternative
approaches. However, without addressing this limitation, a multi-model cannot satisfy its
users’ requirements even if the MRM approach is effective. MREs can support solutions
for many of the following issues; however, MREs do not inherently resolve these issues.

Identifying Representations and Relationships An MRE does not identify the
representation at any level nor relationships between representations. Identifying
representations and relationships are the responsibility of a designer. No approach to
MRM frees a designer of this responsibility.

Capturing Whole-Greater-than-the-Sum-of-Parts Relationships Aggregate and
disaggregate entities bear the relationship of being whole and parts of one another. The
whole-and-parts relationship occurs frequently in battlefield simulations where a number
of tanks may be considered as parts of a platoon, or a number of regiments may be
considered as parts of a division. Likewise, in multi-resolution graphics, a number of
triangles may be considered as parts of an entire surface, or in molecular models, a
number of atoms may be considered as parts of a molecule.

A valid concern when aggregate and disaggregate models execute jointly is that the
values of some aggregate attributes may be greater than the sum of the values of
corresponding disaggregate attributes, i.e., the whole is greater than the sum of its parts.
This concern has been called emergent behaviour problem§8Y or the configuration
problem [HORRO2]. For example, tanks may fight with greater strength when configured
as a platoon. This increase in strength may be attributable to the presence of a commander
who coordinates and guides activities (as is common in the case of military units) or any
one of many other similar reasons. As another example, weak forces in atomic models
may be ignored since their effect on the position of atoms may be negligible. However, in
molecular models, these forces may add up to influence the positions of atoms
significantly. The precise relationships between the platoon’s strength and the tanks’
strength and the atomic forces and the molecular forces must be captured by mapping
functions that translate attributes among representations.

Selective viewing does not capture whole-greater-than-the-sum-of-parts relationships.
In selective viewing, only the model for the parts is executed. Therefore, whole-greater-
than-the-sum-of-parts relationships may not be captured unless information outside the
attributes of each part is present. Typically, an entity maintains attributes relevant only to
its own execution. Therefore, the behaviour of an entity when it executes as part of a
whole is not distinct from its behaviour when it executes individually. Consequently,
information not present in the entity must be used to distinguish these behaviours.
Maintaining such information is tantamount to executing multiple models.

Aggregation-disaggregation captures whole-greater-than-the-sum-of-parts
relationships, but introduces mapping inconsistency because information is lost during
transitions. For example, tanks in a platoon may have manceuvred into a favorable
position, thus causing the strength of the platoon to be greater than the sum of the
strengths of the tanks. At this point, transitioning to the platoon model and back to the tank
model may cause the tanks to be placed in doctrinal formation (since the tanks’ previous

52

positions are lost). This placement may result in a platoon strength that is the sum of the
strengths of the tanks. Thus, the transitions reduced the strength of the platoon.

MREs aid in the construction of mapping functions that capture whole-greater-than-
the-sum-of-parts. Since an MRE incorporates concurrent representations, attributes at all
levels are present for the design of mapping functions that avoid inconsistency. Although
MREs can capture whole-greater-than-the-sum-of-parts relationships better than
alternative approaches, MREs do not aid identification of attributes that bear such
relationships. It is the responsibility of the designer to identify and encode such
relationships within mapping functions.

Resolving Conflicting Results The multiple models in a multi-model may employ
different algorithms to compute similar effects at different representation levels. For
example, in battlefield simulations, Lanchester equations are used to compute attrition or
loss of strength for aggregate-level forces. These equations are differential equations
parameterised by coefficients based on historical datRiR83]. Typically, Lanchester
equations compute the results of battles involving large forces, such as divisions, brigades
and corps. Also, the coefficients based on historical data are collected for battles lasting a
few hours. The coefficients can be “smoothed” over small time-step granularities, say of
ten minutes or so but not finer. As a result, models employing Lanchester equations must
have time-steps of at least ten minutes, or else the attrition computed by the Lanchester
equations cannot be claimed to be valid. In contrast, for battles involving disaggregate-
level forces, such as tanks and artillery, attrition is computed by applying historical hit-Kkill
probabilities for each engagement. Briefly, when a tank fires a shell at an enemy, the shell
has a certain probability of hitting the target. Kill probabilities are conditioned on hit
probabilities. Since attrition using hit-kill probabilities is computed on a per engagement
basis, it can be applied to simulated battles with millisecond time-steps.

A multi-model that involves models employing different algorithms encounters two
problems: temporal inconsistency and conflicting results. Temporal inconsistency may
arise if the multiple algorithms make different assumptions about time at the multiple
levels, as Lanchester equations and hit-kill probabilities do. Temporal consistency caused
by time-step differentials must be eliminated; we do so by assuming compatible time-
steps. Conflicting results arise if the algorithms predict different outcomes for the same set
of inputs. Selective viewing avoids the problem of conflicting results by executing only the
detailed model. Aggregation-disaggregation encounters the problem of conflicting results;
depending on the level at which a multi-model is executed, the results of an outcome may
vary [HiLL 928].

MREs do not address the problem of conflicting results. Designers of multi-models
must resolve conflicting results caused by different algorithms at multiple levels. Joint
execution of multiple models captures the combined semantics of the models, no matter
what the semantics of the individual models are.

Summary of Limitations: The limitations above are expected of any approach that
focusses on MRM alone. Designers must address these limitations in order to construct
useful multi-models. However, addressing these limitations is outside the scope of any
MRM approach, includingUNIFY. Table 5 summarises the limitations of MREs by
comparing how various MRM approaches address the above issues.

53

TABLE 5: Summary of Limitations of MREs

Selective Aggregation-

Limitations o . . UNIFY
Viewing Disaggregation
Identifying Attributes and
fying o Not Not
Dependencies in Not addressed
) addressed addressed
Representations

Capturing Whole-Greater- Not
than-the-Sum-of-Parts Possible Possible

Relationships supported
Resolving Conflicting Not Required Requirec
Results necessary

5.7 Chapter Summary

A Multiple Representation Entity is a technique for maintaining concurrent
representations in order to achieve effective MRM. A key challenge with an MRE is
maintaining consistency among its concurrent representations in the presence of
dependent concurrent interactions. We assume the existence of appropriate mapping
functions for translating attributes from one representation to another, policies for
resolving the effects of dependent concurrent interactions and compatible time-steps.
These assumptions do not make MRM trivial, because alternative approaches continue to
exhibit problems even if they make similar assumptions.

MREs satisfy the MRM requirements of multi-representation interaction and
consistency among the representations. MREs eliminate many problems with previous
MRM approaches. We compar&tNIFY with alternative approaches to MRM in terms of
the requirements that each approach satisfies, the assumptions made towards satisfying
those requirements, and the benefits and limitations of each approach. We depict these
comparisons concisely in Table 6.

MREs and techniques for maintaining internal consistency among MREs constitute
UNIFY. A Consistency Enforcer and an Interaction Resolver for an MRE maintain
consistency among the concurrent representations and resolve the effects of concurrent
interactions respectively. In Chapters 6 and 7, we describe a CE and an IR in detail.

54

TABLE 6: Comparison among MRM approaches

S_elec_tlve Aggregatlor_l- UNIEY
Viewing Disaggregation
m R1: Mul.tl-representatlon No No Yes
£ | Interaction
o
S : . :
@ | R2: Multi-representation Trivially Possible Possible
= Consistency
O]
@ | R3: Cost-Effectiveness High Cost of | High Cost of Balanced
(see Chapter 9) Simulation Consistency Costs
) Mapping functions Required Required Required
S & initially
=1 - :
E o Policies for resolving Required Required Required
a f,,i concurrent interactions
<
Compatible time-steps Trivial Trivial Required
Temporal Inconsistency Absent Present Eliminated
) Mapping Inconsistency Absent Present Eliminated
Lo
U:; Chain Disaggregation Inherent Possible Eliminated
()
n
% | Transition Latency Non-existent Possible Eliminated
% Thrashing Non-existen Possible Eliminated
0
Network Flooding High Possibly high Reduced
Cross-level Interactions Non-existent Possible Eliminated
& Identifying Attrlputes and Not Not
s | Dependencies in Not addressed
o) addressed addressed
o» | Representations
[}
% Capturing Whole-Greater- Not
S | than-the-Sum-of-Parts Possible Possible
o .) supported
% | Relationships
= : -
5 | Resolving Conflicting Not Required Required
Results necessary

55

It is of course important to try to maintain consistency,
but when this effort forces you into a stupendously ugly theory,
you know something is wrong.
— Douglas HofstadteGodel, Escher, Bach

Chapter 6

Consistency Enforcers

For effective MRM, jointly-executing multiple models must be consistent with one
another (requirement R2). In Chapter 5, we presented Multiple Representation Entities
(MREs) which incorporate concurrent representations of multiple mode@omsistency
Enforcer (CE) is a component of an MRE that maintains consistency among concurrent
representations. A CE consists of an Attribute Dependency Graph (ADG) that captures
dependencies among representations, and application-specific mapping functions that
translate attributes. An ADG and mapping functions ensure that the relationships in an
MRE hold at all observation times. In this chapter, we present ADGs, discuss how
mapping functions relate to them and demonstrate the construction of a CE.

When an interaction changes the value of attributes, a CE ensures that the concurrent
representations in an MRE are consistent. The operation of a CE involves traversing an
ADG and invoking mapping functions to compute the changes to relevant attributes. A CE
maintains internal consistency within an MRE. Constructing a CE involves:

1. Constructing an Attribute Dependency Graph

a. Assigning Nodes to Attributes
b. Assigning Arcs to Dependencies
c. Assigning Semantics to Dependencies

2. Selecting Mapping Functions

In 86.1, we describe ADGs and introduce an example in order to demonstrate step 1.
Also, we introduce four classes of dependencies: cumulative, distributive, modelling and
interaction. In 86.2, we discuss the mapping functions that designers must provide for
their multi-models (step 2). In 86.3, we describe how a CE can enforce consistency among
multiple representations by traversing an ADG and propagating the effects of an
interaction. In 86.4, we present various implementation strategies for Consistency
Enforcers such as spreadsheets, attribute grammars, mediators and constraint solvers. In
this chapter, we assume concurrent interactions are independent, i.e., their effects can be
resolved by serialization. We make this assumption in order to explain the operation of a
Consistency Enforcer alone. We address dependent concurrent interactions in Chapter 7.

56

6.1 Constructing an Attribute

Dependency Graph

An Attribute Dependency Grapbaptures dependencif!GURE 25: Simple ADG
among attributes in concurrent representations. When multiple models execute jointly, a
change to an attribute may cause other dependent attributes to change. A dependency
graph is a natural technique to capture such cause-effect dependencies among attributes.
In an ADG, nodes correspond to attributes in a multi-model and arcs correspond to
dependencies among the attributes. In the simple ADG shown in Figure 25, the left node
corresponds to an attribute and the right node corresponds to an attriduté&he arc
connecting the two nodes shows thmtepends ora, or a affectsb. If the value ofa
changes, the value o#fmay change. If the value d&f changes, there is no requirement for
the value ofa to change. For the relationship in the figuagis the independent attribute
andb is the dependent attribute. The ADG in Figure 25 does not stamwbmust change
when a changes. A mapping function must encode hibwhanges whera changes.
Dependency graphs such as ADGs capture cause-effect relationships in a number of
contexts, for example, task execution sequences in Petri nasefP/], data
dependencies in dataflow models EiNis80], method invocation in object-oriented
design [RIM91] [SHLAER92], and causal relationships in logical time systenas[I8].

Let Model® be a low-resolution model anodeP be a high-resolution model.
Recalling our definitions from Chapter 3,UMNIFY, a multi-modeModeM is:

Modef = EReﬁ", Re Int"D

Rep" = Reg' O Rep

Rel = Rel*0 Ref O Ref"0ss model

ModeM is consistent iReM, and in turnRefSSMdehoid Ot 0 T™. Previous MRM
approaches do not capture complex cross-model relationships that may hold at different
times. In selective viewingJt 0 T, ModeM(t) = ModeP(t) and Refossmodel 7
aggregation-disaggregation, at tit& T, ModeM(t)) = Modef\(t;), and at timet; 0 TV,

t #t, ModeM(t) = Modeﬁ(ﬁ). Refross-modek 7 only when a representation level is
transitioned, i.e.t, ti,; 0T, ModeM(t) = Model\(t) 0ModeM(t;,,) = ModeP(t;.,) O
ModeM(t;) = ModeP(t;) OModeM(t;,;) = Model\(t;.,,).

In UNIFY, an ADG has a node for each attribiad] Rep”, and an arc for each
relationshipr 0 ReM. Recall thatReF0SSModelis defined as a set of relationships such
thatOr: P - Q, PO RePA 0QURefd OP O Rep 0Q U Rep'. An ADG has an arc for
every r O Ref0ss-model hacayseRef0sS-Modef; ReM. An ADG is a technique for
describing attributes in concurrent representations, relationships among those attributes
and the semantics of the relationships.

In the following sub-sections, we show how to construct an ADG for an example MRE
from jointly-executing battlefield models. Our example is derived from specifications of
actual battlefield models [JPSD97] [JAF] [RPR97]. The choice of models reflects our
familiarity with the domain, not a restriction on the kind of multiple models for which
ADGs are relevant. LeWodel® be a platoon modeModeP be a tank model, anklodeM
be a multi-model incorporating these two models. A platooMadel has attributes for
position (Pos), velocity (Vel), firepower (Fire), strength (Str), appearance (App) and

57

formation (Form). A tank ifModeP has attributes for position (Pos), velocity (Vel), hits
(Hits), ammunition (Ammo), damage status (Dam) and fuel level (Fuel). Our MRE, the
Platoon-Tanks MRE in Figure 26, is a platoon represented at two levels: the platoon level

Platoon-Tanks MRE
r—— - - - - - - - - - - - - - - —-—-—- - —7 /7 = "
| Platoon Level |
I I
< Platoon: App, Form, Pos, Vel, Fire, Str >
I I
L - — - - — — - = = .
r—— - - - - - - - - - - - - - - —-—- ¥ -—- - - — A
I Tank Level |
I I
I (Tank,: Damy, Fuel, Pos, Vel;, Ammoy, Hits; > |
I I
: (Tank,: Damy, Fueb, Pos, Vel,, Ammo,, Hits, > :
L — - - - — - = = .

FIGURE 26: Platoon-Tanks MRE

and the tank level. Therefore, this MRE has attributes for a platoon and its constituent
tanks. For ease of exposition, we assume that our platoon can be represented at the tank
level by just two tanks. Attributes App, Form, Pos, Vel, Fire,SRel®, and attributes

Damy, Fuel, Pos, Vel;, Ammoy, Hits;, Damy, Fueb, Pos, Vel,, Ammo,, Hits, O ReP.

We will demonstrate the construction of an ADG for this MRE.

6.1.1 Assigning Nodes to Attributes

The first step in constructing an ADG is assigning nodes to attributes. In principle, a
designer may assign a node to any set of attribBtesch thatP 0 Reg* OP O Rep. A
node can be assigned to any set of attributes that enables a designer to make
straightforward decisions about applying the effects of interactions. For example, the
designer may assign a node to the set of attributes of a tank. However, such an assignment
does not aid the designer substantially in applying the effects of interactions. In practice,
since interactions affedttributes we expect the designer to assign nodes to attributes
such as position and appearance. In a multi-model involving atoms and molecules, nodes
could be assigned to atom-level attributes such as orientation and charge, and molecule-
level attributes, such as orientation and valence. In a hierarchical autonomous agent
model, nodes could be assigned to planner-level attributes such as absolute location and
connectedness, and perception-action-level attributes such as relative location, colour and
visibility. In our example, we assign a node in the ADG to every attribute in the concurrent
representations dflodelM, i.e., every attribute 0 Rep. In Figure 27, we show all the
attributes as nodes labelled with unsubscripted or appropriately-subscripted names.

58

Platoon-Tanks MRE

I I
A Form Pos Vel Fire Str
| pp - - |

I

[

o) (D)) () |
|

e)|

|

FIGURE 27: Nodes in the ADG for the Platoon-Tanks MRE

6.1.2 Assigning Arcs to Dependencies

The second step in constructing an ADG is assigning arcs to dependencies. An arc
connecting two nodes represents a dependency between attributes corresponding to the
nodes. Since a dependency between two attributes indicates that they are related, arcs in an
ADG correspond to each relationship] ReM. In Figure 28, we show dependencies for
our Platoon-Tanks example. The platoon position depends on each tank positiaineand
versa The tank positions are unrelated because each tank may move independently. We
identify similar dependencies among platoon and tank velocities. The firepower of the
platoon depends on the ammunition levels of the tanks, and the strength of the platoon
depends on the number of hits each tank has received. Likewise, the appearance of the
platoon depends on the damage state of each tankiiaadversa The fuel level of the
individual tanks is not represented at the platoon level. Unless the platoon model bases any
decisions on the fuel level of the platoon, it is not necessary that the tank fuel levels be
represented at the platoon level. The platoon has a formation attribute that captures the
relative positions of the tanks. The formation depends on tank positionsiemdersa
Suppose moving out of formation may cause the platoon to appear weak. Therefore, the
formation affects the appearance of the platoon. Lastly, the current positions of the platoon
or tanks depend on the current values of the respective velocities.

6.1.3 Assigning Semantics to Dependencies

The third step in constructing an ADG is to assign semantics to dependencies.
Assigning semantics to dependencies enables the construction of appropriate mapping
functions for them. One way to assign semantics is to classify dependencies. Mapping
functions associated with classes of dependencies have common requirements.
Dependencies may be classified according to characteristics specific to an application. We
classify dependencies in an application-independent manner into four categories:

59

Platoon-Tanks MRE

FIGURE 28: Dependencies in the ADG for the Platoon-Tanks MRE
cumulative, distributive, interaction and modelling. Binary weights, fractional weights and

interaction classes are other techniques for capturing semantics of dependencies.
Assigning weights to cumulative and distributive dependencies can capture how changes
to an attribute contribute or distribute to other attributes. Modelling dependencies already
capture semantic information, hence we do not associate any additional semantic
information with them. The semantics we associate with interaction dependencies are the
classes of interactions (discussed in Chapter 7). The semantics assigned to dependencies
vary with applications.

6.1.3.1 Cumulative and Distributive Dependencies

Whole-to-parts and parts-to-whole relationships are common in models, for example,
aggregation associations among objects in UMILH®&R98] and OMTz [Rum91], and
relationships among objects such as part-whole, consists-of, composition, has-part and
contains in other modelling methodologies OjfLER97]. These associations and
relationships usually are bidirectional, i.e., a relationship betmmdQ implies another
relationship betwee andP. These associations and relationships capture whole-to-parts
and parts-to-whole relationships among objects; we capture similar relationships between
attributes with cumulative and distributive dependencies.

Cumulative and distributive dependencies capture parts-to-whole and whole-to-parts
relationships among attributes respectiv€lymulative dependenciese dependencies in
which the value of a single attribute is influenced jointly by the value of many other
attributes. For a relationshipd) ReM, r: P - Q, P, Q O Rep/, where[QO=1, DaOP
andb 0 Q, a cumulative dependency exists frarto b. Distributive dependencieare
dependencies in which the value of a single attribute influences the value of many other
attributes jointly. For a relationshipd ReM, r: P - Q, P,Q O Rep’, where[(PO=1,
alJ P andb O Q, a distributive dependency exists frato b. In hierarchical models,
cumulative dependencies capture relationships from disaggregate attributes to aggregate

60

attributes, and distributive dependencies capture relationships from aggregate attributes to
disaggregate attributes.

6.1.3.2 Interaction and Modelling Dependencies

Interactions cause changes to attributeseraction dependenciesre dependencies
between the sender of an interaction and the attributes changed directly by the interaction.
An interactionl O Int™, may be viewed as a relationshipP — Q, whereQ O Rep", but
it is not necessary tha® 0 Rep”. An interaction dependency captures a cause-effect
relationship from attributes of a sender to attributes of a receiver.

Other relationships may exist among attributes. These relationships may be inherent in
the nature of the object or process being modelled, and may not be captured conveniently
by cumulative, distributive or interaction dependencibkdelling dependencieare
dependencies that are not cumulative, distributive or interaction.

6.1.3.3 Selecting Dependencies

If a pair of attributes has a cumulative dependency between them, they may have a
distributive dependency as well. A change to a part may affect the wholgiemdersa
Let attributesa, a;, ay, ..., a,, b, by, by, ..., meRepp. In Table 7, we list how
dependency classes can be assigned to combinations of whole-to-parts and parts-to-whole
relationships. The first column lists combinations of whole-to-parts and parts-to-whole
relationships. The second and third columns list the attribute dependencies and their type.
For the relationship § - {b}, classifying the dependency as either cumulative or
dependency is valid since the relationship is one-to-one. One-to-one relationships are
degenerate cases of both, whole-to-parts and parts-to-whole relationships.

TABLE 7: Assigning Cumulative and Distributive Dependencies

Relationship Dependency Class
(a2 .o - (b} S Distintive
(@ ~ {by, by, .o, Dy ;:2 cmulie
(@ - o) s.a | Dirbune/Cumie
(a3, o8} — {by, by ...\ br} z; :2 SZT:.Z'E'J?

If an interaction can change an attribute, an interaction dependency exists to that
attribute, i.e.J1 O IntM, if <a, da> O l.affects whereda is a change to attribute caused
by I, then an interaction dependency existsaattAlthough many interaction types may
change an attribute, we associate only one interaction dependency with the attribute
because the identity of the independent attribute is irrelevant. Modelling dependencies
have application-dependent semantics.

61

6.1.3.4 Properties of Dependency Classes

Our dependency classes are complete and extensible. Cumulative and distributive
dependencies capture whole-to-parts and parts-to-whole dependencies, which are
common in models. Interaction dependencies capture dependencies from entities outside
to entities inside a model. By definition, modelling dependencies are all dependencies that
are not cumulative, distributive or interaction. Although the dependency classes are
complete, designers can extend them by identifying other classes of dependencies.
Additional classes may refine cumulative, distributive or modelling dependencies, thus
enabling designers to specify requirements of mapping functions in greater detail. For
example, the boards of a T-joint are connected rigidly, whereas the arms of a pair of pliers
are connected non-rigidly. Therefore, the cumulative dependencies from the board
positions to the T-joint position and from the arm positions to the pliers position can be
refined into two classes: rigidly cumulative and non-rigidly cumulative. This refinement
enables a designer to specify mapping functions that translate the positions in rigidly and
non-rigidly cumulative dependencies differently.

6.1.3.5 Examples of Dependency Classes

By adding interaction dependencies to the ADG in Figure 28, we obtain the complete
ADG shown in Figure 29. Cumulative dependencies capture the relationship from the tank
positions to the platoon position. Distributive dependencies capture the converse
relationship from the platoon position to the tank positions. Likewise, cumulative
dependencies capture the relationship from the tank velocities to the platoon velocity, and
distributive dependencies capture the converse relationship from the platoon’s velocity to
the tank velocities. In the same fashion, cumulative and distributive dependencies capture
the relationships among other platoon attributes and tank attributes. Modelling
dependencies capture the relationships from the velocities of the platoon and the tanks to
the positions of the platoon and the tanks. Likewise, a modelling dependency captures the
relationship from the platoon formation to the platoon appearance. An interaction
dependency to each attribute captures the effects of interactions with other entities or
simulation actions of the platoon and the tanks.

6.1.3.6 Dependency Weights

Weighting dependencies with binary or fractional weights captures the semantics of
contribution The weight on a dependency indicates how much the independent attribute
contributes to the dependent attribute. Although the assignment of weights can be
construed as part of a mapping function, we view weights as an example of assigning
semantics to dependencies prior to the construction of a mapping function.

62

Platoon-Tanks MRE

ative Dependency Interaction Dependency
utive Dependency —> Modelling Dependency

29: Dependency Classes in the ADG for the Platoon-Tanks MRE
Weights on Cumulative DependenciesiVeighting

cumulative dependencies captures the manner in which
many independent attributes affect one dependent

attribute. A cumulative dependency can be weighted W, W,
according to what fraction of the value of an

independent attribute contributes to the dependent
attribute. For example, the cumulative dependencies

from Hits; and Hits to Str in Figure 29 could be Amm

weighted one, indicating that all tanks contribute their

hits entirely to the platoon strength. This weight FIGURE 30: Cumulative Weights
satisfies the semantic requirement that the platoon strength is the sum of the hits of all
tanks. In the case of firepower shown in Figure 30, the cumulative dependencies may be
non-unity. If a tank, say Tankfights a disaggregate-level battle, then ¥0 indicates

that Tank expends all its ammunition in the disaggregate battle only. If Taokld fire at

both levels simultaneously (a physical impossibility, but assumed for exposition), and
Tanlk allocated 50% of its total ammunition for each engagement, then0/.

63

Weights on Distributive DependenciesWeighting
distributive dependencies captures the manner in which Str
one independent attribute affects many dependent
attributes. A distributive dependency can be weighted W, W,
according to what fraction of the change to an
independent attribute propagates to the dependent
attribute. For example, the distributive dependencies Y
from the tank hits to the platoon strength in Figure 29 (Hits,)
could be weighted as shown in Figure 31. If the platoon
strength is reduced, fractions of that change propeFIGURE 31: Distributive Weights
to the tank hits. In order to satisfy the semantic requirement that the platoon’s strength is
the sum of the tank hits, the sum of the propagated fractions must sum to the reduction in
the platoon strength. An independent attribute may not affect all its dependent attributes
uniformly. For example, either \Wor W, (but not both) may be zero, meaning that a
change to Str does not change the corresponding Hits. This weight could reflect a scenario
in which the unaffected tank is shielded from the firepower of the enemy because of
barriers, entrenchments or good defensive position.

Assignment of Weights The weights on cumulative and distributive dependencies
may change during a simulation. For a battlefield simulation, weights may be assigned per
engagement. Thus, strength reductions from different enemies may propagate with
different sets of weights because of the nature of the enemies’ firepower or their positions.

In indiscriminate firing situations, weights may be assigned randomly to reflect the fog of
war (see 83.4). Alternatively, weights may be assigned depending on the properties of the
constituents. For example, boolean attributes signifying the visibilities of disaggregate
entities are not fractions of a boolean attribute signifying the visibility of the
corresponding aggregate entity. In such cases, boolean weights for distributive
dependencies are more appropriate, and the product, rather than the sum, of the
distributive weights must be one.

Interlinked Dependency Weights The weights on distributive and cumulative
dependencies are dependent on one another. The weights on these dependencies must be
assigned with due consideration to the meaning of the combination of weights. For
example, suppose a designer specifies that a tank, say, Tdogs not fire in a platoon-
level battle. Therefore, Ammodoes not contribute to Fire. Refining the specification
further, we can say: If Ammpodoes not contribute to Fire, then a change to Fire does not
change Amme. For the refined specification, a weight of zero on the cumulative
dependency from Ammoto Fire captures thef-part, and a weight of zero on the
distributive dependency from Fire to Ammaaptures thethenpart. Therefore, the
specification above can be re-stated as: A zero-weight cumulative dependency from
Ammo, to Fire 0 a zero-weight distributive dependency from Fire to Ammid the
distributive dependency is zero and the cumulative dependency is non-zero it just means
that Tank contributed some of Ammao Platoon, but Platoon did not use Amjriao this
engagement. Other combinations of weights for the cumulative and distributive
dependencies are possible for other attributes.

64

6.1.3.7 Interaction Semantics

Whether a change to an attribute occurs as a result of another entity’s interaction or as
a result of simulation activities performed by the MRE, the change originates from
interaction dependencies. Since different interactions may change an attribute, a change to
an attribute because of an interaction dependency can have different semantics. Although
we associate only one interaction dependency per attribute, we say that the semantics of an
interaction dependency change with the semantics of interactions. We discuss interaction
semantics in Chapter 7.

6.1.4 Summary of Attribute Dependency Graphs
ADGs capture relationships among attributes in concurrent representations. Designers

construct an ADG by assigning nodes and arcs to attributes and relationstRedin

Next, they classify dependencies and assign semantics to them. In Figure 29, a cumulative
or distributive dependency exisfar [Ref3s-Modelyng 3 modelling dependency exists

Or O RefandOr O ReP. SinceReM = Rel® O ReP O Reff0ss-Model3 gependency exists

in the ADG Or 0 ReM. For other MREsRel®, ReP andRef™SsModelnqy contain other
combinations of cumulative, distributive and modelling dependencies.

In addition to the relationships iReM, the ADG captures interaction dependencies.
Interaction dependencies are a starting point for applying the effects of interactions. We
discuss applying the effects of interactions in 86.3. After the ADG is constructed, the
designer must choose appropriate mapping functions to perform the actual translations
among attributes for each dependency. Next, we show how to select these functions.

6.2 Selecting Mapping Functions

Mapping functions translate value spaces or changes to values of attributes. An ADG
indicateswhich attributes must change when an interaction occurs. Mapping functions
along with an ADG indicatbowthe attributes must change. Mapping functions determine
whether a relationship holds, i.e., whether the dependent attributes are consistent with the
independent attributes. Determining whether attributes are consistent entails comparing
them. The results of the comparison may be exact or within tolerable error.

Mapping functions translate value spaces or changes in the values of attributes. When
an attribute changes as a result of an interaction, invoking appropriate mapping functions
is necessary to ensure that dependent attributes change as well. Therefore, either the new
value of an independent attribute or the change to its previous value must be translated to
new values or changes to previous values of dependent attributes.

65

A mapping function may translatealue :
spacesamong attributes, i.e., the function has
the form 0O, ti1g, Qti+1) = f(QL), P(ti+1),
where P(t;,;) is determined by applying the Wi W2
changed\P(t;) to P(tj). For example, a mapping

function f translates tank ammunitions to

platoon firepower. Here, Q={Fire} and
P ={Ammo;, Ammo,}. An implementation of
is shown in Figure 32. Since cumulative
dependencies connect the ammunitions to the Fire = f(Ammo;, Ammoy)
firepower, a mapping function must include the Fire = W;0Ammo;+W,[Ammo,
contributions of eac_h tank ammun_ition " FIGURE 32 Mapping Value Spaces
compute the platoon firepower. Accordingly, the
mapping function must utilise the weights on the cumulative dependencies.

A mapping function may translatehanges

to valuesamong attributes, i.e., the function has St

the form Ot, AQ(t;) = f(Q(t), AP(t;)), where

Q(t41) is determined by applying the changes Wi Wa
AQ(t) to Q). For example, a mapping

function g translates a change in platoon
strength to changes in tank hits. Here, Y
Q={Hits,, Hits,} and P={Str}. An (Hits,)

implementation ofg is shown in Figure 33.

Since distributive dependencies connect the (AHitsy, AHits,) = g(AStr)
strength to the hits, a mapping function must AHitsg = AStDW,+(W4+W,)
distribute _the change in th_e platoon s_trength to AHits, = ASHTOW.,= (W +W,)
changes in each tank hits. Accordingly, the . :
mapping function must utilise the weights 5/GURE 33: Mapping Changes in Values

the distributive dependencies.

6.3 Traversing an ADG

After an ADG has been constructed and mapping functions selected, a CE can
maintain consistency within an MRE by traversing the ADG and invoking the appropriate
mapping functions. An interactioh may change the values of any attributes. These
changes must propagate to dependent attributes. By traversing an ADG, a CE propagates
l.affects viainteraction dependencies, andhffectS via cumulative, distributive and
modelling dependencies. For each arc traversed, a mapping function computes the change
to a dependent attribute as a result of a change to an independent attribute.

6.3.1 Algorithm for Traversing an ADG

Ensuring internal consistency within an MRE involves traversing an ADG when a
change to any attribute occurs. The effects of an interaction can be applied by traversing
an ADG and invoking appropriate mapping functions. In OQM® similar concept is
called propagation [Bv91]. Initially, an MRE is internally consistent; all relationships in
ReM hold. When an interactiohoccurs, a CE traverses an ADG starting from the nodes

66

corresponding to the attributesliaffects l.affectsis computed from semantic knowledge
about the interaction. After the changesl.iaffectsare applied, the MRE is temporarily
inconsistent. In order to regain the consistency of the MRE, its ADG must be traversed
beginning from the nodes corresponding to the attributed.dffects For each arc
traversed, a mapping function must be invoked to change dependent attributes.

In Figure 34, we present an algorithm for ADG traversal. The outer loop in the
algorithm implicitly assumes that interactions are serialized. The first step in the loop
initialises a setS, which will contain the effects of an interactidnThe first inner loop
includesl.affectsin S. These effects can be represented by tuples, each consisting of an
attribute and a change to it. The change to an attribute depends on the semantics of the
interaction. Finally, in the second inner loop, for each unvisited elemeBt tihe change
to an attribute is applied, and the change to dependent attributes is computed and included
in S. Marking an attribute as visited ensures that the effects of an interaction are not re-
applied to the attribute. The change to an attribates a result of the interaction depends
on the semantics of the attribute. Attributes dependerd can be determined from the
ADG. For each dependent attribute, a mapping function translates the change to the value
of the attribute. If a dependent attribute changes, a tuple consisting of the attribute and its
change is included i8 to account fot.affects.

For each interaction |
SetS ~ 0O
For each attribute a in l.affects
S « S +<a, d&a>/linteraction effect
For each unvisited element <a, da>in S
mark <a, da> visited
a « function of a, da // attribute semantics
For each attribute d dependent on a in ADG
od ~ function of a, 0a, d // mapping function
If &d #0// or non-negligible
S « S +<d, o&d>

FIGURE 34: Algorithm for ADG Traversal

We step through the algorithm in Figure 34 with an example. Let a tank in our example
MRE receive amoveinteraction. This interaction changes the position of the tank, say
Pos. Therefore, a tuple consisting of Band a change to Poss included inS. When the
change to Pagsis applied, the MRE is temporarily inconsistent. In order to regain the
consistency of the MRE, a CE must traverse the ADG beginning from the node
corresponding to PgsThe attributes that depend on Rase: Pos, PgsPos, Form, App,
Dam; and Dam. Figure 35 shows a sub-graph of the ADG with only the nodes
corresponding to attributes connected transitively to,PASCE must invoke mapping
functions to translate changes to each of these attributes. For example, the change to Pos
may be computed as the centroid of Pasd Pos. If the change to Pos is non-zero, then a
tuple consisting of Pos and its change is include8.iin like fashion, the CE propagates
the effects of the interaction to each dependent attribute. Figure 36 shows a partial tree
corresponding to the propagation of the change tg tBafependent attributes.

67

The algorithm in Figure 34 includes but intentionally does not make apparent intricate
issues in ADG traversal, for example, cyclic dependencies and traversal path. We address
these issues next.

6.3.2 Cyclic Dependencies

Cyclic dependencies among attributes may cause traversal of an ADG to never
terminate. For example, when an interaction changeg, ROSE changes Pos because of
the cumulative dependency from Bds Pos. The CE propagates the change to Pos to
Pos and Pog because of distributive dependencies. Since, R@s already changed
because of this interaction, the CE must stop the propagation of effects from Pos. If the CE
does not stop the propagation of effects, the MRE may never reach a state at which
consistency can be evaluated. Although an ADG may have cycles, the propagation of
effects must be non-cyclic. It is reasonable for attributes to be mutually dependent.
However, cycles should not prevent the graph traversal from terminating.

Reversible mapping functions break cycles in ADG traversal. If reversible mapping
functions translate attributes, then the change to some attributes may be null, which breaks
the cyclic traversal between them. In case of attributes for which reversible mapping
functions cannot ensure zero change, the final condition in Figure 34 should be modified
such that a tuple is included @& only when a non-negligible change occurs. Reversible
mapping functions ensure that a change to Pos due to an initial change,tddeéssnot
affect Pog again. Let mapping functionsand g translate Pgsto Pos and Pos to Pgs
respectively. Ifig(f(Pos)) = Pos, thenf andg are reversible. When an interaction changes
Pos, f changes Pos, ang ensures that a subsequent change to, ok be zero. In
Figure 34, effects are included $wonly if necessary. Therefore, the zero change tg ®os
not included inS, breaking a cyclic traversal. When all cyclic traversals are broken, the
traversal of an ADG can terminate. If ADG traversal terminates, an MRE can be
consistent before the next observation point.

Platoon-Tanks MRE

FIGURE 35: Applying the Effects of an Interaction

68

6.3.3 Unplanned Dependencies

ADGs enable designers to identify and capture combined semantics of multiple
models. Unplanned dependencies are an example of the combined semantics of jointly-
executing models. An ADG captures attribute dependencies that may not have been
planned by designers of the individual models. For example, the designer of the tank
model may not have expected Raand Dam to be dependent. However, because of
transitive dependencies, these attributes are related, as seen from Figure 36.

6.3.4 Traversal Path

An issue with ADG traversal is the order in which a CE propagates the effects of
interactions. When an interaction changes an attribute, a CE may change other attributes
subsequently. For example, in Figure 36, if an interaction changes&G& must change
Pos and Form. Suppose the CE changes Pos first. Next, it must change Form (because of
the original change to Pgsand Pog (because of the change to Pos). Changing Form first
implies a breadth-first traversal of the ADG, whereas changing ftesimplies a depth-
first traversal. Other traversal orders are possible as well. Ideally, all traversal orders
finally must propagate the effects in the same manner. Practically, because of errors
accumulated during attribute translation, or because attribute translations are not
commutative, different traversal orders may produce different results.

A breadth-first traversal is well-suited for propagating the effects of interactions. For
distributive dependencies, the nature of the dependencies requires that effects propagate
breadth-first. Moreover, when the comparison for consistency among attributes is inexact,
i.e., they are consistent within tolerance, longer paths may accumulate errors that cause
reversibility to fail. With breadth-first traversal, a CE chooses the shortest paths between
the initial attribute and dependent attribute ®EMEN89]. Intuitively, when an interaction
changes an attribute, dependent attributes that are “closer” to the attribute in the ADG, i.e.,
reachable by fewer arcs, are affected more immediately by the interaction. Therefore, a
CE should change those attributes earlier.

Pos

Pos

Pos Pos

Pos

\
Pos Pos App App

FIGURE 36: Propagation of Interaction Effects

69

The algorithm in Figure 34 can be refined to mandate breadth-first travBrsiaduld
be changed to a queue so that tuples are pushed the end of a queue. When selecting
attributes dependent on the current attritaitenly attributes connected directly #domust
be included. Including only directly-connected attributes and malirgqueue ensure
that the effects of an interaction are applied breadth-first.

For our example MRE, we show how a CE propagates the effectmoiainteraction
to attributes. We indicate the cause of each attribute change as well. Table 8 shows the
effects of this interaction. The first column lists the attributes changed by the interaction.
The second, third and fourth columns list the change to an attribute, the dependency that
caused the change and the interaction or independent attribute for that change. The order
in which we list changes to attributes corresponds to a breadth-first traversal of an ADG
for our MRE, i.e., a breadth-first traversal of the graph in Figure 36.

TABLE 8: Effects of an Interaction

Attribute | Change| Dependengy Fron Comment
Pos 5P,! Interaction | move |Direct effect of interaction
Pos 3P | Cumulative| Pos
Form 3F1 | Cumulative| Pos
Pos 5Pt | Distributive | Pos [3P;1=0— Pos is unrelated to Pgs
Pos 3P,% | Distributive Pos |3P,% = 0 — reversible mapping functions
Pos 3P, | Distributive | Form
PoS 5P,2 | Distributive | Form |3P,% =0 — reversible mapping functions
App 3A1 | Modelling | Form
Pos 3P | Cumulative| Pog
Dam, | oD;' | Distributive | App
Dam, | &D,! | Distributive | App
Pos 3P,%> | Distributive Pos |3P,%=0— reversible mapping functions
Pos 3P, | Distributive Pos |3P,*=0 — Pog is unrelated to Pgs
App 5A2 Cumulative | Dam 3A2=0 — reversible mapping functions
App 5A3 Cumulative | Dam 5A2 =0 — reversible mapping functions
6.4 Possible Implementations of a Consistency Enforcer

Constructing a CE for an MRE is a reasonably straightforward task. A module for a
CE may be implemented in a number of ways, as we show in the following sub-sections.
We discuss broad implementation details in order to show that the CE is not a “black box”
that magically solves consistency maintenance — one of the hardest problems in MRM.

70

6.4.1 As-Is

The most straightforward implementation of a CE is “as-is”; the ADG is instantiated
as a graph data structure and mapping functions are function calls associated with each arc
in the data structure. This implementation is effort-intensive for the designer but not as
naive as it first seems since it gives the designer the freedom to hand-craft relationships,
mapping functions and traversal strategies that are best-suited for an application.

6.4.2 Spreadsheets

In a spreadsheet, data are organised as tables. Each spreadsheet element is addressed
uniquely by row and column number. Each element may consist of a data value or a
function. In the latter case, the value of the element is computed by invoking the function
on data values or elements specified along with the function.

A CE can be implemented as a spreadsheet that has an element for each attribute in the
ADG. The strict organisation of a spreadsheet as rows and columns is inconvenient but not
restrictive. Mapping functions are specified by making some elements of the spreadsheet
functions of other elements. However, typical spreadsheet functions are awkward for
mapping functions. In typical spreadsheets, the function used to compute an element is
indistinguishable from the value of the element, i.e., the function and the value for element
change jointly. Therefore, if we change the value of an element, we automatically change
the function that computes the element as well. Changing a function changes the
relationship among elements in the spreadsheet, thus changing the relationship among
attributes in the MRE. Changing the relationship may not have been part of the semantics
of the interaction. A work-around for this problem involves using multiple elements for an
attribute: one for the value and one for each relationship in which this attribute depends on
other attributes. Not only is this work-around inelegant, but it also leads to circular
references, i.e., elements that refer to one another. Spreadsheets &ixtelds permit
circular functions. Typically, such functions are invoked iteratively. In the first iteration,
the values of elements are computed left-to-right top-to-bottom with initial values for the
elements. In the next iteration, the values of the elements are re-computed left-to-right
with values from the previous iteration. This process is continued until the number of
specified iterations is exhausted. At the end of any iteration, including the final one, the
values of some elements may not satisfy all relationships. Therefore, some related
attributes may be inconsistent. Cyclic dependencies in an ADG increase the number of
circular references in a spreadsheet. Finally, the traversal strategy in a spreadsheet is left-
to-right and top-to-bottom, not the desired breadth-first strategy.

A spreadsheet implementation for a CE is suited only for very simple ADGs wherein
cyclic dependencies are limited and left-to-right top-to-bottom traversal is sufficient to
approximate breadth-first traversal.

6.4.3 Attribute Grammars

An attribute grammar enables specifying meaning to a string derived from a context-
free grammar [KIUTH68] [KNUTH71]. PropertieE associated with non-terminals, and
functions associated with productions define the semantic meaning of sByrgbesised

" Excelis a registered trademark of Microsoft.

71

properties are defined solely in terms of the descendents of the corresponding non-
terminal symbol, i.e., in terms of the properties of the symbols on the right-hand side of a
production. Inherited properties are defined solely in terms of the ancestors of the
corresponding non-terminal symbol, i.e., in terms of the properties of the symbols on the
left-hand side of a production. Synthesised and inherited properties are duals; synthesised
properties alone are sufficient for attribute grammars. Attribute grammars have been used
to design language-specific editing environmentsgBb]. Attribute grammars have been
extended to include context-sensitive languages §84].

A CE can be implemented as an attribute grammar that has a non-terminal for each
attribute in the ADG. The property associated with each attribute is its value.
Relationships among attributes are specified as productions in the grammar. Functions
associated with each production compute the inherited properties of the non-terminals on
the right-hand side of the production. A string derived according to this grammar
corresponds to the effects of an interaction.

A number of factors make attribute grammars somewhat awkward for the design of a
CE. First, a grammar in which all attributes are non-terminals will never terminate because
there are no terminals. Second, attribute grammars disallow cyclic dependencies since
such dependencies lead to infinite invocations of productions in a grammar. Third, the
traversal strategy in attribute grammars is depth-first. All of these factors can be resolved
by having separate grammars for each attribute. In other words, a separate grammar for
each attribute in the ADG must specify how a change to the attribute affects dependent
attributes. The non-terminal for each attribute is the start symbol for its own grammar. The
terminals in each grammar serve merely to break dependency cycles among attributes.
Thus attribute grammars can accommodate cyclic dependencies (by having separate
grammars for each attribute) yet propagate effects of an interaction non-cyclically (since
each grammar has no cycles).

Although the specification of mapping functions and a traversal strategy is non-
intuitive, attribute grammars can be used to implement CEs.

6.4.4 Mediators

A mediator captures behavioral relationships in complex systernsLf&]. A
mediator is a first-class implementation object that realises behaviours external to an
Abstract Behavioral Type (ABT). An ABT characterizes a class of objects in terms of its
data, operations on data and events that trigger other behaviours.

A CE can be implemented as a number of ABTs whose relationships are realised by
mediators. Each attribute in the ADG is an ABT. The value of the attribute is the datum of
the ABT. Reading and writing the datum are operations on the ABT. The only event
generated by the ABT is when the value of the datum changes. Mediators capture the
behavioral relationships among ABTSs, i.e., mediators encode the mapping functions
among attributes. When an attribute ABT announces an event signifying that its datum has
changed, mediators invoke the appropriate operations to ensure that relationships among
all attribute ABTs hold.

T Meaning is assigned to a non-terminal in an attribute grammar by associatattyibate with
it. To avoid any confusion with our definition of an attribute — a part of a representation — we
use the ternpropertyto mean an attribute of a non-terminal in attribute grammars.

72

The benefit of using mediators to design CEs is that consistency maintenance is
decoupled from the design of the representation. Mediators, which are instantiated solely
for ensuring that relationships among attributes hold at all times, free designers of
representations from the concerns of consistency maintenance. Mediators must be
designed carefully to ensure that the desired graph traversal strategy is realised by the
appropriate attribute ABT events.

6.4.5 Constraint Solvers

Dependencies among attributes may be viewed as constraintsN82] [HILL 92A]
[HORRI2]. A constraint restricts the range of a dependent attribute. In the absence of any
constraint, the range of a dependent attribute encompasses all values permitted by the type
of the attribute. In the presence of a constraint, the range of a dependent attribute is limited
by the relationship between the dependent and independent attributes.

A CE can be implemented as a constraint solver. The attributes in an ADG can be the
symbols in a constraint-solving system. Mapping functions can be implemented using
unification. Constraints define relationships among attributes as well as legal ranges for
values of attributes. Many constraint-solving systems solve constraints among boolean or
even numerical variables. Constraint solving in the Herbrand universe, which is the union
of all symbols in a system, can be compler{H92A] [FRUHI2B] [JAFFAR94] [VAN9G].
However, constraint systems can be simplified in many ways, such as incorporating
optimizations [MARR93], exploiting constraint independence ARETIA93], using
incremental constraints REE9Q], and building linear systems of equations that can be
solved in polynomial time for numerical variablesH8AR92] [CORMENS89].

A general constraint solver may be too powerful for the relationships among attributes.
We expect the relationships among attributes in a multi-representation model to be simple
relationships. Since the multiple models represent the same object or process, typically,
the relationships are those of equality (within tolerable error), whole-to-parts or parts-to-
whole. Accordingly, the constraints within an MRE may be solved relatively simply.
Therefore, a constraint solver specific to the domain of the attributes of the multiple
representations would be suited for the design of a CE.

6.5 Chapter Summary

A Consistency Enforcer (CE) maintains internal consistency within an MRE. A CE
consists of an Attribute Dependency Graph (ADG) and mapping functions. A CE may be
implemented in a number of ways, such as spreadsheets, mediators and constraint solvers.

An ADG captures dependencies among attributes in concurrent representations.
Individual attributes and the dependencies among them are the nodes and arcs in an ADG.
We classify dependencies into four categories: cumulative, distributive, interaction and
modelling. Semantics associated with dependencies capture semantics of relationships
among attributes. Classifying dependencies and assigning semantics to them aids the
construction of appropriate mapping functions that translate attributes. Traversing the
ADG propagates the effects of an interaction to all dependent attributes. When an
interaction changes the value of any attribute, traversing the graph and invoking the
mapping functions associated with each arc can make the MRE consistent again.

73

Mapping functions encode application-specific translations of values and changes to
values among attributes. Mapping functions must translate attributes and changes to
attributes. Also, mapping functions must be composable and reversible and must complete
their translations before the next observation point.

As long as single interactions occur or concurrent interactions are always serialized,
ADGs and mapping functions maintain consistency in an MRE. In the next chapter, we
show the design of an Interaction Resolver to resolve the effects of concurrent
interactions. When concurrent interactions occur, we utilise semantic information about
the interactions in order to resolve any dependencies among them. The CE applies the
effects of the resolved concurrent interactions.

74

Let no act be done at haphazard, nor otherwise
than according to the finished rules that govern its kind.
— Marcus Aurelius Antonius

Chapter 7

Interaction Resolvers

For effective MRM, the effects of dependent concurrent interactions must be resolved
in accordance with model requirements. Often, concurrent interactions may have
dependent effects, for example, precluding or enhancing the effects of one another.
Traditionally, the effects of concurrent interactions have been resolved by serialization, in
which the interactions are ordered arbitrarily. However, serialization is often inappropriate
because it isolates even those interactions whose effects must be applied concurrently.
Other policies, such as combining or ignoring some or all interactions, do not isolate the
interactions and may be more suitable for resolving dependent effects.

In Chapter 5, we presented Multiple Representation Entities (MREs)n#&maction
Resolve(IR) is a component of an MRE that encodes policies for resolving the effects of
concurrent interactions. Since specifying policies for all possible concurrent interactions
can be complex, we present a taxonomy consisting of classes of interactions. We assume
that designers of multi-models understand the semantics of interactions in their
application well enough to classify interactions and formulate policies for resolving
concurrent instances of classes of interactions. We present example policies for resolving
classes of concurrent interactions. Our taxonomy enables a designer to choose appropriate
policies for resolving concurrent interactions.

We describe interactions in 87.1. In 87.2, we discuss serialization and its alternatives.
In 87.3, we motivate the need for policies other than serialization. In 87.4, we explore the
problem of dependent concurrent interactions by means of an abstract application. We
start with a simple system, add one dependency among its components, and study the
effect of single, and subsequently, multiple interactions. We show how resolving the
effects of concurrent interactions can be a complex design issue. In §7.5, we present a
taxonomy to classify interactions based on intrinsic characteristics of interactions we
encountered often in models. These characteristics lead naturally to policies for classes of
interactions. We present example policies in 87.5. We describe the operation of an
Interaction Resolver for an example MRE in 87.6.

75

7.1 Interactions

Entities communicate with one another or influence one another by means of
interactions. As described in 83.2, an entity changes its own or another entity’s behaviour
by means of an interaction. Interactions are a fundamental part of any useful model
because they connect the model to its environment. We regard a communication between
any two entities as an interaction.

Interactions are ubiquitous — they may be physical occurrences such as movement, a
temperature increase or an explosion, or some sort of communication, such as a television
broadcast, a dissertation submission or an order received from a superior. Examples of
interactions are database transactions and operatioh\sAJB]; processor interrupts;
cache operations [ENN96]; reads and writes to shared memory in parallel processing
systems; operations, events and actions in object-oriented and process modeiln®dJR
[SHLAER92] [ALHIR98]; method invocations and function calls in object-oriented systems;
messages in distributed processing systems and logical time systemad]; accesses to
a blackboard [EMAN8O]; and exceptions in programming languageo@B75]. We
include all of these interactions as well as changes an entity makes to its own state in our
definition of interactions. Since we are concerned only with the effects of interactions, we
consider specific techniques for implementing interactions to be irrelevant to our work.

A model that permits concurrent interactions requires a policy to resolve any
dependencies among interactions and a mechanism to implement the policy. The
traditional policy for resolving the effects of concurrent interactions is serialization.

7.2 Serialization

Serialization the traditional policy for resolving the effects of concurrent interactions,
involves applying those effects in sequential order, i.e., one after another. Serialization is a
valid policy for resolving the effects of concurrent interactions in many domains, for
example, databases. Consider the clients and server in the system in Figure 37.

Server

Ficure 37: Clients and Server

Transactions from a client to the server are interactions, indicated by arrows. If only one
client interacts with the server at any given time, the server returns to a valid state trivially
at the end of each interaction. If multiple clients interact with the server concurrently,
ensuring that the server returns to a valid state is non-trivial.

Consider two interactiond, and J, independently issued to Server by Clig@aind
Client, respectivelyl andJ each consists of operations, i.e., reads and writes, to variables
a andb, denoted byr(a) , R(b) , W(@ andwW() .

I: R(a)W(a)R(b)

J: R(b)W(b)W(a)

Server’s state will be as if Clieptssuedl to Server and whehcompleted, Clientissued
Jto Server, or the other way around. Each client may not be aware of the other’s presence

76

since the system guarantees that its behaviour will be as if each client is the only client
interacting with the server. This property of the system’s behaviour, daliéation is one
of the ACID properties for database transactionsepg83].

The actual order in which operations occur on Server is callechaduleln aserial
scheduleinteractions are ordered one after anotheyPf86]. A serial schedule ensures
that clients interact with the server in isolatiafj. andZ, below are serial schedules for
andJ. For clarity, we underlin€s operations in every schedule.

Z;: R(a)W(a)R(_ b)R(b)W(b)W(a)

Z,: R(b)W(b)W(a) R(a)W(a)R(_b)

When | and J occur concurrently, the system must control how these interactions
change Server. SindeandJ are concurrent, their operations may interleave. A possible
interleaved schedule férandJ is Z3 below . Z3 is not a serial schedule becausandJ are
not ordered one after another.

Z3: R(a)R(b) W@W(b)W(a) R(b)

A schedule isserializableif it is equivalent to a serial schedule for some definition of
equivalence [Bwa76]. If Z3 is equivalent toZ, or Z,, Z3 is a serializable schedule.
Serialization is a policy that resolves concurrence by permitting only serializable
schedules, i.e., by ordering or interleaving concurrent interactions appropriately.
Concurrency control mechanisms, such as locking and time-stamp ordering are used to
implement serialization.

Serialization has been chosen as a policy for resolving interactions in database systems
because it satisfies clients’ expectations of isolation yet permits concurrenesSg}
[BERNB7]. Isolation assumes that client interactions are not predicated on one another, i.e.,
they are independent of one another. Serialization isolates client interactions.

Some researchers have recognised that serialization can be too strict for many
concurrent interactions. In advanced databases, serialization can reduce concurrence
significantly. Accordingly, researchers have proposed alternative policies that relax or
extend serialization yet maintain isolation. These policies utilize varying levels of
semantic information about transactions in order to increase concurrence yet maintain
database consistency. Semantic information has been utilized for scheduling long and
short transactions [BAHMA90]; extending and relaxing serializationABG91]; applying
counter-transactions KRCIA83]; commuting interpreted operations on abstract data types
[WEIHL88]; aborting conflicting transactions ABG91]; and recovering database states
[BADRI92]". In general, serialization is considered correct but too strict, and alternative
criteria relax or extend serialization in order to permit increased concurrermcega]

[L YNCH83] [MUNSONI6] [KORTH88] [THOM98]. Moreover, isolation of transactions is
considered a desirable property of database systems. Next, we discuss situations where
isolation may be undesirable.

" We assume that the individual operations, i.e., reads and writes, are indivisible and atomic.

T A detailed analysis of each correctness criterion and policy presented for databases would take
up too much time and space. Over 100,000 pages of new material are published every year in
databases alone fDE95].

77

7.3 Abandoning Isolation

For some applications, the system must not isolate concurrent interactions since they
may be dependent on one another. Serialization and alternative policies that relax or
extend serialization isolate interactions. Therefore, they cannot be correct policies for
resolving the effects of dependent concurrent interactions. Correct policies for these
interactions must provide alternatives for isolating the interactions.

In the following examplesnot isolating concurrent interactions, i.e., abandoning
isolation, enables resolving their dependent effects correctly. Consider entiteeslE
that concurrently write to an attributewith the interactions EWy, ...) and B.Wy, ...).

The ellipses denote other interaction parameters. A sequential order for these interactions
could be E.Wy, ...) followed by B.Wy, ...) or E.Wy, ...) followed by B.Wy, ...).

In a model of a billiards table, £and B could be ball entities and could be the
velocity of a ball. The two interactions could bg.®(v, dv;) and B.Wv, dv,), wheredv; is
a change irv caused by Eanddv; is a change irv caused by E The correct policy to
resolve these two interactions is to changéy the vector addition obv, and dvs.
Serializing these interactions may be incorrect for a number of reasons as discussed below.
Let U denote vector additiorv,, v, andvs are three possible outcomes of addavg and
dv, to the original valueg of the velocityv.

Vi = (VO U 6Vl) O] 6V2

Vo = (Vg O dvy) [dvq

V3 =Vo U (dvq U 0vy)

The parentheses show the order in which the interactions take effeeind v, are
computed by serializing the two interactions. In contragts computed by combining the
two interactions before applying them ¥oMathematicallyyv; = v, = v3. However, when
executing a model, the results of these orderings can differ. For exabupl@nddv, may

be so small that adding them ¥g individually does not change the velockyHowever,

dvq and dv, combined may be sufficient to changeln such a casey; = v, # v3. This
thresholding anomaly may occur because of low precision in the representaton of
Another instance of thresholding could be thaf anddv, can overcome the inertia of the
entity with velocityv when combined, but not individually. As another example, suppose
an entity & continuously plots the trajectory of the ball with velocityif v changes tw,

or v,, E3 will plot two changes, whereas ¥fchanges tas, E3 will plot only one change.
This example is an instance of temporal inconsistengyand v, are computed by
serialization, whereag; is computed by combination. For this model, combination is a
more meaningful policy than serialization.

In a model of an autonomous agent, €uld be a planner that pre-determines the
steps to fulfill the agent’s goal,JEould be a perception-action (PA) system that observes
and acts on the agent’s environment, arabuld be the visibility of an obstacle. The two
interactions could be PN, yes) and E.WV, no), implying that the planner reports that
the obstacle can be seen, whereas the PA system reports that the obstacle is hidden.
Serializing these interactions causes the final valuetofbe eitheryes or no arbitrarily.
However, applying Es interaction and ignoring £ interaction may be a more
reasonable, if pessimistic, policy to resolve these interactions. Alternatively, applysig E
interaction and ignoring £S interaction may also be a reasonable, if optimistic, policy.
Another reasonable policy may be to construct a belief system that assigns weights to the

78

two interactions for a final value of that is not bi-modal. Ignoring one or the other or
weighting both interactions are policies that ensure meaningful behaviour when these
interactions occur concurrently.

In a model of a chemical reaction, Eould be an acid entity, Fcould be a catalyst
entity, andv could be the volume of a by-product retrieved at the end of the reaction. The
two interactions could beBAv, dv;) and B.Wy, dv,), wheredv, anddv, are increases in
the value ofv when E and B are added. In chemical reactions, it is well-known that
adding a catalyst can increase the rate of a reaction tremendously. As a result, the final
change inv may be more thadv, + dv,. Serializing the interactions does not capture the
cooperative nature of these interactions. If the interactions are serialized, then either the
model’s representation must be augmented with an attribute that keeps track of whether
the acid or catalyst has been added previously, or the model must capture the effects of
adding a catalyst — an increase in the surface area of the reaction — at a finer level of
detail. Alternatively, a special policy can be formulated to increesepropriately if these
concurrent interactions occur.

In the above examples, serializing concurrent interactions produces unintended
effects. Isolating them from one another produces effects that are semantically incorrect.
Since serialization and alternative policies that relax or extend serialization isolate
interactions, none of them is a correct policy for resolving them. These interactions are
dependent particularly because they are concurrent. Therefore, they require correctness
criteria that abandon isolation. The correctness criteria for dependent concurrent
interactions are application-specific. Next, with the help of an abstract application, we
show how resolving the effects of dependent concurrent interactions by abandoning
isolation makes the design of a system complex.

7.4 Switches — A Simple System

We use a simple system of switches as an abstraction for models with concurrent
interactions. We add constraints to the initial model, explaining the effort required to
design the corresponding system. Next, we introduce dependent concurrent interactions
and show how designing such a simple system becomes complex. We argue that the
effects of dependent concurrent interactions must be resolved in an organised manner.

7.4.1 Unconstrained System

We begin with an unconstrained system. Consider
the switches §, S; and S in Figure 38, each with two
states: on (or 1) and off (or 0). A client may turn a>| S; S (<
switch on or off by an interaction (shown by an arrow).
The state of the system is an ordered triplet, indiviG.a..
triplet elements being the states of,SS; and S respectively. In the state transition
diagram in Figure 39, an oval is a possible state of the system, a solid arrow is a state
transition caused by turning one switch on, and a dashed arrow is a state transition caused
by turning one switch off. Transitions that cause the system to begin and end in the same
state, for example, turning, 9ff in the state [0 0 0], are not shown in Figure 39 to reduce
clutter. Since the switches are independent, all possible states are present in the state
diagram.

FIGURE 38: Switches

79

FIGURE 39: State Transition Diagram

7.4.2 Constrained System
. , : S
Most practical systems are constrained, i.e., there i
exist relationships among components of the system.
Accordingly, we add a constraint to our switches: — $; S, [

FIGURE 40: Constrained
If S; and S are both on, then,Smust be on. S\ S S

This constraint can be re-written a5 (1) 0(S,=1) U (Sp =1). 0 0 o0
As a result of this constraint, the switches are no longer o o0 1
independent. Figure 40 shows the new version of the switch system0 1 0
with the constraint depicted by arrows between the switches. The; o o
arrows merely depict a dependency between switches withoutl 0 1
outlining the nature of the dependency. The new set of valid states% % 2
for the system is a subset of the old set of valid states. Figu = @2t re 41: N
shows the new set of valid states. The crossed-out state does not

exist in the new system.

Usually, constraints reduce the possible states of a system, i.e., some states in the
unconstrained state transition diagram become unreachable. All transitions going into
those states must be redirected elsewhere. The implications of the reduction in the set of
valid states on the state transition diagram are shown in Figure 42. The oval corresponding
to the state [0 1 1] has been removed since that state can never be reached. The outward
arrows from that state have been removed since transitions from an unreachable state are
meaningless (unless error recovery is desired). The arrows from the states [0 1 0] and
[001] to [011] have been redirected to [111] in accordance with the constraint.
However, the constraint does not indicate which state to transition from [1 1 1] if oply S
is turned off. In theory, it is possible to transition to any of the seven states (or even a
hitherto absent state) in such a situation. However, let us abide by the constraint as far as
possible. The following are re-statements of the constraint.

($,=1)0(&=1)0 (SA=1)

ew

(5 =1)0(S=1)0(S=1) [Implication rule]
(5 =1)0-(S=1)0(Sy = 1) [DeMorgan’s laws]
($,=0)0(5=0)0(S4=1) [Switch states]
Sa=1)U(5=0)0(5,=0) [Re-arrangement]
2(SA=1)0 (5,=0)0($=0) [Implication rule]
Sa=0)0 (5,=0)T(5,=0) [Switch states]

80

FIGURE 42: Constrained State Transition Diagram
The last statement suggests what to do whers$urned off while S and S are on. In

order to keep transitions deterministic, we choose [0 0 1] arbitrarily as the state to
transition from [1 1 1] in case,Ss turned off, i.e., we turn,;ff.

State transition diagrams describe a model effectively when sequences of interactions
occur. The effects of each interaction are captured by appropriate transitions. Since a state
transition diagram can never put the system in an inconsistent state, every interaction can
take effect without violating any constraint. Concurrent interactions, whether dependent or
not, introduce problems with state transition diagrams, as we show next.

7.4.3 Dependent Concurrent Interactions

In order to demonstrate the effects of dependent concurrent interactions that cannot be
serialized, we add new transitions. Consider the switch system from 87.4.2, with two
concurrent interactions. Let the system be in the state [0 0 1], and let the two interactions
be turning & off and turning $ on. If we serialize the interactions, turning 8ff before
turning § on results in the transitions [00 I] [0 0 1]0 [1 1 1], while turning § on
before turning g off results in the transitions [00 1] [11 1] 0 [0 0 1]. The order in
which the concurrent interactions are serialized determines the final state of the system. If
the final state is immaterial as long as the system stays in a valid state, i.e., a state present
in the state transition diagram, then serialization is correct but non-deterministic.

For deterministic behaviour, we add other state transitions that capture the effects of
concurrent interactions. In Figure 43, we add a transition between [0 0 1] and [0 1 O0]. The
semantics of this transition could be, for example, thaiifiSturned off and $is turned
on concurrentlyin the state [0 O 1], then transition directly to state [0 1 O]. The fact that
the interactions were concurrent caused this transition, and the final state of the transition
is different from that if the two interactions were serialized.

FIGURE 43: Transitions on Concurrent Interactions

81

7.4.4 Complexity

We desire systems to behave predictably no matter what interactions occur and how
they occur. Accordingly, sequential interactions as well as concurrent interactions must
have predictable results. A brute-force approach to resolving the effects of all possible
concurrent interactions is exponential in complexity. Therefore, a means of encoding the
dependencies among interactions is necessary.

For the switches system in 87.4.2, given the different kinds of interactions (six kinds,
turning one of the switches on or off) and the number of different states (seven states), an
exponential number of transitions are possible on concurrent interactions. In the worst
case, the total number of transitions for the switch system F§MEer of interaction types 1)

x number of states= (26—1)><7 = 441. This calculation assumes that concurrent
interactions of the same kind can be serialized without changing their effect. In other
words, concurrent multiple occurrences of the interaction to tyroffSfor example, can

be serialized. Nevertheless, even in our simple system, the number of transitions is large.
Applications with more attributes, some non-Boolean, are likely to have many more states
than our simple system. Consequently, the number of transitions can grow further.
However, a number of mitigating factors can reduce the number of state transitions for a
system. In the switch system, in order to reduce the number of possible transitions, we
stipulated that multiple occurrences of the same interaction can be serialized. Another
reasonable assumption is that a switch client will not send concurrent on and off
interactions to its switches. This assumption reduces the number of transitions to the
product of the number of states and the number of all possible concurrent interactions. The
latter number is the sum of concurrent interactions occurring ig alL.combinations of threes,
twos and ones. Therefore, the total number of transitionsyis: Ox2'x7 = 182

This number of transitions is an upper bound, because we ‘@sume that no set of concurrent
interactions is serializable.

Applications must exhibit predictable behaviour when concurrent interactions occur.
Serialization is an example of predictability. However, as we have seen in 87.3,
serialization fails to resolve dependent concurrent interactions correctly, because it
assumes that the interactions can be isolated. Another example of predictability is
commutation, wherein the effects of commutable interactions are the same regardless of
the order in which they are applied RSERB2]. Since commutation also assumes that
interactions can be isolated, it cannot resolve the effects of dependent concurrent
interactions correctly. When dependent concurrent interactions occur, predictability can be
achieved by encoding transitions in rigorous formulae. In such an approach, the behaviour
of the system when any set of concurrent interactions occur must be enaquiéati.

Such an encoding is similar to specifying transitions in a state diagram for every possible
set of concurrent interactions. As we have shown with our simple switches system,
specifying all possible transitions can become a complex task.

We encode semantic information in interactions in our technique for predictable
behaviour when dependent concurrent interactions occur. Our technique does not isolate
interactions, and does not incur the complexity cost of specifying all transatjomsri.

82

7.5 A Taxonomy of Interactions

The effects of dependent concurrent interactions are application-specific. Specifying
policies for resolving the effects of every set of interactions that may occur concurrently is
a complex design task. However, specifying policies for resolving the effeclasde of
interactions can be less complex. We discuss the properties of a good taxonomy of
interactions. MRM designers may classify their interactions into any taxonomy that
exhibits these properties. We present and justify one such taxonomy consisting of four
classes of interactions. Our taxonomy is based on semantic characteristics of interactions
we encountered often in models. Also, we present policies for resolving the effects of
classes of concurrent interactions.

7.5.1 Properties of a Taxonomy of Interactions

A good taxonomy exhibits the following propertiesvjd94] [How97]:
» mutually exclusiveclasses do not overlap

exhaustiveclasses jointly cover all possible members
unambiguousclassification is independent of the classifier
repeatable subsequent trials lead to same classification
acceptedlogical and intuitive classes

useful must lead to insights in particular field

MRM designers may choose any taxonomy of interactions as long as it exhibits the
above properties. Traditional taxonomies of interactions, for example, veasisswrites
or serializableversusnon-serializable, may not exhibit these properties.

A straightforward classification of interactions is as reads or writes. This classification
does not exhibit the property of usefulness because there is inadequate semantic
information associated with the classes to resolve the effects of concurrent interactions.
When writes occur concurrently, we cannot determine whether the co-occurrence was a
happenstance of model execution or whether the writes are simultaneous events. In the
former case, the writes are independent and indistinguishable from their sequential
occurrence, while in the latter case, they may be dependent concurrent interactions and
must be resolved accordingly.

We rejected classifying interactions as serializabdesusnon-serializable. Such a
classification does not aid us in resolving non-serializable interactions. Moreover,
serializable and non-serializable are relative classes. An interaction may be serializable
with respect to another interaction, but non-serializable with respect to yet another.
Therefore, the same interaction falls into both classes, implying that the chosen
characteristic does not partition interactions into exclusive classes. In other words, this
taxonomy does not exhibit the property of mutually exclusive classes.

In 87.5.2, we present a taxonomy of interactions. We identify four characteristics of
interactionsrequestresponsecertainanduncertain By combining these characteristics,
we identify four classes of interactions: Types 0, 1, 2 and 3. We were able to categorise
interactions encountered in a number of models into these classes. Other characteristics of
interactions may exist, and if identified, may introduce new classes of interactions, which
may lead to new policies or refinements of our policies for resolving the effects of
dependent concurrent interactions. We evaluate our taxonomy in §7.5.3.

83

7.5.2 Interaction Characteristics and Classes

We present four interaction characteristics and four classes of interactions that we have
defined. We show how to classify interactions based on semantic characteristics. We
identify four high-level semantic characteristics of interactions. These characteristics are
application-independent, i.e., they are not specific to any application. The characteristics
themselves are well-known; however, using them to classify interactions is novel. We
identify four interaction classes from these characteristics of interactions.

7.5.2.1 Request and Response

Interactions may be requests or responses. Request interactions are concerned with an
entity soliciting some behaviour from another entity. For example, when an entity queries
the status of another entity, the former sends the latter a request interaction. Likewise, if an
officer entity orders a soldier entity to fire, the former sends the latter a request interaction.
Response interactions are concerned with an entity responding to an action generated as
part of a model's behaviour, for example, a request. Responses may not be solicited
explicitly, i.e., a response may not have a request associated with it. For example, a status
update is a response interaction. Likewise, billiard ball entities may send one another
response interactions generated because of a collision.

The distinction between request and response interactions is temporal. A request
interaction is made regarding a future action. A response interaction is made regarding an
action in the past. An interaction may be a request or a response, but fot both

* RequestAn interaction concerned with eliciting future behaviour from an entity.

» ResponseAn interaction concerned with the effects of an action in the past.

75.2.2 Certain and Uncertain

Interactions may or may not have the desired outcomes. Certain interactions have
predictable outcomes. For example, when billiard ball entities collide, the outcome of their
interaction is predictable because of physical laws. Likewise, when an acid entity is added
to an alkali entity, the outcome of their interaction is predictable because of chemical laws.
Uncertain interactions are those whose outcomes are not predictable. For example, a
request for information may not always be satisfied, or satisfied truthfully. Likewise, a
request to perform an action is not guaranteed to be satisfied.

Uncertainty in interactions may be defined along a continuum. For example,
interactions may be distinguished on a scale with completely certain interactions at one
end and increasingly uncertain interactions further away from that end. In such a case, the
uncertainty of an interaction is a measure of its distance from the completely-certain end
of the scale. Priorities may be viewed as an example of such a continuum. High-priority
interactions always take effect preferentially over lower-priority interactions.

* Interactions cannot refer to actions in the present. One explanation is that the sender may not
know when an interaction may be received. Therefore, the sender cannot base the effects of an
interaction on actions that will happen precisely during the time-step that a receiver receives the
interaction. Another explanation is that we can think of a time-step as having two phases: a
send-receiv@hase during which interactions are sent and received gradfarmphase during
which the effects of interactions are applied. If the perform phase occurs first, effects in that
phase are in the past of the send-receive phase, whereas if the perform phase occurs second,
effects in that phase are in the future of the send-receive phase.

84

* Certain An interaction whose outcome is predictable.
» Uncertain An interaction whose outcome is unpredictable.

7.5.2.3 Combining Characteristics

Combining these characteristics yields four
classes of interactions, which we name Types 0,
1, 2 and 3. We list the four classes below along
with the conjunction of characteristics that
defines each class. Also, we present an example
interaction for each class. We depict the four
classes in Figure 44. Typel | Type3

Type 0: Response [Certain

e.g., physical events Uncertain

Type 1: Response [Uncertain

e.g., updates
Type 2: Request [Certain e.g., reads
Type 3: Request [Uncertain e.g., orders

Certain

Type O Type 2

Response
Request

FIGURE 44: Classes of Interactions

7.5.3 Evaluating the Taxonomy

Our taxonomy of interactions exhibits the properties of a good taxonomy discussed in
87.5.1. Our four interaction classes are mutually exclusive since no two of them possess
the same conjunction of characteristics. Our taxonomy is exhaustive because the four
interaction classes cover all possible combinations of the four interaction characteristics.
We believe our taxonomy is unambiguous, repeatable, intuitive and useful. Our
characteristics capture semantic information about interactions. An interaction can be
classified into our four classes accordingmantidnformation, (i.e., its expected effect
on its sender and receiver), rather than non-semantic information (e.g., its syntax, the
variables it reads or writes, its size, the time taken to transmit it). We assume model
designers can identify the semantics of an interaction and determine its characteristics
subsequently. Determining the class of an interaction from its characteristics is
unambiguous and repeatable. Our classes are logical combinations of orthogonal
interaction characteristics. The classes are intuitive because they are derived from well-
known characteristics of interactions. All of the interactions we have encountered exhibit
combinations of these characteristics. Next, we will demonstrate the usefulness of our
taxonomy by showing how to resolve the effects of concurrent interactions.

754 Resolving Effects of Concurrent Interactions

We show how to resolve the effects of concurrent interactions based on the two sets of
characteristics of interactions defined above: respeopessusrequest and certaimersus
uncertain. Independent interactions are those whose concurrent occurrence is
indistinguishable from their sequential occurrence. If we can determine that concurrent
interactions are independent, then they may be resolved by serialization. The following
properties enable designers to determine whether concurrent interactions are independent.

85

Property 1:

Argument:

Property 2:

Argument:

If concurrent interactions affect disjoint sets of attributes, they are independent. If they

If the concurrent occurrence of interactions is indistinguishable
from a sequential occurrence, the interactions are independent.
Assume the interactions are dependent. Therefore, they are related
by either cause-effect or concurrence. If they are related by cause-
effect, they cannot occur concurrently, since cause precedes effect.
If they are related by concurrence, no sequential occurrence of the
interactions can have the same effect as the concurrent occurrence.
Since the interactions do not depend on one another by either
cause-effect or concurrence, the initial assumption is false.

If concurrent interactions affect disjoint sets of attributes, they are
independent.

If concurrent interactions affect disjoint sets of attributes, their
effects can be applied sequentially. Therefore, the concurrent
occurrence of these interactions is indistinguishable from their
sequential occurrence. By Property 1, they are independent.

do not, theyinterfere but cannot be determined to be dependent yet. For interadjons
andl,, if in terms of attributesl,.affect§n I,.affects’= 0 thenl, andl, are independent,

else they interfere. Figure 45 shows a number of interactions that occur during a time-step.
Each interaction is shown as a labeled node in a graph. An arc between two nodes
indicates that the corresponding interactions affect non-disjoint sets of attributes. For

example, the arc between nodes labdlg@nd I3 indicates that in terms of attributes,
|,.affects' n 1z.affects'# 0. The nodes that transitively affect non-disjoint sets of

attributes form isolated sub-graphs. The interactions corresponding to nodes in a sub-
graph are independent of the interactions corresponding to nodes in another sub-graph.

For example, each df, 13 andl, is independent of each of, Is, I, 17 andlg. The set of

interactions corresponding to nodes in a sub-graph may be serialized with respect to the
set of interactions corresponding to nodes in another sub-graph. Therefore, the sets of

interactions {y, I3, 14}, {11} and {Is, lg, 17, Ig} can be serialized with one another.

Property 3:
Argument:

FIGURE 45: Concurrent Interactions Affecting Sets of

Concurrent response and request interactions are independent.
Consider the interactions occurring during a time-stgp; [;] (see
Figure 46). Response interactions received during this time-step
refer to behaviour prior to timé;. Request interactions received
during this time-step refer to behaviour after titpg. Let there be
atimet” such that; <t” <t;,,. Re-arrange the interactions such that

86

all response interactions occur during the time-step’], and all
request interactions occur during the time-stéptf.4]. This re-
arrangement does not alter the semantics of any interaction because
all of the response interactions continue to refer to behaviour prior
to time t; and all of the request interactions continue to refer to
behaviour after timé;,;. All of the response interactions can occur
before all of the request interactions. Therefore, the concurrent
occurrence of response and request interactions is indistinguishable
from a sequential occurrence, namely, responses before requests.
By Property 1, responses and requests are indepemndent.

W N

t

[tiv ti+:lJ

tiq —> Response

N oo

{i t tivg

[tir t,]! [t,, ti+]_.|

FIGURE 46: Independent Concurrent Response and Request Interactions

When two interactions interfere, but one of them has a certain outcome and the other
has an uncertain outcome, then the former takes effect preferentially over the latter.
Interactions with certain outcommusttake effect, whereas interactions with uncertain
outcome may be ignored, delayed or permitted to take partial effect. A partial effect for an
interaction is its effect on some attributes but not others, or its fractional effect as opposed
to its complete effect. If certainty or uncertainty of interaction outcomes is multi-modal
(e.g., as in priorities), then interactions with higher degrees of certainty take effect
preferentially over those with lower degrees of certainty.

When two interactions are resolved, either one of them takes effect preferentially over
another, or they are combined. In the former case, the preferred interaction retains its type.
In the latter case, the resultant interaction has the same type as the original interactions. If
interactions of the same type interfere, they can be resolved by application-specific
policies. For example, if two Type 0 interactions interfere, then they can be combined by a
policy that reflects domain-specific laws. If they cannot be combined, then the model must
be re-designed to avoid such paradoxical interactions. When concurrent interactions are
combined, they may have cooperative or competitive effects. When the effect of combined
interactions is “greater” than the combined effects of the individual interactions, the
interactions areooperative When the effect of combined interactions is “less” than the
combined effects of the individual interactions, the interactions emenpetitive
Determining “greater” and “less” is application-specific. If cooperative or competitive
effects exist and the original interactions are serialized, new interactions can be added to
account for these effects.

87

7.5.5 Policies for Resolving Effects of Interactions

In order to resolve the effects of dependent concurrent interactions, we present policies
based on the characteristics of interactions, and our definitions of a model and interactions
from 83.2. Designers of multi-models may choose from these policies to resolve the
effects of dependent concurrent interactions. Recall that the effect of an interdatftgp
on a state of the model is the chartggnt(t;),), and applying the effect of that interaction
on the representatidRet;) is equivalent to computing a functidf(Ret;), E(Int(ti)k))** .
Applying the resolved effects of all of the interactions in one time-step results in the state
of the model at the next time-step.

Int = (Int(ty), Int(t,), Int(t,), ...)
Int(t;)) = (Int(t)ye Int(t;), > ... * Int(ti)ni)

Rep(f.1) = F(Rep(1), E(Int(t)))

Serializing: If interactions are independent, their concurrent effects are
indistinguishable from their sequential effects (Property 1). Independent interactions may
be serialized in an arbitrary order, and permitted to take effect one after another. The
combined effect of concurrent interactionandJ is E(l « J). If | andJ are independent,
their serialized effects afg(l) ¢ E(J). If the effects ofi are applied before the effects &f
we denote the combined effects B8), E(J). The effect ofl andJ on the representation
Rert;) can be applied by computing(Repqt;), (E(1), E(J))). Applying their serialized
effects is equivalent to computing the functforecursively F(F(Reqt;), E(1)), E(J)).

E(Int(t)y e Int(t) = ... * Int(ti)ni) = E(Int(t),) ¢ E(Int(t)) 0 ... ¢ E(Int(ti)ni)
OE(Int(t)y e Int(t) = ... Int(ti)ni) = E(Int(t),), E(Int(t),), ..., E(Int(ti)ni)
Red 1.,) = F(F(F(F(Ref 1), E(Int(t),)), E(Int(t;),)), ...), E(Int(t),))
Since no ordering is implied for the interactions within a time-step, the interactions
may be ordered arbitrarily. If the representation at time, Reft,;), is the same no

matter how the interactions are ordered, then the interactions are commutative, i.e., the
order in which their effects are applied does not change their combined effects.

E(INt(t),* Int(t), * ... « Int(t),) = E(Int(t),), E(Int(t),), E(Int(t;),), ...
Rep(t.1) = F(F(F(F(Ren 1), E(Int(t),)), E(Int(t),)), E(Int(t)y)), -..)

Response interactions are independent of request interactions because they are
temporally disjoint. Accordingly, if the firsk interactions in the sdnt(t;) are responses
and all of the remaining interactions are requests, then they can be resolved as below:

E(Int(t)) = (E(INt(t)) O ... 0 E(Int(t),_)), (E(Int(t),) ¢ ... 0 E(Int(t),))

ReF(t+ 1)
= F(F(Reg(1), E(Int(t)o) ¢ ... 0 E(Int(t;),_,)), E(INt(t;),) ¢ ... 0 E(Int(t),))

™ We will use sets and individual elements of a set of interactions interchangeably as parameters
for F andE in order to avoid digressing into more formalisms. Distinguishing the “overloaded”
uses of~ andE will be clear from context.

88

Ignoring: The effects of some sets of dependent concurrent interactions can be
resolved meaningfully by ignoring some of them. For example, if uncertain interactions
interfere with certain interactions, the former may be ignored. If the interactiolms(ty)
are sorted such that the fiksinteractions take effect while the rest are ignored, then:

E(INt(t)o* Int(t); * .. * Int(t),) = E(INt(t), e Int(t), .. Int(t), _,)

Ren t..) = F(Refd 1), E(Int(t)y* Int(t),* ... « Int(t}),_,))

Delaying: The effects of some sets of dependent concurrent interactions can be
resolved meaningfully by delaying some of them. For example, uncertain request
interactions may be delayed if the receiver cannot resolve their effects within the current
time-step. If the interactions imt(t;) are sorted such that the fitsinteractions take effect
during the time-stept], t;,1], while the rest are delayed to a future time-steg[1], then:

Rel t.1) = F(Rep(1), E(Int(t)y e Int(t);* ... Int(t),_,))

Rep(t.1) = F(Red t), E(Int(t) « Int(t), » Int(t),,,® ... ® Int(ti)ni))

Combining Cooperatively or Competitively: Resolving the effects of some
dependent concurrent interactions may result in enhancing or diminishing the effects of
the individual interactions. If the effects are enhanced, the interactions have cooperative
effects, whereas if the effects are diminished, the interactions have competitive effects.
The effects of such interactions may be resolved by applying the effects of the individual
interactions as well as compensatory interactions that account for the cooperative or
competitive effects. Let two interactions lint(t;) have cooperative or competitive effects.

Let the compensatory interaction be denotethk(y;)o 1. The effect ofnt(t) is:

E(Int(t)y e Int(t;),) = E(Int(t),) © E(Int(t),) O E(Int(t;), 4)

7.6 Constructing an Interaction Resolver

An Interaction Resolver (IR) resolves the effects of concurrent interactions received by
an MRE. This process involves determining the class of each interaction, determining if
interactions of the same type interfere, propagating the effects of interactions and
resolving the effects on each attribute using application-specific policies. The IR may be a
single component or a number of components distributed over the attributes in an ADG for
the MRE. Conceptually, the distinction is unimportant; during implementation, the
distributed view may be more efficient.

7.6.1 Operation of an IR

The operation of an IR involves implementing policies for resolving the effects of
classes or types of dependent concurrent interactions.

At design time, a designer encodes the type or characteristics of each interaction.
Encoding the type or characteristics enables an IR to classify interactions. Also, at design
time, the designer encodes policies in the IR for resolving types of concurrent interactions.
For example, if Type 1 and Type 0 interactions interfere, the former can be discarded. The
designer must specify a policy for discarding the Type 1 interactions. Examples of such a
policy are ignoring or delaying the interactions (see 87.5.5). If choice of policies varies
during run-time, the designer must specify conditions under which a policy is chosen.

89

At run-time, an MRE sends and receives concurrent interactions during a time-step.
The IR groups the interactions according to their type. Initially, the IR determines the
effect of each interaction on all attributes assuming that the interaction occurs in isolation.
The semantics of an interactidrdetermine how.affectsis constructed. The ADG and
mapping functions determine holaffects is constructed. The effects are not applied
immediately to the attributes since interfering effects have not been resolved yet. For each
attribute, a list of potential changes caused by the concurrent interactions is constructed.
Not all of these changes will be applied to the attribute. The IR resolves changes caused by
interactions by considering the type of interactions and policies that eliminate conflicts
among types of interactions. The IR considers the changes to each attribute in the order:
Type 0, 1, 2 and 3 to preserve dependencies among the corresponding interactions.

The first group of interactions the IR considers is the Type 0 group. Type 0 interactions
are communications about events that have already occurred. Their effects on the receiver
are certain and can be computed in accordance with model requirements. If two or more
Type O interactions interfere, then their effects can be combined. The IR permits each
Type 0 interaction to take effect.

The next group of interactions the IR considers is the Type 1l group. Typel
interactions are communications about events that may have occurred. Their effects on the
receiver are uncertain. Type 1 interactions may interfere with one another as well as with
Type O interactions. Let the tupte, da> denote an attribute and a change to it caused by
a Type 1 interactiorl. The IR determines whethéa conflicts semantically with any
Type 0 change. If it does, the IR marka, da> as discarded. Ifis discarded entirely, the
IR marks all tuples in.affect$’as discarded. Thus, the interaction can take effect entirely
or not at all. Ifl may have partial effects, then not all of the tuplesaffects’ need be
discarded. When the only Type 1 changes remaining are the ones that do not conflict with
the Type 0 changes, the Type 1 changes are checked for conflicts among themselves. If
there are conflicts, the IR selects a set of non-conflicting interactions among them based
on appropriate policies.

Next, the IR considers interactions in the Type 2 group. Type 2 interactions are
communications about events that will occur. Type 2 interactions may be reads of attribute
values, in which case, they do not interfere with any other interactions and can take effect
immediately. Some Type 2 interactions may not be just reads. For example, a particular
Type 2 interaction may read an attribute and have the side-effect of writing to another
attribute, such as a counter. As another example, a Type 2 interaction may be a
communication about an event that is certain to happen, such as a collision between two
entities within the current time-step. Although Type 2 interactions occur during the same
time-step as Type 0 or Type 1 interactions, Type 2 interactions are serialized with respect
to Type 0 and Type 1 interactions. If Type 2 interactions interfere with one another, they
can be combined in the same manner as Type 0 interactions.

Finally, the IR considers interactions in the Type 3 group. Type 3 interactions are
communications about events that may occur. Type 3 interactions may be requests, orders
or commands that may not be satisfied. Type 3 can be serialized with respect to Type 0 and
Type 1 interactions. Type 3 interactions are resolved with respect to Type 2 interactions in
the same way as Type 1 interactions are resolved with respect to Type O interactions.
Although the actual policies may differ, Type 1 and Type 3 interactions may be discarded
in favour of interactions in the other two classes.

90

In Figure 47, we present an algorithm for an IR. The IR determines the effects of all
concurrent interactions by referring to policies encoded by the designer. The fourth step in
the algorithm refers to an algorithm similar to the one we presented in Figure 34 in which
we applied the effects of interactions as soon as they were determined. In Figure 47, we
apply the effects of interactions after all dependent interactions have been resolved.

For each time-step
List L = sort interactions by type
For each interaction | in L
Determine effects of | on each attribute in ADG
For each attribute a in ADG
If cooperative/competitive effects exist
Insert compensatory effects in L
If Type O and Type 1 interactions interfere
Discard Type 1 changes
If Type 2 and Type 3 interactions interfere
Discard Type 3 changes
For each attribute ain ADG
Apply remaining changes

FIGURE 47: Algorithm for Resolving Interactions

7.6.2 An Example IR

We demonstrate the operation of an IR with the example MRE described in Chapter 6.
Let the interactions in Table 9 be received concurrently by the MRE. The class of each
interaction is listed in the column headed “Type”. The sdfsctsandaffectd have been
shown in the last two columns. The semantics of the various interactions are as below:

* Move_Tank: Tank, moves in the current time-step.

* Move_Platoon: Platoon moves in the current time-step.

* Collide_Tank: Tank, suffers a collision in the current time-step.

» See_Tank An entity requests the values of some attributes of ;Tank

* Refill_Tank: Tank is refuelled and repaired in the current time-step.

» Fire_Platoon: Platoon fires in the current time-step.

» Detonation: Platoon is in the path of a detonation in the current time-step.

TABLE 9: Example Concurrent Interactions

Interaction | Typs affects affects
Move_Tank 3 |Pos Pos, Pog Form, App, Dam, Dam,
Move_Platoon 3 | Pos PosPos, Form, App, Dam, Dam,
Collide_Tanl 0 |Vel, Pos Vel, Pos, Form, Vgl Pos, App, Dam, Dam,
See_Tank 2 |0 O
Refill_Tank 1 |Ammoy, Fuel |Fire, Ammo

91

TABLE 9: Example Concurrent Interactions

Interaction | Type affects affects
Fire_Platoon 3| Fire Ammge Ammo,
Detonation 0| App Dan) Dam,

At design-time, a designer encodes the type of each interaction and policies for
resolving types of concurrent interactions. The encoded types of the interactions appear in
Table 9. Suppose the encoded policies are:

L1: If Move_Platoon occurs concurrently with Move_Tan&r Move_Tank,

then Move_Platoon takes effect preferentially.

L2: If Detonation occurs concurrently with Collide_Tgnér Collide_Tank, the

interactions have competitive effects.

L3: If achange caused by an interaction is discarded, the interaction is discarded

entirely, i.e., no partial effects of interactions are permitted.

At run-time, the IR resolves the effects of concurrent instances of the interactions in
Table 9. Accordingly, the IR constructs a table similar to Table 10 for these interactions.
The first column lists the name of the attribute. The second column lists the interactions
affecting that attribute. The rows for which the second column reads “competitive” refer to
a compensatory interaction added by the IR to enforce L2. The third column lists the type
of each interaction. The fourth column lists changes to that attribute caused by a
corresponding interaction. These changes are computed by permitting each interaction to
take effect in isolation initially, determining the changes to attributes caused directly by
the interaction, traversing the ADG and invoking the appropriate mapping functions to
determine the changes to attributes caused indirectly by the interaction. In Chapter 6 we
explained a similar procedure in detail for singly-occurring interactions.

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change
Collide_Tank 0 5Pt
Pos Move_Platoon 3 5P?
Move_Tank 3 5P3
Collide_Tanlk 0 5Pt
Pos Move_Tank 3 5P, ?
Move_Platoon 3 5P,3
Collide_Tanlk 0 5P,t
Pos Move_Tank 3 3P,?
Move_Platoon 3 5P,3
Vel Collide_Tanlk 0 sv1i

92

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change
Vel, Collide_Tanlk 0 3Vt
Vel Collide_Tanlk 0 3Vt
Collide_Tanlk 0 5FL
Form Move_Platoon 3 SF?
Move_Tank 3 5F3
Detonation 0 5AL
Collide_Tanlk 0 5A?
App competitive 0 5A3
Move_Platoon 3 5A4
Move_Tank 3 5A>
Detonation 0 3D,%
Collide_Tanlk 0 3D,?
Damy competitive 0 3D,3
Move_Platoon 3 3D4
Move_Tank 3 3D,°
Detonation 0 3D,t
Collide_Tanlk 0 3D,2
Dam, competitive 0 3D,3
Move_Platoon 3 3D,*
Move_Tank 3 3D,°
o Refill_Tank 1 3R?
Fire_Platoon 3 =
Ammo; Refill_Tank 1 5A ;L
Fire_Platoon 3 5A 2
Ammo, Refill_Tank 1 5A
Fire_Platoon 3 5A 2
Fuek Refill_Tank 1 sut

For each attribute, the IR resolves the changes caused by different interactions. The
order in which attributes are chosen is unimportant. Interactions that do not change any

93

attributes, i.e., whosaffects’= [, cannot cause any inconsistencies among the multiple
representations. If such interactions are reads, the values returned may be the values of
attributes before any changes are applied or after all changes have been applied. We show
how to resolve concurrent changes for all of the attributes in our example.

« Pos: The concurrent changes &R, 3P% anddP3. 3P is a Type 0 change and can
be applied 3P? and 3P are Type 3 changes that conflict with each other, but are
independent ofP! which is a Type 0 change. By LBP? is applied anddP® is
discarded. B%/ L3, Move_Tasrikis discarded entirely, and the IR discarﬁl@lz,
3P,2, 3F3, 3A>, 3D;° and3D,° — the changes caused by this interaction to each
attribute in Move_Tankaffects’

« Pos: The concurrent changes remaining afy* and 3P;3. 3P;* can be applied
since it is a Type O change. In practice, we exp&f™ =0 since a collision
involving Tank, will not affect Tank. However, this is an artifact of the particular
interactions we have chosen, hence it does not factor into the decision about which
changes are applie6P13 does not conflict withSPl1 because of the types of these
changes. The IR has discardi®j? already.

« Pos: The concurrent changes remaining aR! and 3P,°. 3P, can be applied
sinceitisa Type 0 changéP23 can be applied since it does not conflict WBIPQl
because of the types of these chand@s. has been discarded already.

« Vel: V! can be applied.

« Vel;: 3V, can be applied.

« Vel,: 3V, can be applied.

« Form: Both the remaining chang@&! anddF3, can be applied.

« App: 3AL, 3A2 and 3A3 can be applied because they are TypeA3 is a
competitive change caused by the compensatory interaction added by the IR. Since
3A3 is a compensation for two Type O interactions, it is also Type 0. After the
Type O interactions are applied, the Type 3 changes are applied. Shrchas
been discarded, onBA* can be applied.

« Damy: D%, 3D, and 3D, can be applied because they are Typ@D;* is
applied subsequently.

« Damy: 3D,%, 3D,? and 3D,° can be applied because they are Typ@D,” is
applied subsequently.

« Fire: The potential changes ab&! and3R?. 3R is a Type 1 change. Since there
are no previously-applied changes, it can be appb&{.can be applied as well
since Type 3 interactions do not conflict with Type 1 interactions.

« Ammoy: 3A;* anddA 2 can be applied.

« Ammo,: 3A,* anddA,? can be applied.

« Fuel:3U* can be applied.

When all of these changes have been applied, the MRE will be consistent. The IR
enforces policies L1, L2 and L3 specified for this application. Since the specified policies
for dependent concurrent interactions do not isolate the interactions, the effects of these
interactions can be resolved in a manner meaningful to the application. Consequently, the
MRE interacts at multiple representation levels concurrently and consistently.

94

1.7 Chapter Summary

Concurrent interactions may have effects that are dependent on one another. Resolving
the effects of such interactions by serializing them is incorrect since serialization isolates
the interactions. Dependent concurrent interactions can be resolved efficiently by
classifying them and formulating policies for resolving classes of interactions. We present
four characteristics of interactions — request, response, certain and uncertain — and four
classes of interactions based on combinations of these characteristics — Types 0, 1, 2 and
3. The classes distinguish semantic types of interactions encountered in models. Based on
these classes of interactions, we presented policies for resolving the effects of their
concurrent occurrence. We showed how to construct an Interaction Resolver (IR) for an
MRE. An IR resolves the effects of types of interactions at run-time. By designing a
Consistency Enforcer and an Interaction Resolver, a designer can ensure that an MRE
interacts at multiple representation levels concurrently. Next, we present a process for
applying our frameworKkJNIFY, to jointly-executing models.

95

Woe to the author who always wants to teach;
The secret of being a bore is to tell everything.
— Voltaire,De la Nature de 'THomme

Chapter 8

Applying UNIFY: A Process

In this chapter, we present guidelines and a process for applying our techniques to
achieve effective MRM. Designers can appNIFY by reading this chapter first and
referring to preceding chapters when necessary. We presented Multiple Representation
Entities (MRES) as a means of maintaining concurrent representations (Chapter 5). A
Consistency Enforcer (CE) maintains internal consistency within an MRE (Chapter 6). An
Interaction Resolver (IR) resolves the effects of dependent concurrent interactions on an
MRE (Chapter 7). Here, we present a process for applying the techniquésiiky. By
following these steps, designers can achieve effective MRM in their applications:
Construct an MRE from the representations of jointly-executing models.

Capture dependencies among the attributes with an ADG.

Select mapping functions for each dependency.

Classify interactions according to a taxonomy.

Select policies for resolving the effects of concurrent interactions.
. Construct a CE and an IR for the MRE.

We expect designers to construct solutions for their MRM applications based on
general guidelines. In 88.1, we justify each guideline briefly. SIoS#FY is intended to
aid designers of multi-models, in 88.2 we show hONIFY can be used in conjunction
with a familiar modelling methodology. In 88.3, we explain how to apply the techniques in
UNIFY with the example application employed in previous chapters.

ok wnE

8.1 Guidelines for MRM Designers

We present guidelines for achieving effective MRM usidiIFY. We justify each
guideline briefly and refer to earlier sections in this dissertation for detailed explanations.
We assume that a designer desires to construct a multi-model from models that meet their
users’ requirements. For each model, the designer must identify the representation of
entities, relationships among attributes and interactions that change the state of entities.
We assume the designer can identify the cross-model relationships in the multi-model, can

96

understand the intertwined semantics of interactions and can make time-steps in the multi-
model compatible.

G1:

G2:

G3:

G4:

G5:

G6:

G7:

G8:

Represent entities at levels at which they can interact.

This guideline arises from FO-1 in 84.2. For effective MRM, entities should
interact at a representation level at which their semantics are compatible (see
Figure 9 in Chapter 4).

Maintain concurrent representations for jointly-executing models.

Maintaining concurrent representations means preserving them at all times and
permitting interactions to change them. MREs maintain concurrent
representations (see Chapter 5). Designing MREs can ensure that entities
interact at levels at which their semantics are compatible.

Make the time-steps of the multiple models compatible.

If jointly-executing models have compatible time-steps, neither violates any

assumptions made by another during any time-step. Achieving compatible
time-steps may involve executing some models at finer or coarser time-steps
(see 83.3.3). Accordingly, the attributes in the models may be augmented with
tolerance values, which determine acceptable variances in the values of the
attributes at overlapping simulation times (see 84.2.4).

Capture cross-model relationships.

Capturing relationships among representations involves determining the

semantics of attributes that are part of the representations. Attributes with

overlapping semantics are likely to be related to one another. Relationships
among models can be captured by Attribute Dependency Graphs and mapping
functions (see Chapter 6).

Propagate the effects of an interaction to all representation levels.

An interaction affects the attributes at its own representation level as well as
related attributes at other representation levels (see FO-2 in 84.2.2).
Propagating the effects of interactions to all relevant attributes ensures that
multiple representations are consistent.

Select mapping functions for each relationship between representations.
These functions translate value spaces or changes in values among related
attributes. Mapping functions must satisfy the properties time-bounded
completion, composability and reversibility (see 8§6.2).

Identify semantics characteristics of interactions.

In 87.5, we presented a taxonomy of interactions, consisting of four classes, in
order to reduce the complexity of resolving concurrent interactions. Alternative
taxonomies are possible. Classifying an interaction involves understanding its
semantics, i.e., its effects on its sender and receiver.

Select policies for resolving the effects of dependent concurrent interactions.
The effects of concurrent interactions may depend on one another (see FO-3,
84.2.3, 87.3). In 87.5.4, we presented example policies for resolving the effects
of dependent concurrent interactions. Specifying policies for resolving
interactions involves capturing the semantics of their concurrent occurrence.

97

By following these guidelines, designers can incorporate effective MRM into their
applications. A multi-model can satisfy its users’ requirements if MRM is effective.

8.2 UsingUNIFY with a Specification Methodology

We expect designers of multi-models to achieve effective MRM by empldyMtFY
in conjunction with a specification methodology. We augment an existing specification
methodology so that designers can build on familiar modelling techniques when they
apply UNIFY. Specification methodologies such as OM[RumM91], OOA [SHLAER9Z]
and UML [ALHIR98] support specifying model representations and relationships, but not
the effects of interactions. In contrast, OMT [OMT98] supports specifying the effects of
an interaction in terms of its parameters, its sender, its receiver and the attributes it affects.
Since resolving the effects of concurrent interactions is one of the hardest problems in
MRM, we regard the support for interactions in OMT suitable for MRM. We augment
OMT by permitting designers to specify attribute relationships, interaction types and
policies for resolving concurrent interactions.

In the Department of Defense’s High Level Architecture (HLA) initiative, multiple
models may execute together in a “plug-and-play” fashion. Individual models and multi-
models are specified using a methodology called the Object Model Template (OMT). In
OMT, individual models, or federates, are specified by tables describing their interface.
These tables together are called the Federate Object Model (FOM) for that federate. The
FOM for a particular model has the following tables:

» Object Class Structure Table (OCST) shows the class hierarchy along with
information for whether each class is publishable (shareable with other models),
subscribable (interesting to the current model) or both.

* Attribute/Parameter Table (APT) lists object attributes and interaction parameters
along with their data type, cardinality, units, resolution, accuracy, accuracy
condition, update type and update condition.

» Object Interaction Table (OIT) lists each interaction, its sender, its receiver, the
attributes it affects and whether a model initiates, senses or reacts to it.

* Enumerated Data Table (EDT) lists the values of all enumerations.

» Complex Data Table (CDT) lists the definitions of all structured data types.

» Object Class Definitions (OCD) describes the role of each entity.

* Object Interaction Definitions (OID) describes each interaction.

* Attribute/Parameter Definitions (APD) describes each object attribute and
interaction parameter.

The OCST and the APT enable a designer to construct the representations for a multi-
model. The APT and the OIT enable the designer to describe the interactions for the multi-
model. In OMT, the only relationships that can be determined are those of base class and
derived class [8RoU91]. These relationships capture neither attribute relationships nor
complex entity relationships. Furthermore, although in OMT a designer can specify the
effects of an interaction, the designer cannot specify effectsnaiurrentinteractions.

We augment OMT with tables that permit a designer to capture relationships among
attributes and specify policies for resolving the effects of concurrent interactions. The
inability to express entity relationships is a serious shortcoming in OMT. The class
hierarchy captured by the OCST captures static entity relationships such as inheritance,

98

but not the dynamic relationships among entities, for example, relationships of
configuration. Therefore, we augment OMT with an Attribute Relationship Table (ART).
This table lists each attribute dependency, its class and specifications for its associated
mapping function. In OMT, the OIT and APT permit interactions to be specified in detalil.
We augment the OIT in OMT with a column for specifying the class for each interaction.
Once the class for an interaction has been specified, policies for resolving the effects of
concurrent interactions can be formulated. We augment OMT with a table, the Concurrent
Interactions Table (CIT), which permits a designer to specify such policies. The CIT
permits a designer to specify policies in terms of combinations of classes of interactions or
individual interactions. Table 11 is an ART and Table 12 is a CIT for the example
application developed in Chapters 6 and 7. With these additions, designers can employ
OMT andUNIFY to incorporate MRM into their applications.

TABLE 11: Example Attribute Relationship Table

Dependency Type Specification
Hits; — Str Cumulative | Stris the weighted sum of Hiasd Hits.
Hits, — Str Cumulative |Changes to Str are distributed to Hignd Hits
Str - Hits; Distributive according to weights on the dependencies.
Str - Hits, Distributive
Ammo, - Fire Cumulative | Fire is the weighted sum of Amnamd Ammg.
Ammo, — Fire Cumulative |Changes to Fire are distributed to Amyamd _
Fire — Ammoy Distributive | AMmMo, according to weights on the dependendies.
Fire -~ Ammo, Distributive
Pog - Pos Cumulative | Pos is the centroid of Pasd Pog
Pos - Pos Cumulative
Pos- Pos Distributive
Pos- Pos Distributive
Vel - Pos Modelling Position Pos changes with Velocity Vel accordjng
Vel, - Posg Modelling | to physical laws.
Vel, - Pos Modelling

TABLE 12: Example Concurrent Interactions Table

Concurrent Interactions Condition Policy

Move_Platoon, any combinatigill received | Ignore all except Move_Platoon
of (Move_Tank, Move_Tank)

Detonation, any combination ofAll received | Add compensatory interaction for

(Collide_Tank, Collide_Tank) competitive effects to Dajror Damy;
actual damage less than sum of
damages

Type 0, Type 1 All received| Ignore Type 1

99

TABLE 12: Example Concurrent Interactions Table

Concurrent Interactions Condition] Policy
Type 2, Type 3 All received| Ignore Type 3
Any Interaction Ignored or |Ignored or Delayed entirely, i.e., no
Delayed partial effects permitted
8.3 Process for Effective MRM

UNIFY can be summarised by the process diagram in Figure 48. The unshaded boxes
represent steps in the process of apphyilgIFY, whereas the shaded boxes represent
steps in the design of models or a multi-model. The dashed arrows represent feedback in
the process. We view designing models, constructing a multi-model and achieving MRM
as iterative processes. We employed a running example of a Platoon-Tanks MRE in
Chapters 6 and 7 in order to explain our techniques for effective MRM. Here, we present
the process of applying those techniques.

UNIFY does not address the design of individual models. However, the steps in
UNIFY depend on the successful completion of steps in the design of individual models.
For example, constructing an MRE requires that the designer identify the representations
of jointly-executing models, Modgland Mode}. Conversely, constructing an MRE may
provide insights into identifying representations of the models. Likewise, constructing an
ADG and selecting mapping functions for an MRE requires that the designer identify the
relationships within and among jointly-executing models. In the design of a model,
identifying relationships can be carried out in parallel with identifying interactions. In like
fashion, INUNIFY, constructing an ADG and selecting mapping functions can be carried
out in parallel with classifying interactions and selecting policies for resolving concurrent
interactions. In practice, these steps may be carried out sequentially; however, their
relative order is unimportant.

Verification and validation (V&V) is an important step in the design of models. V&V
is undertaken to ensure that a model is effective, i.e., meets its users’ requirements. V&V
for a multi-model depends on V&V for constituent models as well as V&V for MRM.
V&V for constituent models is outside the scope of our work. V&V for MRM involves
ensuring that jointly-executing models satisfy MRM requirements: multi-representation
interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). The
MRE approach satisfies R3. If R1 and R2 are not satisfied, a designer must iterate through
the process of achieving MRM. In turn, the designer may have to re-examine the
construction of jointly-executing models.

We list the steps iUNIFY for the Platoon-Tanks MRE from Chapters 6 and 7. The
Platoon-Tanks multi-model captured the combined semantics of a Platoon model and a
Tank model. We employetdNIFY in order to achieve effective joint execution of the
Platoon and Tank models. The steps we undertook in the process of employing techniques
in UNIFY are listed below along with the sections in which we performed each step.

1. Construct an MRE for the jointly-executing models: 86.1. The Platoon-Tanks

MRE captured the concurrent representations of a Platoon and two Tanks. The
MRE could interact at either or both representation levels at any time.

100

Multi-Model

FIGURE 48: Process for Effective MRM

| Modely
(O]
© .
2 _ | Determine Model
:’ Requirements
: Y
F— > Specify Model
| | UNIFY
: ? R2Y
| Identify Model _ —
[~ ™ Representation > Construct MRE == — 1
I ¢ |
| v |
| R27? |
| T Q@ > Construct ADG<|— — —
-2
| o5 |
IS8 Y ,!
| = .| Select Mapping_ | _ _RZ_ |
| [} &J Y ~| Functions |
| = !
[o) Y 5 |
| 5 g Classify <_Rl_ |
| =5 Interactions |
L =iE |
T r T T T TeEd T Y
| SE R1? |
| = » Select Policiest« — —:
I
I
: v I Y Y |
F — = Implement Model Construct CE & IR |
I I
: Y Y :
L __ | \Verify & Validate Verify & Validate | |
Model MRM
A
Y I
o |
| | |
!_ - Jl_ | \Verify & Validate | _!

101

N

Capture dependencies among the attributes in the MRE: 86.1. An ADG captured
the dependencies among Platoon and Tank representations. By classifying and
weighting dependencies, we captured their static and dynamic semantics.

3. Select mapping functions for each dependency: 86.2. We selected mapping
functions to translate values or changes in values among Platoon and Tank
attributes. These mapping functions ensured that the Platoon-Tanks MRE was
internally consistent at all observation times.

4. Classify interactions: §7.6.2. We classified the interactions in the Platoon and
Tank models according to our taxonomy. This classification enabled us to
capture the semantics of interactions.

5. Select policies for resolving concurrent interactions: 87.6.2. We selected policies
for capturing the dependencies among concurrent interactions. These policies
resolved the effects of dependent concurrent interactions.

6. Construct a CE and an IR for the MRE: §6.3 and 87.6.2. A CE consists of an
ADG and application-specific mapping functions, whereas an IR consists of
policies for resolving the effects of interactions. We presented processes for the
operation of a CE and IR for the Platoon-Tanks MRE. A CE and IR maintain
internal consistency within an MRE when concurrent interactions occur.

The above steps constitute a process for achieving effective MRM for an application.
The process and the techniques employed in each step are pPaNteY, our approach for
effective MRM. We demonstrated how to appNIFY to a multi-model application. We
present our experience in applying the above process to several models in the appendices.
Next, we evaluat&NIFY.

102

The purpose of computing is insight, not numbers.
— Richard Hamming

Chapter 9

Evaluation

Our framework, UNIFY, is a sufficient and practical approach for effective MRM.
UNIFY is sufficient because it satisfies three requirements for MRM: multi-representation
interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). We
described these requirements in 81.3 and 8BMIFY is practical because it offers
techniques and processes for designing a multi-model. Designers canldgpy in
conjunction with a model specification methodology such as OMT to construct effective
multi-models. In 89.1, we evaluatdNIFY in terms of the MRM requirements. In §9.2, we
discuss briefly howJNIFY can be applied to existing applications to achieve effective
MRM. In 89.3, we present limitations of our work.

9.1 Evaluating UNIFY in terms of MRM Requirements

We evaluatdJNIFY with regard to our three sufficiency requirements R1, R2 and R3:
multi-representation interaction, multi-representation consistency and cost-effectiveness.
Since the joint execution of multiple models is intended to capture their combined
semantics, an MRM approach must permit the execution of the individual models.
Therefore, the MRM approach must permit entities at all representation levels to interact.
An MRM approach must maintain consistency among the representations of jointly-
executing models. If the representations of jointly-executing models are consistent, the
behaviours of the models can be consistent, thus leading to effectiveness of the multi-
model. Consistency can be maintained among multiple representations by propagating
changes from one representation to another. Lastly, an MRM approach must keep
simulation and consistency costs low. We reiterate the definitions of R1, R2 and R3 here.

» Multi-representation Interaction (R1): Entities in each jointly-executing model

may initiate and receive interactions concurrently.

» Multi-representation Consistency (R2) The multiple models must be consistent

with one another, i.e., cross-model relationships must hold.

» Cost-Effectiveness (R3) The total cost of simulating multiple models and

103

maintaining consistency among them should be low.
UNIFY satisfies these requirements. In the following sub-sections we evalbake
and alternative MRM approaches such as selective viewing and aggregation-
disaggregation in terms of these requirements.

9.1.1 Multi-Representation Interaction

UNIFY satisfies R1 by permitting interactions to occur at all representation levels. Let
ModeM be a multi-model constructed from low-resolution moddbdel®, and a high-
resolution modelModeP. Recall from Chapter 3 thatodel” = Rep’, Rel’, Int"'O

Alternative approaches, such as selective viewing and aggregation-disaggregation, do
not satisfy R1. In selective viewing, interactions at only the most detailed representation
level are permitted. In other words, in selective viewirgt™ =Int® at all times.
Therefore, selective viewing does not satisfy R1. In aggregation-disaggregation,
interactions at different representation levels are permitted, but at only one level at a given
time. In other words, at timg O T, IntM(t;) = Int"(t;) but at some time; O T, t, # t;,

IntM(tj) = IntB(tj). Since at any given time, interactions at only one level are permitted,
aggregation-disaggregation does not satisfy R1.

In contrast with selective viewing and aggregation-disaggregatidiFyY permits
concurrent interactions at multiple representation levelsUNIFY, Int™ = Int* O Int.

Since interactions at all representation levels can occur at all tiléBY satisfies R1.

9.1.2 Multi-Representation Consistency

UNIFY satisfies R2 by maintaining consistency among jointly-executing models. A
Consistency Enforcer (CE) maintains consistency among the concurrent representations
within an MRE. A CE propagates a change caused by an interaction to all dependent
attributes. A CE consists of an Attribute Dependency Graph (ADG) and application-
specific mapping functions. An ADG captures dependencies among attributes at different
representation levels. Mapping functions translate changes to attributes before the next
observation time occurs. Consequently, an MRE is always internally consistent.

In alternative MRM approaches, such as aggregation-disaggregation and selective
viewing, multi-representation consistency is not satisfied because cross-model
relationships do not hold at all times. For a valid moddlbdel = [ORep Rel Il Rej
must hold at all observed times. For a multi-mod®pdeM = Model* O ModeP,

ReM = Re O ReP O Ref™ss-Model the modelsModel* andModeP, are not related to

one anotherRef0ssmodeL 7 i o ' cross-model relationships are null. In such a case,
cross-model relationships hold at all observation times for any approach, including
UNIFY. However, for typical jointly-executing modeldRef™SSModek 7 - Selective
viewing forces Ref0ssModeliq ‘e nyll, since only one representation level exists.
Likewise, aggregation-disaggregation forcBef©SSModelis he null except during
transitions from one representation level to another. Forcing cross-model relationships to
be null ensures that they hold trivially, but does not capture relationships among jointly-
executing models at all observed times. Therefore, selective viewing and aggregation-
disaggregation satisfy R2 partially only.

In UNIFY, ReFmSS'mOdeEolds at all observation times. ADGs and mapping functions
capture Ref0ssmodelcompletely. A CE, which consists of an ADG and mapping

104

functions, ensures that changes to attributes of an MRE propagate to all dependent
attributes before the next observation time. Consequently, no two entities can receive
inconsistent views of an MRE at overlapping simulation times. Therefore, an MRE
exhibits temporal consistency. Mapping functions ensure that attributes in an MRE do not
change in a manner inconsistent with model requirements. As a result, the MRE exhibits
mapping consistency. Since an MRE is always internally consittBIhEY satisfies R2.

9.1.3 Cost-Effectiveness

UNIFY satisfies R3 by reducing the total cost of executing a model. A sufficient
approach to MRM must achieve multi-representation interaction and multi-representation
cost-effectivelySimulation cosis the cost of executing multiple mode{Sonsistency cost
is the cost of maintaining consistency among concurrent representations. Together,
simulation and consistency costs constitute the total cost of executing a model. Simulation
and consistency costs can be translated to resource consumption costs. For example,
simulation cost can be translated to the amount of processing required to apply the
primary effects of interactions. In other words, when an interaction occurs, the processing
required to change the values of attributes affected directly by the interaction is a
simulation cost. Likewise, consistency cost can be translated to the processing cost
incurred in order to keep entities consistent. In other words, when an interaction occurs,
the processing required to apply the secondary effects of the interaction is a consistency
cost. Simulation and consistency costs tend to be trade-offs, i.e., an approach with low
simulation cost tends to have high consistency cost dnd versa UNIFY enables
reducing the two costs, i.e., their sum is lower wHgNIFY rather than aggregation-
disaggregation or selective viewing is the MRM approatNIFY satisfies R3 by
reducing simulation and consistency costs.

We compare simulation and consistency costs for selective viewing, aggregation-
disaggregation antNIFY. It is hard, if not impossible, to change the MRM approach
dynamically for an application in order to measure costs fairly. Hence, we construct a
synthetic application for which we can change the MRM approach. We present the
assumptions we make in our cost comparison.

9.1.3.1 Assumptions

The semantics of our synthetic application are unimportant; we merely count
simulation and consistency actions undertaken by the application. Each action reflects a
processing or communication operation with an associated application-specific resource
cost. For a fair comparison, each approach should permit interactions at all levels.
However, aggregation-disaggregation and selective viewing do not permit interactions at
non-simulated levels, where&dNIFY permits interactions at all levels. Accordingly, we
compareUNIFY with hypothetical variants of aggregation-disaggregation and selective
viewing that permit interactions at non-simulated levels. CompadhgFY with these
variants does not bias our cost analyses because the variants have the same remaining
characteristics as their corresponding original approaches.

In our hypothetical aggregation-disaggregation approach (AD), an entity is simulated
at its lowest resolution or most aggregate level. As long as interactions occur at this level,
the entity is represented at this level alone. However, when an interaction at a higher

105

resolution occurs, the entity is disaggregated into sub-entities at the level of the
interaction. After the effects of the interaction have been applied to the appropriate sub-
entity, all sub-entities are aggregated back to the lowest resolution. AD can be improved,;
partial disaggregation and pseudo-disaggregation are improvements over AD (see 82.2.2).
However, as it stands, AD captures the essence of the aggregation-disaggregation
approach. AD has low simulation cost since only a few entities are simulated.

In our hypothetical selective viewing approach (SV), an entity is simulated at the
highest resolution level. The entity is disaggregated initially into its sub-entities at the
highest resolution. Each sub-entity exists throughout the duration of the simulation. When
lower-resolution interactions occur, they are translated into their highest-resolution
equivalents. If a low-level interaction affects a single low-resolution entity, we translate
the interaction to many high-resolution interactions that affect a corresponding number of
high-resolution entities. SV has low consistency cost since only one level is simulated.

In UNIFY, an MRE is constructed for an entity at multiple resolution levels. In our
synthetic application, we maintain attributes at all resolution levels at all times. The effects
of an interaction are applied at the appropriate resolution level and propagated to other
resolution levels. Computing simulation costs for an MRE simulated at all resolution
levels would bias our analysis againgNIFY unfairly. An MRE simulated at all levels
permitsconcurrentinteractions at different levels, which none of AD, SV, aggregation-
disaggregation and selective viewing permit. Therefore, for our analyses, we simulate an
MRE at any one of its levels at a given time. Simulating the lowest resolution level would
incur low simulation cost. However, we choose the simulated level uniform-randomly to
reflect the capability of an MRE to be simulated at any level.

The model for our synthetic application consists of one entity (shown in Figure 49)
represented at multiple resolution levels. The entity may interact at any level. In order to
satisfy R2, the representations of the entity at all resolution levels must be consistent with
one another. We make some assumptions about our model for our analyses:

» There arel resolution levels, level 0 being the lowest (most aggregate) and level

L-1 being the highest (most disaggregate).

» A sub-entity at a resolution levekconsists oN identical sub-entities at levetl if
0<j<L-1, and zero sub-entitiesjiE L-1. We refer td\ as the fan-out.

« All sub-entities at all levels have exactyattributes. All of the attributes of a sub-
entity at a particular level are modified by every interaction at that level.

* Interactions may occur at any resolution level.

* All interactions are independent of one another. Therefore, concurrent interactions
are serialized.

* An entity executesprogressinteractions to advance in the simulation. These
interactions do not change attributes, but involve processing on the part of the
entity. An entity receiveR interactions before receiving a progress inggva_cﬁi_on.

We defineW as a function orX andY such that:W(X, Y) = § = f
an entity is represented &tresolution levels with a fan-out dfT} it has W(I\i< E)lsub-
entities. In AD, an entity may be disaggregated down to ldvel, thus requiring
O(W(N, L)) memory. In SV, only levelL-1 sub-entities are simulated, thus requiring
O(NY1). In UNIFY, all sub-entities at all levels are present, thus requiﬂ)(?J(N, L))
memory. The memory consumption for all three approaches is of theQider).

106

" _
(] =]
g —
3 @
£ 1
a s
(1] >
wm
— L levels
=
= |

FIGURE 49: Entity in Synthetic Application

9.1.3.2 Consistency Cost

Consistency Cost (CC) reflects the number of actions required to maintain consistency
when interactions at different resolution levels occur.

Aggregation-disaggregation In AD, an entity is always simulated at level 0. If an
entity receives an interaction at level(O<r <L), the entity disaggregates to level
applies the effects of the interaction at levednd re-aggregates to level 0. Aggregation
and disaggregation maintains consistency among the multiple representations because the
effects of an interaction propagate to attributes at the simulated level. In order to
disaggregate to levelfrom the current level O, or aggregate from level O to layahe
costs incurred ar®(a x W(N, r)). Thus, CGp (Figure 50 O(2a x W(N, r)).

O(@x¥(N,r))
I

L ﬁf}_ :2$2:?Ction at
& &

FIGURE 50: AD — Consistency Cost

Selective Viewing In SV, an entity is always simulated at levetl. There exists only
one level of resolution, namely, the highest. Consistency is maintained only within one
level. All interactions occur at levelL-1, where L=1. Therefore, CGy
(Figure 51)= O(a).

UNIFY: In an MRE, an entity is represented consistently at all levels of resolution. If
an interaction occurs at leve(0 < r <L), the entity applies the effects of the interaction at
level r and propagates the effects to all other levels. In order to propagate the effects to
higher resolution levels, the cost incurred @a x W(N, L-r)). The cost incurred in

107

A

< . N\, Interaction at
%_E(i% i& nteraction a

level L-1

_ FIGURE 51: SV — Consistency Cost
propagating the effects to lower resolution levels @(ra). Thus, CGQNEry

(Figure 52)=O(ra + a x W(N, L-r)).

.

6 1

= - Interaction at
= AW/ levelr

> ., \

X

il & &

o

FIGURE 52: UNIFY — Consistency Cost

9.1.3.3 Simulation cost

Simulation Cost (SC) reflects the number of actions required to simulate an entity. In
AD, an entity is simulated at level 0. Therefore, §C= O(a). In SV, an entity is simulated
at level L-1. Therefore, SG,=O(ax N-"). In UNIFY, at a given time, an entity is
simulated at one of the multiple levels. If the entity is simulated at ley@l<r <L),
SCuniey = O(a x N"). Figure 53 shows SC for AD, SV abtiNIFY.

& & ;4:2& & & &

FIGURE 53: (Left to Right) AD, SV andJNIFY — Simulation Cost

108

9.1.34 Expected Costs

Table 13 compares the expected costs for the different approaches. Figure 54 shows a
rough diagram of expected simulation and consistency costs for AD, SWNIR.

TABLE 13: Cost Comparison among MRM approaches

cc sc
AD O(2a x W(N, r)) O(a)
sV 0(a) O(aN-")
UNIFY | O(ra+a®(N,L-r)) | O(ax N

As Figure 54 shows, simulation and consisten
costs are trade-offs. Consistency costs decreds
with approaches that execute more in th
disaggregate. However, simulation costs increase.
An approach executing mostly in the aggregate has
low simulation costs, but high consistency costs.
UNIFY lies between extremes of multi-resolutio

approaches, i.e., AID UNIEY SIV=
SCap = SCuNiFy < SCsy
CCap 2 CCyniry 2 CCsy FIGURE 54: Expected Costs

Therefore, UNIFY enables reducing the sum u
simulation and consistency costs.

9.1.35 Experimental Costs

We constructed a simulation to measure and compare SC and CC for AD, SV and
UNIFY. The simulation confirmed our predictions about how the costs grow as factors
such as number of levels and fan-out grow. Also, the simulation confirmed our expectation
that the total of simulation and consistency costs can be reduc@d Y.

All costs were measured in terms of the number of actions. SC was the total number of
actions to execute a progress interaction JS@nd apply the primary effects of an
interaction (S@), i.e., SC=SC + SC. SCyp and SC,p were one per interaction. For
each interaction, S&G,, was equal to the total number of entities at the highest resolution,
and SCs, was equal to the number of sub-entities affected by the interaction (after
translating a low-resolution interaction into high-resolution interactions). For each
interaction, S@U,\“FY was equal to the number of entities at a level chosen uniform-
randomly when a progress interaction occurred, ant,§Ey was one. CGp was the
number of times sub-entities were created and destroyed per interactigg. V&S the
number of sub-entities created and destroyed initially, Gy was the number of actions
required to propagate the effects of each interaction to all sub-entities and to each parent.

We measured costs by varying four independent parameters one at a time:

* T: total number of interactions during the simulatior 10, 100, ..., 100000.

* R: number of interactions between progress interactiorsl R, 3, ..., 10.

109

 F: fan-out, or the number of sub-entities per entity.Tf 2, 3, ..., 10.

* L: number of levels. =1, 2, 3, ..., 10.

The canonical case was+43, F=2, T=1000, R=5. The graphs that follow should

be interpreted for trends rather than actual numbers. The relationship between costs of
simulation and consistency and the above parameters are as follows:

1. As the number of interactions increased, primary effects on sub-entities
increased, and more progress interactions occurred (since the number of progress
interactions was ¥R). Therefore, SC increased with T for all approaches
(Figure 55). Sy, increased the most since all interactions were translated into
equivalent highest-resolution interactions. The translation usually resulted in
more interactions being generated since a low-resolution interaction affects
many sub-entities at higher resolution levels.

2. As the number of interactions increased, secondary effects on sub-entities
increased. Therefore, G and CGypy increased with T (Figure 56). No
consistency maintenance is required for SV since only one level is present.

3. As R increased, progress interactions occurred less frequently, since the number
of progress interactions was-R. Accordingly, SC decreased with an increase in
R for all approaches (Figure 57).

4. The increase or decrease in R did not change CC since the progress interactions
were purely simulation interactions. Accordingly, CC was unaffected by R for all
approaches (Figure 58).

5. As the number of sub-entities for each level increased;,S&hd SG)\ ey
increased polynomially. S§, increased because an increase in the number of
sub-entities increased the number of translated interactions, &@ SGn iy
increased because a greater number of sub-entities resulted in a greater number
of actions when progress interactions occurred,$@as independent of F
because the effects of all interactions were applied at level O (Figure 59).

6. As the number of sub-entities for each level increased, CC increased
polynomially for all approaches (Figure 60). An increase in F resulted in an
increase in Cg,, because more sub-entities were created initially and destroyed
finally. CCpp increased with F because more sub-entities were created and
destroyed during aggregation and disaggregationy & increased with F
because more effects were propagated to other resolution levels.

7. As the number of levels increased, §&and Sy gy increased exponentially.

SCyy increased because the greater the number levels, the greater the number of
translated interactions. For §¢ and S\{jney: @ greater number of levels
resulted in an greater number of actions for progress interactiong, 3@s
independent of L since the effect of all interactions, including progress
interactions, were applied at level O (Figure 61).

8. Asthe number of levels increased, CC increased exponentially for all approaches
(Figure 62). CG,y, increased with L because more sub-entities were created
initially and destroyed finally at levél-1. CCyp increased with L because more
sub-entities were created and destroyed during aggregation and disaggregation.
CCyunipy increased with L because more effects were propagated to other
resolution levels.

110

In Figure 63, we plot SC, CC and Total Cost using each approach for the canonical
case (L=3, F=2, T=1000, R=5). Total Cost is a weighted sum of simulation and
consistency costs. The weights for SC and CC are application-specific; in the graph in
Figure 63 we assign equal weights to them, i.e. Total E&T+CC. UNIFY incurs the
least total cost in this case. Other cases in which the values of the above parameters were
varied indicate similar trends.

1000000
100000
10000

&% 1000
100

10

10 100 1000 10000 100000
T

L=3,N=5R=3
FIGURE 55: Simulation Cost varying with Number of Interactions

1000000
100000

10000

CC

1000

100

10

10 100 1000 10000 100000
T

L=3,N=5R=3
FIGURE 56: Consistency Cost varying with Number of Interactions

9.1.3.6 Summary of Cost-Effectiveness

UNIFY satisfies R3 by enabling reductions in the costs of simulation and consistency
maintenance. Although selective viewing incurs low consistency cost and aggregation-
disaggregation incurs low simulation cost, both approaches fare poorly when both costs
are considered. In contradt)NIFY achieves lower total cost than either aggregation-
disaggregation or selective viewing. An approach that achieves MRM at a high cost is
ineffective because it does not satisfy RENIFY enables the total of simulation and
consistency costs to be reduced, thus satisfying R3.

111

40000
]

30000
—4a—-AD
3 20000 sv
—e— UNIFY
10000

1 2 3 4586 7 8 910
R
L=3, N=5T=1000
FIGURE 57: Simulation Cost varying with Rate of Simulation

—&k —k &k &k —k &k —k—k—-A

10000
1000
—4- AD
S sv
100 —e— UNIFY

' 1 ' T 1 = 1
2 3 45 6 7 8 9 10

1-
1
L=3,N=5T=1000
FIGURE 58: Consistency Cost varying with Rate of Simulation

60000
40000 — - 4-AD
Y,
—e— UNIFY
20000

1 2 3 45 6 7 8 9 10
N

L=3,T=1000,R=3
FIGURE 59: Simulation Cost varying with Number of Sub-entities

112

10000

) 1000 e AD
3 sv
—e— UNIFY

100

10

|
! I ! I ! I ! I !]
1 2 3 45 6 7 8 9 10

L=3,T=1000,R=3
FIGURE 60: Consistency Cost varying with Number of Sub-entities

1000000000
100000000
10000000
--4—-AD
3 1000000 sv
—e— UNIFY

100000

10000

1000

1 2 3 456 7 8 910
L
N=5T=1000,R=3
FIGURE 61: Simulation Cost varying with Number of Levels

100000000
10000000
1000000
100000 -4— AD
S sV
10000 —e— UNIFY

1000
100
10

1= ! ! L
1 2 3 456 7 8 910

N=5T=1000,R=3
FIGURE 62: Consistency Cost varying with Number of Levels

113

15000 / . sc

0
O / - A
+] / cC
4 /
3 10000] / —e— Total
T /
/
/
5000 - '
] &
0 T

AD UNIFY SV
Approach
L=3,N=2,T=1000,R=3
FIGURE 63: AD, SV andUNIFY — Cost Comparison

9.1.4 Summary of Evaluation in Terms of MRM Requirements

UNIFY satisfies our three requirements for effective MRM: multi-representation
interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). These
requirements must be satisfied by any approach in order to achieve effective joint
execution of multiple models at reasonable cost. Alternative approaches such as
aggregation-disaggregation and selective viewing do not satisfy all of R1, R2 and RS3.
Therefore, by these criteridNIFY is better than the popular MRM approaches.

9.2 Applying UNIFY to Existing Models

We have appliedUNIFY to four models. Three of them are military models specified
using OMT. The fourth is a hierarchical autonomous agent that is a research project at the
University of Virginia. For all four models, we constructed an MRE from attributes at
multiple representation levels. We constructed an ADG for each MRE. We classified the
interactions in each model according to our taxonomy. For each model, we assumed
reasonable mapping functions and policies for resolving concurrent interactions. For each
model, we worked only from specifications, since pursuing the project to implementation
would have been an unreasonably large undertaking.

9.2.1 Military Models

The three military models we considered are part of the Department of Defense’s High
Level Architecture (HLA). They are: Joint Task Force prototype (JTFp) PIVE Joint
Precision Strike Demonstration (JPSD) [JPSD97] and Real-time Platform Reference
(RPR) [RPR97]. These models have been the basis of many examples that we provided in
this dissertation to explain techniquesUiNIFY. The process for applying techniques in
UNIFY to these models is shown in Chapter 8:

1. Construct a Multiple Representation Entity (MRE) from the OCST.

2. Capture relationships among the attributes with an Attribute Dependency Graph

(ADG) constructed from the APT and the ART (see 88.2).

114

3. Select mapping functions for each dependency in the ART.
4. Determine the effects of interactions from the OIT, and classify interactions
according to our taxonomy.
5. Resolve the effects of concurrent interactions from policies specified in the CIT
(see 88.2).
6. Construct a Consistency Enforcer and an Interaction Resolver for the MRE.
The results of our experience with these models are a proof-of-concephiNiFY.
Designers of jointly-executing battlefield models can achieve effective MRM by applying
UNIFY. For each of these models, we were able to appNIFY, thus avoiding pitfalls
encountered with alternative MRM approaches. Details of how we appliedFY to
JTFp, JPSD and RPR appear in Appendices B, C and D respectively.

9.2.2 Autonomous Agent Model

We applied UNIFY to a hierarchical autonomous agent model AB®8B]. The
autonomous agent model we considered is part of a research project undertaken by the
Vision Group at the University of Virginia. The autonomous agent, Marcus, has been
programmed to construct complex arrangements from basic building blocks. Figure 64
shows Marcus with an example arrangement, an archway.

Marcus is a hierarchical autonomous agent that has two models, one corresponding to
a planner and the other corresponding to a perception-action (PA) system. Typically, the
planner maintains long-term or abstract representation, whereas the PA system maintains
immediate and detailed representation. Each model may have its own representation of the
world in which Marcus operates. Accordingly, each model may represent building blocks,
partially-completed arrangements, obstacles, doors and pathways by a number of relevant
attributes such as position, orientation and colour. Marcus considers relationships among
blocks that are stacked or placed next to each other as an arrangement.

FIGURE 64: Marcus and Archway
We constructed an MRE for Marcus’s planner and PA system and captured
dependencies among attributes with an ADG. In the current implementation of Marcus,

115

interactions occur only at the PA level through sensors and effectors. Planner-level
interactions originating from user directives are envisioned as future work. Therefore, we
classified interactions at only the PA level. Figure 65 shows a partial ADG for an MRE
constructed from the planner and PA representations for Marcus. The MRE contains all of
the objects (and their attributes) that the planner considers important for the current task,
and all of the objects (and their attributes) that the PA system senses and affects. For
brevity, we show only objects represented by the planner and PA, but not their attributes.
We show dependencies that exist among objects when Marcus constructs an arrangement.
Wasson shows how representations can be constructed for the models in Marcus and how
consistency can be maintained among the representatis9 9V

Our experience with the hierarchical autonomous agent model indicates that the
technigues INUNIFY can be applied to multi-models in different domains. A valid
concern with any framework-based approach is whether the framework is general enough
to be useful to applications in many domains. ApplyldiIFY to applications in many
domains would be a convincing, but time-consuming, argument for the applicability of
UNIFY. We chose one domain — that of hierarchical autonomous agents — to show that
UNIFY can be applied to many domains. Details of how we applidiFY to a
hierarchical autonomous agent appear in Appendix E.

9.3 Limitations

A fair evaluation of any research must include the known limitations of the work. The
underlying feature of our work is a design decision to maintain concurrent representations
of jointly-executing models to enable effective MRM. In order to support this decision, we
constructed a frameworkJNIFY, consisting of techniques and processes for achieving
effective MRM. However, in order to makegNIFY a viable approach for MRM, we made
some assumptions about jointly-executing models. These assumptions are the limitations
of UNIFY. These limitations, individually and together, neither maRéFY unusable nor
outweigh its benefits.

UNIFY is limited to models in which representation exists for objects and processes
that are part of a model. We assume that designers can describe properties of objects and
processes in a model, i.e., they can represent a modBEY is not applicable to models

Planner @ @ Arch TR,
Distributive

Dependency

A\
Cumulative
MRE / \ Dependency
Interaction

! { ! \ Dependency
o o) (o) () (30 (@05

FIGURE 65: MRE for planner and PA system representations

116

wherein representation does not exist. Our assumption about representation is reasonable
because a large number of practical models represent objects and processes.

In UNIFY, we assume that individual models meet their users’ requiremghii§:Y
permits designers to capture the combined semantics of multiple models of the same
phenomenon. Whether the individual models meet their users’ requirements or not is an
important issue, but outside the scope of our work. Our work addresses the effectiveness
of the joint execution of multiple models alone.

In UNIFY, we assume that multi-models progress in compatible time-steps. We
discussed compatible time-steps in 85.2. We regard our assumption of compatible time-
steps as the most critical assumption UNIFY. General techniques for achieving
compatible time-steps would be a desirable additidhNG-Y.

UNIFY requires appropriate mapping functions to translate attributes from one
representation to another and appropriate policies for resolving the effects of dependent
concurrent interactions. We do not regard our assumptions about the presence of mapping
functions and interaction policies as critical assumptions because:

1. Mapping functions and interaction policies capture semantic information about

an application. Semantic information is specific to an application and can be
provided by a designer.

2. Alternative approaches to MRM also require similar mapping functions and

interaction policies (see §85.3).
3. We guide designers in the selection of mapping functions and interaction policies
(see 86.2 and 87.6).

Despite these limitation&)NIFY is a viable approach for MRM. Its benefits outweigh
its limitations. It eliminates or reduces many problems with alternative MRM approaches
(see 85.5). It provides designers with techniques for resolving concurrent interactions (see
Chapter 7) and applying their effects consistently (see Chapter 6). It provides designers
with a process for achieving MRM (see Chapter 8) effectively and practically (see 89.1
and 88.2). Henc&)NIFY enables designers to achieve effective MRM.

9.4 Chapter Summary

UNIFY is a sufficient and practical approach for effective Multi-Representation
Modelling (MRM). It is the first known approach to MRM that satisfies R1, R2 and R3.
Its limitations are not serious. We have applied it to four practical applications and
established that it supports MRM exactly as we have claimed it would. Next, discuss
contributions of our work and present future directions for research.

117

Never rise to speak till you have something to say;
and when you have said it, cease. — John Witherspoon

When the effective leader is finished with his work,
the people say it happened naturally. — Lao-Taw, Te Ching

Chapter 10

Conclusions

We presented a sufficient and practical framewdddIFY, for effective Multi-
Representation Modelling (MRM). MRM, the joint execution of multiple models, is a
significant challenge facing model designers. Previous approaches have been unsuccessful
in helping model designers overcome this challenge; these approaches they do not satisfy
all of our requirements for effective MRM. The techniques and processes that are part of
UNIFY help designers to overcome the challenge of executing multiple models jointly by
enabling consistency maintenance among the concurrent representations of the models.
UNIFY is a sufficient approach for achieving effective MRM because it satisfies the
requirements for effective MRMUNIFY is practical because designers can apply it in
conjunction with a familiar model specification methodolotgNIFY is a significant
contribution to the practice of modelling and simulation.

Previous MRM approaches such as aggregation-disaggregation and selective viewing
can fail to achieve effective MRM for many applications because they do not satisfy
critical MRM requirements. These approaches encounter many problems such as temporal
inconsistency, chain disaggregation and thrashing, which render the approaches
ineffective for many applications. Our fundamental observations about jointly-executing
models address the causes of these problems. These observations indicate that maintaining
consistency among the representations of jointly-executing models can eliminate or
reduce the problems encountered in other approaches.

UNIFY, our approach for achieving effective MRM, involves maintaining consistency
among concurrent representations. The techniques and proces&#SIRY address
consistency maintenance in concurrent representations. The viabiliNiFY rests on
the assumptions that designers can (i) select mapping functions to capture application-
specific aspects of attribute relationships, (ii) select policies to resolve the effects of
concurrent interactions by understanding their semantics, and (iii) make time-steps
compatible. These assumptions are reasonable because without them, no approach can
capture the application-specific semantics of jointly-executing models. Alternative
approaches fail to achieve effective MRM despite making similar assumptions.

118

UNIFY aids designers in incorporating MRM effectively in their applications.
Effective MRM leads to the design of multi-models that satisfy their users’ requirements.
We provided guidelines for designers so that they can apply our techniques and processes
to achieve effective MRM within their applications.

10.1 Contributions

Our work benefits the practice of modelling and simulatidhlIFY is the first known
framework for effective MRM. The focus @INIFY is to execute multiple models jointly.
UNIFY is intended for designers who desire to incorporate MRM into their applications.
These designers can construct MRM solutions for their applications by applying the
techniques and processes withiNIFY.

The main contribution of our work IINIFY — a framework for the joint execution of
multiple models. We formulated three requirements for MRM: multi-representation
interaction, multi-representation consistency and cost-effectiveness. We showed how
alternative MRM approaches do not satisfy these requirements, WNIEY does. The
contributions of our work are the following:

1. Fundamental Observations about MRM

2. UNIFY
Multiple Representation Entities (MRES)

Attribute Dependency Graphs (ADGS)

Properties and requirements of mapping functions
Process for constructing Consistency Enforcers (CES)
A Taxonomy for Interactions

Process for constructing Interaction Resolvers (IRs)

3. A Cost Study of various MRM approaches

4. Guidelines for MRM designers

We presented the fundamental observations to show how problems arise in the joint
execution of multiple models [RYN97]. We made these observations after studying the
joint execution of many models. The fundamental observations address the causes of
ineffectiveness in jointly-executing models, such as inconsistency among their
representations and dependent concurrent interactions. Addressing the fundamental
observations forms the basis of any approach to effective MRM, sudiNI&Y.

MREs are an approach for maintaining concurrent representations of jointly-executing
models [MT95]. An MRE permits interactions at all representation levels, yet is internally
consistent. MREs eliminate or reduce many problems seen with alternative MRM
approaches, such as aggregation-disaggregation and selective viewing. MREs eliminate
chain disaggregation, temporal inconsistency, mapping inconsistency, transition latency
and thrashing, and reduce network flooding. MREs require a means of capturing the
relationships among multiple representations and policies to resolve the effects of
concurrent interactions. Provided these requirements are satisfied, MREs reduce the MRM
problem to the problem of maintaining consistency among concurrent representations
when interactions at multiple representation levels occur.

ADGs and mapping functions capture relationships among concurrent representations.
ADGs are a technique to capture dependencies among attributes in an MRE, whereas
mapping functions capture application-specific information about the dependencies.

~0oo0op

119

ADGs permit designers to express how attributes in representations are dependent on one
another, and how the execution of a multi-model affects the representations of each model.
Mapping functions translate attributes from one representation level to another. ADGs and
mapping functions can be used to construct a CE for an MRE. A CE is responsible for
maintaining an MRE consistent at all observation times. When an interaction changes the
value of an attribute, a CE traverses an ADG and invokes the appropriate mapping
functions in order to maintain consistency in an MRE. We demonstrated the construction
of a CE by showing how to construct an ADG and select mapping functions for an MRE.
We showed how to assign static and dynamic semantics to dependencies captured by an
ADG by classifying dependencies into four types and weighting them. We presented
requirements and properties of mapping functions. We discussed how an ADG can be
traversed in order to propagate the effects of an interaction. Finally, we presented an
algorithm for the operation of a CE.

We presented one taxonomy for classifying interactions semantically and resolving
their dependent effects @99]. We presented four characteristics of interactions and
showed how to classify interactions into four classes based on these characteristics. We
showed how serialization, the traditional approach for resolving the effects of concurrent
interactions, can be inappropriate for dependent concurrent interactions. Based on our
taxonomy, we presented policies for resolving the effects of classes of dependent
concurrent interactions. Our taxonomy is applicable to interactions in a variety of
modelling and simulation applications. We believe that in any application where
concurrent interactions may be dependent on another, such a taxonomy is applicable and
can be used to resolve the effects of concurrent interactions. We demonstrated the
construction of an IR and presented an algorithm for its operation.

We presented the first cost study comparing various MRM approacha®TN The
study compares simulation and consistency cost&Jfdi-Y and alternative approaches.

We showed how simulation and consistency costs vary for the different approaches.
Lastly, we showed thaiNIFY reduces the total of simulation and consistency costs.

The fundamental observations, MREs, ADGs and our taxonomy of interactions enable
designers to incorporate effective MRM in their applications. Providing designers with
techniques and guidelines to achieve effective joint execution of multiple models is our
main contribution to modelling and simulation.

10.2 Future Work

In the future, we expect to eliminate a few of the assumptions we mddBliRY and
apply UNIFY to applications in a variety of domains. Eliminating some of the
assumptions we made in our work would makiNIFY more beneficial to model
designers. ApplyingUNIFY to more applications, would provide us with greater
experience with regard to MRM.

A critical assumption we made was that designers can make the time-steps of jointly-
executing models compatible. Jointly-executing models executing with compatible time-
steps can be temporally consistent. Application-independent guidelines for making time-
steps compatible would be a desirable additionUNIFY. Alternatively, providing
techniques for maintaining temporal consistency among jointly-executing models that
execute with incompatible time-step would eliminate a critical assumptidNIiRY.

120

Another assumption was that designers can select mapping functions to translate
attributes among representations. We specified requirements and properties of mapping
functions as guidelines for selecting them. However, specifying requirements and
properties in greater detail, perhaps for classes of applications, would enable designers to
select mapping functions with greater ease.

Yet another assumption was that designers can select policies for resolving the effects
of concurrent interactions after classifying the interactions. We showed how to classify
interactions and select policies for resolving classes of interactions. Providing sub-classes
of interactions would enable designers to refine the classification of the different kinds of
interactions in various applications. Refined classification may lead to refined policies for
resolving the effects of concurrent interactions.

An area of future work would be applyingNIFY to a larger variety of models.
Applying UNIFY to a wide variety of models would increase our understanding of MRM.
We would like to applyUNIFY to models in areas such as economics, weather prediction
and graphics. ApplyindJNIFY to such models would enable us to specify detailed
requirements and properties of mapping functions and to refine the classification of
interactions. Also, we would like to study the implementation of applications that employ
UNIFY to incorporate MRM. Such studies details may reveal connections between
requirements and properties of mapping functions, policies for resolving concurrent
interactions and the implementation of modules for enforcing consistency and resolving
interactions.UNIFY can gain widespread acceptability if it is applied successfully to a
large number of multi-model applications.

121

Honest disagreement is often a good sign of progress.
— Mahatma Gandhi

Appendix A

Examples of Multiple Representations

Multi-model applications in a number of domains maintain multiple representations or
views with some degree of concurrence and consistency. In 82.1, we presented these
applications briefly and evaluated whether they satisfy the MRM requirements R1, R2 and
R3 (Table 1). Here, we evaluate these applications in detail. Briefly, we discuss how an
approach based on MREs may benefit these applications.

A.l Multi-Resolution Graphical Modelling

Multi-resolution graphical modelling involves maintaining multiple representations, or
levels of detail of the same object [AQRK 76]. For example, a lamp may be rendered in
full detail when a viewer is close to it, but as the viewer moves away, successively coarser
levels of detail are rendered. As the viewing distance increases, the lamp occupies a
smaller portion of the viewed screen space, and coarser levels of detail for the lamp are
sufficient to cover this portion. The coarser the level of detail, the fewer the polygons
required to render it. The system always maintains multiple levels of detail for all objects,
and selects the appropriate level of detail depending on an object’s distance from the
viewer. The challenges in graphical MRM are to generate the multiple representations
such that each captures sufficient detail as to be visually appealing, and to transition
among representations smoothlywf®5] [HECk94] [HECKO7] [LUEBKEST7] [PUPPO7].

Typically, users cannot change multi-resolution graphical entities, although they may
issueview interactionswhich essentially read the values of attributes such as position and
colour. Moreover, concurrent interactions to multiple levels of detail of the same object are
not supported. Since interactions cannot change entities’ representations and cannot be
concurrent, R1 is violated. R2 is satisfied trivially after the levels of detail are created
because the representations do not change. A few multi-resolution graphical models
permit a single user to change entities dynamically, but do not support concurrent multi-
representation interaction E&m94] [LEE98] [ZORIN97]. Multi-resolution graphical

122

models satisfy R3 because multiple levels of detail reduce simulation cost. As long as
interactions cannot change the representations of objects, consistency cost is not an issue.

An MRE for a multi-resolution graphical model would incorporate all levels of detail.
Designers can create the multiple levels of detail using refinement or simplification
[HECKO7] [LUEBKE97]. Refinement and simplification methods can be the mapping
functions among the multiple levels of detail. When changes to any levels of detail occur,
these mapping functions can ensure that the other levels of detail are changed so as to keep
the MRE consistent. Consequently, an MRE for a graphical object may interact
concurrently and consistently at multiple representation levels.

A.2 Hierarchical Autonomous Agents

An autonomous agent is an actual or simulated robot that attempts to fulfill a goal by
performing actions from its basic skill set. Traditionally, there have been two approaches
regarding the manner in which an agent fulfills its goal. In dieéberativeapproach, an
agent constructs a plan to fulfill its goal by composing actions from its skill set before
beginning any action [&ER74]. The agent may form optimal or provably correct plans;
however, unexpected occurrences can sabotage any plan easilyréatheeapproach,
an agent forms no plan at all, relying on reactions to external stimuli to fulfill its goal
[AGRE87]. This approach leads to extremely robust behaviour in the presence of urgent or
unexpected circumstances; however, the agent may become trapped in local minima.

Multi-layered architectures for autonomous agents incorporate a deliberative layer (a
planner) and a reactive layer (a perception-action or PA layer) with some intermediate
layers. Multi-layered architectures balance varying requirements and capabilities of
different layers, e.g., level of abstraction, amount of inference, time-scale and bandwidth
[ALBUS97] [BON97] [FIRBY87] [GATI92] [LAIRDI1] [HANKSO0] [SM94] [WAS98A].

Multi-layered, or hierarchical, autonomous agents satisfy R1. Such agents execute
deliberative and reactive models jointly in order to take advantage of both. The planner
and PA layer representationare linked epistemologically, i.e., subsets of representations
encode knowledge that depends on or is derived from knowledge encoded in other subsets
[BRILL96]. Hierarchical agents do not satisfy R2 because dependencies among planner
and PA layer representations can give rise to inconsistencies. For some desired agent
behaviour, the paradigm of executing both models jointly is more cost-effective than
executing only one model. Hence hierarchical agents satisfy R3.

Provided designers can agree on what must be represented at each layer of hierarchical
autonomous agents, an MRE for such agents would incorporate the representation for each
layer. Typically, we can capture dependencies between the representations by simple
relationships, such dsas-part andis-a [WAS98B]. By ensuring that the individual
relationships hold, we can maintain consistency between the representations.

" Although Brooks argues against representation in an agertdBs36], Brill has shown that
agents with representation can be effectivei[B98].

123

A.3 Blackboard Systems

Hearsay-II is a layered system for translating spoken sentences into the
corresponding alphabetic representation.Hearsay-ll , many processes access a
single data structure, calledldackboard[ERMAN8O]. Processes amata-driven i.e., a
process activates itself whenever appropriate data appears on the blackboard. The
lowermost layer of the system interprets parts of sound waves as silence or non-silence.
The next layer interprets non-silence as phonemes and predicts the sound wave
corresponding to the next likely phoneme. The next layer composes phonemes into
syllables and predicts the next word. The hierarchy of layers continues with the topmost
layer composing phrases into sentences and predicting the next phrase.

Hearsay-1l s blackboard is a multi-representation system; each layer is a different
model of the entire spoken sentence. R1 is satisfied because for each sentence fragment,
the interpretation of the current layer and the prediction of the layer above are multi-
representation interactionbklearsay-lI| resolves conflicting interactions — different
predictions or interpretations of the same sentence fragment — by retaining each as a
version of the sentence. Each version is consistent — the wavelets are consistent with the
phonemes, the phonemes with the syllables, and so on — thus satisfying R2. The system
ranks all versions by a credibility metric; the version with the highest credibility is the best
translation of the sentence. However, retaining all versions may be impractical in a general
sense, since many multi-representation systems may not tolerate multiple outcomes.

Each version of a sentence idearsay-lI is similar to an MRE. However,
Hearsay-ll violates R3 because it resolves conflicting interactions by creating new
MREs that subsequently execute concurrently with existing MREs. In effect, each MRE
executes in a “parallel universe” in which it is the most credible version. The greater the
number of versions, the greater the number of MREs in execution, putting a strain on
available resources. Our technique of resolving concurrent interactions within a single
MRE may miss the best possible version of a sentence when local minima occur.
However, when many objects or processes are present in a syideamsay-Il s
technique of creating a new MRE for every possible outcome of conflicting concurrent
interactions can cause a combinatorial increase in consumption of resources.

A.4 Cache Coherence

In a multi-processor configuration, individual processors may access a small amount
of fast memory locally in order to reduce accesses to main memory, which tends to be
slow. The fast memory, called @che may store copies of data items stored in main
memory. Processors may read and modify data items in their caches. Ensuring that
processors read correct versions of the data in their caches is known asdhe
coherenceproblem [HENN96].

Cache coherence is a form of the MRM problem. The main memory copy and each
cache copy of a single data item are concurrent representations of a variable. Processes
issue interactions in the form of read and write operations to the copies. Processors may
interact with cache copies as well as the main memory copy, the latter when a processor’s
cache copy is absent or stale or, in the case of write-through policies, whenever the
processor writes to the variable. Concurrent interactions at multiple representation levels

124

are assumed to have independent effects. Since multi-representation interactions may
occur, but dependent interactions are not supported, R1 is satisfied partially. Cache
coherence involves combining detection mechanisms such as snoopy bus or directory-
based protocols with write policies such as write-back and write-through to maintain
consistency among cache and memory copies. Although cache coherence solutions
maintain consistency, typically, the relationships among memory and cache copies are
simple relationships of equality. Therefore, cache coherence satisfies R2 partially. Various
cache coherence strategies have different costs associated with tRer8B}. However,
accessing caches is more cost-effective than accessing memory. Hence caches satisfy R3.
We do not forward any new solutions for cache coherence. Rather, we use the cache
coherence example to highlight the benefits of maintaining concurrent representations.

A.5 Abstract Data Types and Object Inheritance

Polymorphic languages may associate multiple types for a single data item. For any
data item, the operations that are valid on it, the contexts in which it can be used legally
and the manner in which it is allocated memory are determined by its type. If a data item
has multiple types, the operations valid on it and the contexts in which it can be used is the
union of the operations and contexts respectively for the individual types. Typically, the
memory allocated to the data item is such that the data item has a single representation.

Some abstract data types present multiple views of the same data item, thus exhibiting
a form of MRM. A data item defined as a union in CHRN88] and C++ [SROU91] or as
perspectives [GLD80] [STEFIK86] can have multiple types, thus displayimgl hoc
polymorphism [@RD85]. Consider the definition of a union in C:

union {
int a;
char b;
X

The data itemX has two typesjnt andchar , corresponding toX.a . and X.b
respectivelyX.a and X.b are different views ofX. They occupy overlapping bytes of
memory, i.e., if annt is stored as two bytes on a particular system aodaa is stored
as one byte, theK is allocated two bytes of memory. One byte holds the valug.bf as
well as part of the value of.a , while the other byte holds the remaining part of the value
of X.a . X.a andX.b are accessed jointly by any operation accessing one of them, i.e., if
an operation changes the valuexab , it changes the value of.a as well andvice versa
A type is a representation level; therefore, operations of different types constitute multi-
representation interactions. However, these interactions are assumed to be independent of
one another. Therefore, R1 is satisfied partially. Changing the value of any type
automatically changes the value of other types for a data item. However, unions cannot
capture general relationships, such as those among attributes of an MRE. For example, a
union cannot present two views such that a value in one view is an accumulation of values
in another view. Henced hocpolymorphism satisfies R2 partially.

Inheritance in object-oriented languages is an example of MRM, since a data item that
inherits from one or more types has multiple views. Object-oriented languages such as

125

Smalltalk-80 [BORN82], Simula-67 [HL66] [BIRT73] and C++ [SRouU91] support
inclusion polymorphism [@RD85]. Consider the C++-like example below:

class Mammal { ... }

class Oviparous { ... }

class Platypus: Mammal, Oviparous{ ... } Bill;

Here,Mammaland Oviparous are base classes for the derived clB&stypus
Bill is an instance of the clagdatypus , and by inheritance, also an instance of the
classesMlammal and Oviparous . Inheritance results iBill having multiple views:
one, as an instance of a base class and two, as an instance of a derived class. One view is
subsumed by another; the view 8ammalis a subset of the view aBlatypus
Multiple inheritance results iBill having even more views. However, the views do not
subsume each other; the viewBifl as aMammalhas no relation to the view dill
as anOviparous . The representation foBill is the union of the representations
defined by each of the above classes, assuming name conflicts are resolved. Likewise, the
set of methods applicable Rill is the union of the set of methods defined by each class.
A class is a representation level; therefore, methods of the multiple classes constitute
multi-representation interactions. However, these interactions are assumed to be
independent of one another. Therefore, R1 is satisfied partially. Any operation that is
performed on an instance of a derived class is performed on an instance of the base class
as well. Therefore, the instance of the derived class is always self-consistent. However,
inheritance is only one kind of relationship among attributes of an MRE; for example,
inheritance does not capture the accumulation relationship mentioned earlier. Hence,
inclusion polymorphism satisfies R2 partially.

A.6 Views in Databases and Integrated Environments

Views, as defined for databases and integrated environments, are a form of MRM. A
view in a database is a subset of the information contained in the system.

Database views are derived from the complete database by specifying relations that
restrict the items displayed. In relational database applications, data are abstracted into
relations, which essentially are tables of tuples and their values?0]. Relational
databases have been used for many applicatiogsHAV6] [STONE76] and programming
environments [INTON84]. In object-oriented databases, data are abstracted as behavioral
entity relationships [@EN76] [BALZER85]. Hybrid approaches that maintain relations as
well as attribute relationships have been used for editing programsd]. A view is a
set of relations derived from existing relationships (in an object-oriented database) or
relations (in a relational database)H{&75]. Changes to a view must be translated to
changes to the database in order to maintain consistency in the databag8d [BSince
all views are derived from one database, this approach is a form of selective viewing,
which violates R3. Each view is constructed after the entire database has been constructed.
Users may update data in any view; however, all updates are assumed to be independent.
Hence, views in databases satisfy R1 partially. When users update data in a view, the
system updates the database automatically, thus maintaining consistency and satisfying
R2. Views in databases require the database to be the repository of all possible views, thus
making them unsuitable for MREs, wherein multiple representations may have been

126

designed independently. Moreover, relations are powerful but not intuitive for some kinds
of relationships [l9R36].

In some integrated environments, the complete database is constructed by conjoining
all the views [@R87]. Individual tools may maintain views of their data. Users may
update data in any view as well as in the database; however, all updates are assumed to be
independent. Hence, views in databases satisfy R1 partially. Users’ updates are
interactions. The system updates the views and databases to remain consistent with one
another, thus satisfying R2. In database views, if each view is an independently-designed
model, then requiring a single database for all the models put together violates R3. In
contrast, in integrated environments, if each view is an independently-designed model,
then the complete database is just the conjoining of the models, which satisfies R3. The
latter approach is related closely to MREs. Each view may be considered a concurrent
representation and the conjoining of all the views is the MRE. Garlan’s work envisioned
the multiple views to be used by tools that change databases. In MRES, other entities,
other models and the environment change a representation.

A7 Nested Climate Modelling

An increasingly popular approach to climate modelling is to nest the execution of
Limited Area Models (LAMs), which predict regional climate, within Global Circulation
Models (GCMs), which predict wide-ranging climate changesof&i90] [GIORGIO1]
[RIsBEY96]. GCMs model synoptic or large-scale climate changes. The resolution of these
models is usually in the hundreds of kilometres, which means that regional climatic
variations are modelled poorly. LAMs model mesoscale or medium-scale climate changes.
The resolution of these models is in kilometres, hence they model local climate well but at
a huge computational cost. Of late, small sub-areas of the larger area modelled by the
GCM are taken over by LAMs which discard all the GCM modelling information except
at the edges of the sub-area modelled by each LAM. Subsequently, each LAM runs its
own computations to predict local climates. The GCM-LAM linkage produces more
accurate predictions than either a GCM alone (since the LAM usually has more detailed
topographical and orographical information) or just a LAM driven by empirical data
(which assumes that future climate will be very similar to past climate).

Nested climate models satisfy R1 but not R2. The nested models interact at multiple
representation levels since climatic data at either level is incorporated. However, while
researchers have had success translating GCM data for LAM input, the reverse is an open
problem. As a consequence, global factors such as temperature fronts, monsoons and large
mountain ranges can influence local climate models, but it is extremely hard to make local
factors such as fires, nuclear waste build-up, small mountain ranges and anthropogenic
pollution influence global climate models. Nested climate models satisfy R3 because they
are more cost-effective than executing any one model individually.

A climate model MRE would incorporate GCM and LAM representations for a
particular area. As a result, the climate of the area would be influenced by global factors as
well as local factors. Nesting the LAM within the GCM would be one way to reconcile
concurrent climate changes. However, as discussed earlier, this tends to make the
execution of the LAM dominate the execution of the GCM, particularly close to the center
of the area modelled by the LAM. In terms of accuracy of predictions, the MRE approach

127

can do no worse than nesting; the potential to do better lies in the ability of the MRE
approach to capture dependencies between the two representations that are ignored in
nesting. However, the limiting problem in either approach is the lack of techniques to
translate local factors into global factors.

A.8 Integrated Molecular Modelling

When theoretical studies on the potential energy surfaces for chemical reactions of
large systems are carried out, low-detail low-computation models, such as molecular
mechanics (MM) models, are used for most of the system and high-detail high-
computation models, such as molecular orbital (MO) methods, are used for a small part of
the system. An MM model for the entire system is usually fast but inaccurate since the
level of detail does not capture all interactions among atoms. An MO model for the entire
system is accurate but computationally expensive. Integrated models sutAOdM
[MATSU96] andONIOMSVEN9GA] strike a balance between resource usage and accuracy.
These approaches integrate MM models, suchMi MM3 CHARMMMBERand UFF,
with MO models such as Mgller-Plasset second-order perturbatid® (and Hartree-

Fock HP), in order to compute potential energy surfaces. Some approaches, for example
IMOMQ integrate an high-detail MO model with a low-detail MO modelUMBEL96]
[SVEN9EB]. In all the integrations, the reported accuracy is comparable to a full-scale
high-detail model, while resource usage is markedly below such a model.

Integrated molecular models satisfy R2 and R3. The models incorporate interactions at
multiple levels of detail and are remarkably consistent. Also, reported costs are lower than
running a detailed model for the entire system. However, these models satisfy R1 partially
because the multiple models are executed one after another. Therefore, multi-
representation interactions are assumed to be independent of one another.

The integrated models for the reactions under study are MREs. Although experts in
molecular modelling strive for better correlation between the MM and MO models, the
high level of consistency already achieved suggests that the integrated approach is very
well-suited for applications involving models at different representation levels.

A.9 Multi-Level Computer Games

A number of commercial computer games present a player with multiple views of the
world inhabited by the characters controlled by the player. In gtites Civilization,
WarCraft], SimCity], Doontil, Heretid], Hexerl, Quakél andDuke Nukerl, a player
may view the playing area at multiple levels of resolution. In some games, the player may
control characters at any resolution, while in others, the player may control characters
only at the highest resolution level, with the game pausing when the player switches to a
lower resolution level.

Multi-level games satisfy R2 but not R1. Merely displaying information at multiple
resolutions amounts to processing read interactions that do not change the representations.

T Civilizationis a registered trademark of Sid Meier gam#&&arCraftis a registered trademark of
Blizzard. SimCityis a registered trademark of MaxiBoom Heretic Hexenand Quakeare
registered trademarks of id Softwaf@uke Nukenis a registered trademark of 3D Realms
Entertainment.

128

Even games that permit changes to be made at either representation rarely permit
concurrent changes, or concurrent interactions, thereby completely avoiding the hardest
problem in MRM. Most games adopt the approach of selective viewing, wherein all
processing takes place at the highest resolution level. The player may request high-
resolution information or may ask for low-resolution information. In the latter case, high-
resolution information is aggregated and presented as low-resolution information.
Selective viewing violates R3.

MREs for entities within such games would incorporate the representation at each
resolution level. Players could be permitted to interact at any resolution level, and in the
case of multi-player games, at multiple resolutions concurrently. Mapping functions that
translate changes to one resolution level to changes to other resolution levels will keep the
multiple resolution levels consistent.

A.10 Battlefield Simulations

In the domain of battlefield simulations that are used for training as well as analysis,
MRM relates to resolving conceptual and representational differences arising from
multiple levels of resolution in simulations that are joined for a common objective,
particularly where the simulations were designed and implemented independently. The
crux of the problem can be appreciated by considering what is required to simulate
accurately an obje@ndits constituents concurrently. For example, the abstracionoy
may have attributes such as position, velocity, orientation and state of repair. At a more
detailed level, the convoy may be viewed as trucks that have attributes such as position,
velocity, orientation, state of repair, fuel level, gross weight, carrying capacity and number
of occupants. If the convoy abstraction and its constituent trucks are modelled
concurrently, all interactions with the convoy abstraction and its constituents in
overlapping periods of time must be reflected accurately at both levels.

Many battlefield simulations satisfy none of R1, R2 or R3 fully. Typically, battlefield
simulations employ aggregation-disaggregation to force entities to interact at the same
resolution. Aggregation-disaggregation can preclude concurrent multi-representation
interaction, can give rise to inconsistencies, and incur high resource costs. MREs for
battlefield simulations would incorporate multiple representations of the same object.
Typically, the object would be a hierarchical unit such as a corps, division or platoon.

129

What your actual solution is is unimportant as long as it has Quality.
— Robert PirsigZen and the Art of Motorcycle Maintenance

Appendix B

Joint Task Force Prototype

We demonstrate how designers can empldfdIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate
UNIFY in Joint Task Force prototype (JTFp) [JAF], a military model that is part of the
Department of Defence’s High Level Architecture (HLA). JTFp is specified using OMT
[OMT98]. From the JTFp specifications, we construct an MRE and show how to maintain
consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the JTFp
specifications. We assume that the jointly-executing models in JTFp are a Platoon model
and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as
shown in Figure 66. From the OMT tables in the JTFp specification, we determine the
attributes in the representations of the Platoon and Tank models. Next, we capture the
relationships among attributes using an Attribute Dependency Graph (ADG) and select
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select
policies for resolving the effects of concurrent interactions.

In 8B.1, we present the tables in OMT. In 8B.2, we list steps for incorporatMi-Y
in JTFp. We demonstrate each step in subsequent sections. In 8B.3, we construct an MRE.
In 8B.4 and 8B.5, we construct an ADG and select mapping functions for attribute
dependencies in the MRE. In 8B.6 and 8B.7, we determine and resolve the effects of
concurrent interactions. In 8B.8, we construct a CE and IR for the MRE.

B.1 OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with
publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction
parameters along their data type, cardinality, units, resolution, accuracy,
accuracy condition, update type and update condition.

130

Platoon-Tanks MRE
Platoon
Representatio
Tank; Tank,
Representatio Representatio

L FIGURE 66: Platoon-Tanks MRE _
3. Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.
Enumerated Data Table (EDT): Lists the values of all enumerations.
Complex Data Table (CDT): Lists the definitions of all structured data types.
Object Class Definitions (OCD): Describes the role of each entity.
Object Interaction Definitions (OID): Describes each interaction.
Attribute/Parameter Definitions (APD): Describes each object attribute and
interaction parameter.
We augment the OIT with the class of each interaction. Also, we add two tables to
OMT to capture attribute relationships and specify policies for concurrent interactions.
9. Attribute Relationships Table (ART): Lists each attribute dependency, its type,
its mapping function and requirements and properties of the mapping function.
10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and
instances of concurrent interactions.

©o~NoOA

B.2 Steps

The steps for incorporatindNIFY in JTFp are:

Construct an MRE from the OCST and the APT

Construct an ADG from the APT and the ART

Select Mapping Functions for Dependencies in the ART
Determine the Effects of Interactions from the OIT

Resolve the Effects of Concurrent Interactions from the CIT
Construct a Consistency Enforcer and an Interaction Resolver

ok whE

B.3 Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model
jointly. Using the OCST for JTFp (shown in Table 14), we derive a Platoon from
AggregateGroundPlayer, and a Tank from MobileGroundPlayer. Our Platoon-Tanks MRE
consists of the representations of a Platoon and two Tanks,; mk Tank. The PS
(publishable/subscribable) information associated with each class in Table 14 is used to
manage data transfer within the HLBNIFY does not require this information.

131

TABLE 14: Object Class Structure Table for JTFp

Base Class 1st Subclass 2nd Subclass
Player (S) AirPlayer (S) BallisticMissile (PS)
Aircraft (PS)
Flight (PS)
GroundPlayer (S) FixedSite (PS)

MobileGroundPlayer (PS)
AggregateGroundPlayer (PS)

AfloatPlayer (PS)

Environment Atmosphere (PS)
SurfaceCover (PS)
OpenWater (PS)

FederateStatus (PS)

From the APT, we determine the attributes that are part of the concurrent
representations within our Platoon-Tanks MREs. For brevity, Table 15 shows only part of
the APT for JTFp. The table lists attributes only for classes or base classes of Platoon and
Tank. For each attribute, the designer may specify information such as its data type, units,
resolution, accuracy, condition under which the specified accuracy is required and update
type. The T/A and U/R information is not usedUNIFY.

TABLE 15: Attribute/Parameter Table for JTFp

In%:J: c(:tz)n Attribute/Parameter Datatype] Cardinalily Units Resolutioh Accurad] égﬁz::g Update Typ¢q Cléﬁgﬁi[gn T/IA [UIR
entity_name string 1 perfect alwayq static R
federate_id enumeratign 1 perfect alwayls static| N MR
affiliation enumeratior 1 perfect alwayg static Ur

?g motion_type enumeratiop 1 perfect alwayp static N DR
g voice_nets boolean maximun TRUE, FALSE perfect always stati N [UR
jtids_nets boolean maximu TRUE, FALYE perfect always stati N [UR
trap_tre boolean 1 TRUE, FALSE perfect alwayp static| N PR
commander_type enumeratipn 1 perfect always stati N [UR

132

TABLE 15: Attribute/Parameter Table for JTFp

In%brfcctggn Attribute/Parameter Datatype] Cardinalily Units Resolutiop Accurad] égﬁg::gx Update Typg Cgﬁgietlitgn T/A|UIR
radar_cross_section float 1 meters 0.1 méters 0.1 meter$ always static N[UR
radar_detectable boolean 1 TRUE, FAL$E perfect always conditipnal N | UR
elint_detectable boolean 1 TRUE, FALYE perfect always conditignal N [UR
comint_detectable boolean 1 TRUE, FAL$E perfect always conditignal N |UR
ir_detectable boolean 1 TRUE, FALSE perfect always conditignal N |UR
photint_detectable boolean 1 TRUE, FAL$E perfect always conditipnal N |UR
air_to_air_engageable boolear 1 TRUE, FALBE perfect alwgys statfc N | UR

_ air_to_surf_engageable booleal 1 TRUE, FALSE perfect| always statjc N [UR

§ surf_to_air_engageable booleal 1 TRUE, FALSE perfect| always statjc N [UR

g surf_to_surf_engageable boolear 1 TRUE, FAUSE perfect always static N | UR

% damage_state float 1 percent 0.01 0.01 always conditipnal N [UR

§ entity_type enumeratioh 1 perfect alwayp static N UR
time_at_last_cse_changg float 1 secondq 0.1 secqnd 0.1 seconds dlways conditional TA UR
lat_at_last_cse_change float 1 degrees| x 100 5 degree$ Xk 10° 5 degree! always conditiong! TA UR
Ing_at_last_cse_change float 1 degrees| x 10° degree$ X 10° degree! always conditiong! TA UR
alt_at_last_cse_change float 1 meters 1 mete 1 metqr always condifional TA UR
cse_at_last_cse_change float 1 degreeg x 1a° degree$ k 10°degree$ always conditiongl TA UR
hspd_at_last_cse_change float 1 meters/seqond 1 meter/gecond 1 metef/second |always cgnditional TA UR
vspd_at_last_cse_changg float 1 meters/sedond 1 meter/second 1 metefysecond |always cqnditional TA UR
role enumeratio 1 perfect alwayq static R
radar_cross_section float unboundgd meters 0.1 rRetdrs 0.1 meterd always static N| UR
radar_detectable boolean unbounded TRUE, FALSE perfec| alwpys condifional N[UR
elint_detectable boolean unbounded TRUE, FALUSE perfec always conditfonal N [UR
comint_detectable boolean unboundgd TRUE, FAUSE perfeci alwpys conditronal N| UR
ir_detectable boolean unboundgd TRUE, FALBE perfect alwgys conditi})nal N | UR
photint_detectable boolean unboundgd TRUE, FAUSE perfeci alwhys condit'onal N[UR
air_to_air_engageable boolear unbounded TRUE, FALSE perfeqt always stellic N[UR

_ air_to_surf_engageable boolear unbounded TRUE, FALSE perfegt always stgtic N| UR

% surf_to_air_engageable boolear] unbounded TRUE, FALSE perfegt always stgtic N[UR

% surf_to_surf_engageable boolean unboundled TRUE, FALSE perfegt aljays static N| UR

é composition enumeration unboundgd perfect always conditignal N |UR

% time_at_last_cse_change float 1 secondd 0.1 secqnd 0.1 seqonds glways con(ditional TA UR

§ lat_at_last_cse_change float 1 degrees| x 10° degree$ X 10° degree! always conditiong! TA UR
Ing_at_last_cse_change float 1 degrees| x 10° degrees k 10° degree: always conditiongl TA UR
alt_at_last_cse_change float 1 meters 1 mete 1 metqr always conditional TA UR
cse_at_last_cse_change float 1 degreeg x 1a° degree$ k 10°degree$ always conditiongl TA UR
hspd_at_last_cse_change float 1 meters/seqond 1 meter/gecond 1 metef/second |always cgnditional TA UR
vspd_at_last_cse_changg float 1 meters/sedond 1 meter/second 1m /second Iway cqnditional TA UR
orientation float 1 degrees 0.1 degreq perfect alwgys conditipnal N | UR
depth float 1 meters 1 meter perfect always conditiopal N |UR
front float 1 meters 1 meter perfect alwayp conditiopal N DR

From the OCST (Table 14) and APT (Table 15), we derive the attributes of a Tank and
a Platoon. Table 16 lists the attributes of Platoon, Taakd Tank. For brevity, we
combine a number of attributes derived from the OCST and APT (second column) into
one attribute (fourth column). We combine attributes that are logically similar and that

133

have identical accuracy condition, update type and update condition. For example, we
combine the attributes radar_detectable, elint_detectable, comint_detectable, ir_detectable
and photint_detectable into an attribute called detectable. Likewise, we combine
entity_name, federate_id, affiliation, motion_type, voice_nets, jtids_nets, trap_tre and
commander_type into an attribute called initial_parameters. We combine such attributes
so that we can present a simple MRE, for which an ADG will be presentable and
specifying mapping functions will be manageable. Combining similar attributes is
consistent with our discussion about assigning nodes of an ADG (86.1.1). A node can be
assigned to any subset of a representation for which a designer can specify how the effects
of interactions must be applied. In practice, we expect designers to assign nodes to
individual attributes rather than combined attributes.

B.4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for
JTFp. Since OMT does not support specifying relationships, we construct an example
ART for our MRE (Table 17). In practice, we expect a designer to construct an ART
specific to the models executed jointly. The specification of the relationship may be
accomplished formally; in Table 17, we present informal specifications in the last column.

We construct an ADG for the Platoon-Tanks MRE. From Table 16, which was derived
from the APT, we determine the nodes in the ADG. From the ART in Table 17, we
determine the arcs in the ADG. The ADG is shown in Figure 67. The interaction
dependencies to each attribute exist because interactions with other entities or internal
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weighting
dependencies. Dependency classes capture static semantics, whereas weights capture
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each
cumulative dependency, and equal weights to distributive dependencies that have the same
independent attribute. We select these weights in order to keep our subsequent discussion
of mapping functions simple. Other weights for these dependencies are possible.

B.5 Select Mapping Functions for Dependencies in the
ART

We select mapping functions to translate attributes among concurrent representations
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must
translate values or changes in values of attributes from one to another. Additionally, it is
desirable that mapping functions complete their translations in a time-bound manner, and
that they be composable and reversible.

We show mapping functions for some dependencies in Table 18. The mapping
functions are presented as pseudo-code. Error-checking has been omitted for brevity.
Pseudo-code in the second column of Table 18 implements specifications in the last
column of Table 17. If any Tank is detectable, Platoon is detectable. Likewise, if Platoon is
detectable, all Tanks are detectable. Platoon is not detectable only if both Tanks are not
detectable. If any Tank is engageable, Platoon is engageable. If Platoon is engageable, at
least one Tank is engageable. Platoon is not engageable only if both Tanks are not

134

GET

< initial_parameter9 <

)

detectable 3 engageable 3

(detectable > (engageable >

front > < orientation >

N

composition

3 Iast_cse_chang%

< damage_state >

< Iast_cse_change>

Y Y Y Y Y
< detectablg > < engageable > < damage_sta§e> <Iast_cse_change> Gadar_cross_sectig}

Cinitial_parameter§> < entity_typq > < role; >

<initial_parametergs> < entity_type > < role,

)

radar_cross_sect@

Gadar_cross_secti@

—> Distributive Dependency Cumulative Dependency

Interaction Dependency

FIGURE 67: ADG for the JTFp Platoon-Tanks MRE

—> Modelling Dependency

TABLE 16: Attributes of Platoon, Tankand Tank (JTFp)

Entity

Original Attributes

Derived From

New Attributes

Platoon

entity_name

federate id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

Player

initial_parameters

<none specified>

GroundPlayer

radar_cross_section

radar_detectable

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

composition

time_at_last_cse_changg

\1%4

lat_at_last_cse_change

Ing_at_last_cse_change

alt_at_last_cse_change

cse_at _last_cse_change

hspd_at_last_cse_chanqe

vspd_at_last_cse_change

depth

front

orientation

AggregateGroundPla

yer

radar_cross_section

detectable

engageable

composition

last_cse_change

depth

front

orientation

136

TABLE 16: Attributes of Platoon, Tankand Tank (JTFp)

Entity

Original Attributes

Derived From

New Attributes

Tank

entity_name

Player

federate id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

Initial_parameters

<none specified>

GroundPlayer

radar_cross_section

MobileGroundPlayer

radar_detectable

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state

entity _type

time_at_last_cse_changg

A} %4

lat_at last cse_change

Ing_at_last_cse_change

alt_at_last_cse_change

cse_at _last_cse_change

hspd_at_last_cse_chanqe

vspd_at_last_cse_change

role

radar_cross_segction

detectaple

engageable

damage_state

entity_typge

last_cse_change

role

137

TABLE 16: Attributes of Platoon, Tankand Tank (JTFp)

Entity

Original Attributes

Derived From

New Attributes

Tank,

entity_name

federate id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

Player

Initial_parametgrs

<none specified>

GroundPlayer

radar_cross_section

radar_detectable

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state

entity _type

A} %4

time_at_last_cse_changg

lat_at last cse_change

Ing_at_last_cse_change

alt_at_last_cse_change

cse_at _last_cse_change

hspd_at_last_cse_chanqe

vspd_at_last_cse_change

role

MobileGroundPlayer

radar_cross_sgc

tion

detectaple

engageable

damage_sjate

entity_typg

last_cse_change

role,

engageable. If the damage_state of any Tank becomes 100%, the composition of the

Platoon is reduced by one. The damage_state of the Tank is changeim tensure that

composition is not reduced further subsequently. Likewise, if composition is reduced by
one @compositior= —1), a Tank whose damage_state was less than 100% previously is
selected and its damage_state changed to 100%. Similarly, mapping functions for other
dependencies can be constructed. For the last_cse_change attribute, a designer may
employ different functions for the different parts, such as lat_at last cse change,

138

TABLE 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp

n

S

nes
S

such

Dependency Type Specification
detectable — detectable Cumulative If even one tank is
detectablg — detectable Cumulativgdetectable, the entire plato
detectable- detectable Distributive | > detectable. If the plato_or

—lis detectable, each tank is
detectable- detectablg Distributive | yatectable.
engageablge - engageable Cumulative If even one tank is
engageable . engageable Cumulatiengageable, the platoon is
engageable. engageable Distributive engageable. If the platoon

_—______lengageable, at least one tank
engageable. engageable Distributive | /st be engageable.
damage_staje— composition Cumulative If a damage_state becon
damage_staje—. composition Cumulative100%, composition reduce
composition- damage_staje Distributive by one, andrice versa
composition- damage_stage Distributive
last_cse_change- last_cse_change Cumulatiye Elements of the course,
last_cse_change- last_cse_change Cumulatiy@s altitude, velocity and
last_cse_change last_cse_change Distributive posm(_)r_], are vector

— | quantities.
last_cse_change last_cse_change Distributive

radar_cross_sectign- radar_cross_sectiop Cumulati

ve The radar cross-section

radar_cross_sectign- radar_cross_section

Cumulati

radar_cross_section radar_cross_sectir

Distributive

radar cross-section of its
tanks.

radar_cross_section radar_cross_sectigr

Distributive

of

e platoon encompasses the

composition- depth

Modelling

The composition affects tl

composition- front

Modelling

depth, front line and

composition- orientation

Modelling

orientation of the platoon.

time_at_last_cse_change and hspd_at_last cse _change. For example, the Platoon-level

position, consisting of

lat_at_last _cse change,

Ing_at_last_cse_change

and

alt_at_last_cse_change may be defined as the centroid of the Tank-level positions.
However, the Platoon-level time, time_at_last_cse_change, may be defined as the latest of
the Tank-level times. Mapping functions such as those shown in Table 18 translate values

or changes in values of attributes.

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency

Mapping Function

detectablg - detectable
detectablg - detectable

detectable fy(detectable detectablg)
fy: detectable— detectable] detectablg

139

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency Mapping Function

detectable- detectable |(detectablg detectablg — gqy(detectable)
detectable. detectable |9 detectable — detectablg — detectable

engageable - engageable| engageablefy(engageablg engageablg
engageable— engageable fe: engageable- engageablel] engageable
engageable. engageable |(engageablg engageablg — g.(engageable)
engageable. engageable |9 €ngageablgrqom(1, 2)~ engageable

damage_staje— composition— f.(damage_stajedamage_staj®
composition fo: for (i « 1to 2)

damage_staje if (damage_state= 100%)

composition { composition——; damage_state- o }
composition- (damage_stajedamage_staje — g.(composition)
damage_staje 0. if (dcompositior= —1)

composition— if (damage_state< 100%) damage_stgte- «
damage_staje elsif (damage_stage< 100%) damage_stagte- o

The mapping functions shown in Table 18 are composable and reversible. Moreover,
since they are simple in construction, we expect that they will complete in a time-bound
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.
When an interaction changes the value of any attribute, mapping functions propagate the
change in the attribute to dependent attributes. For example, if an interaction changes the
Tank-level attribute, detectallethe mapping functiofyy changes the dependent Platoon-
level attribute, detectable. Subsequently, the mapping fungfj@manges the Tank-level
attribute, detectabje Sincefy andgy are composable, the change to detectaéentually
propagates to detectabl&incefy andgy are reversible, detectalldoes not change again
as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 67 and applying the
mapping functions in Table 18 ensures that the Platoon-Tanks MRE is consistent at all
observation times. Next, we determine and resolve the effects of concurrent interactions.

B.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We
show an augmented OIT in Table 19. The first column lists the name of the interaction.
The next four columns list the class and affected attributes for the sender and receiver of
the interaction. We augment each interaction in the OIT with its type (see Chapter 7):
Type O (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and
the parameters of an interactiondhIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For
example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE

140

changing its course, because such an interaction is internal to the MRELFRY, internal

actions are interactions. We add an internal action called ChangeCourse to the interactions
in the OIT (see last row in Table 19) to show thilIIFY addresses internal actions as well

as interactions with other entities. This interaction initiates a change in the course of an
entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity
is Player. The interaction affects the attribute last_cse_change.

The last column in Table 19 lists the type of an interaction. Assigning a type requires
information about the semantics of an interaction. In OMT, this information is available
from the OID. For example, the OID lists the semantics of GetSeaState as a request that
will be satisfied by an Environment entity. Hence GetSeaState is a Type 2 interaction.
ReturnSeaState is the response to a GetSeaState. ReturnSeaState could be Type O or
Type 1, but we assigned it to Type 1 because an entity may discard an update about the
state of the sea. For the ChangeCourse interaction, we assumed that a change in the course

of an entity is a request whose outcome is uncertain.

TABLE 19: Object Interaction Table for JTFp

Interaction

Sender Class

Sender
Attributes

Receiver

Receiver
Attributes

Interaction Parameters

R Type

TBMWarning

Player

none

Player

none

send_time, comms_system,
net_number

TBMLaunchAlert

Player

none

Player

none

send_time, comms_system,
net_number, launch_lat, launch_Ing

InitiateStrikeCommand

Player

none

Player

none

send_time, comms_system,
net_number, strike_phase_name,
strike_phase_number

DetectionReport

Player

none

Player

none

send_time, comms_system,
net_number, report_type, entity_id,
reported_lat, reported_Ing,
reported_alt, reported_cse,
reported_hspd, reported_vspd,
reported_affiliation, reported_type,
reported_raid_count, reported_damg

RequestAirSupport

Player

none

Player

none

send_time, comms_system,
net_number, requestor_id, target_id,
time_on_target, target_lat, target_Ing

SituationReport

Player

none

Player

none

gfc_lat, gfc_Ing, rel_to_objective
objective_name, personnel_status,
equipment_status, effectiveness_sta
combat_intensity

AirToDiscreteGroundEngage

AirPlayer

none

MobileGroundPlaye

damage_s;

ate launch_time, time_of_flight,

launch_lat, launch_Ing, launch_alt,
weapon_type, salvo_size, aimpoint,
estimated_pk_at_launch

R

AirToAggregateGroundEngage

AirPlayer

none

AggregateGroundPl|

pyer compositipn

launch_time, time_of_flight,
launch_lat, launch_Ing, launch_alt,
weapon_type, salvo_size,
targeted_systems,
estimated_pks_at_launch

R

DiscreteGroundToAirEngage

MobileGroundPlayer

none

AirPlayer

damage_s

ate launch_time, time_of_flight,
launch_lat, launch_Ing, launch_alt,
weapon_type, salvo_size,
estimated_pk_at_launch

R

AggregateGroundToAirEngage

AggregateGroundPlg

er none

AirPlayer

omposition

damage_Flatech_time, time_of_flight

launch_quadrant, launch_offsets,
weapon_systems, ammo_types,
salvo_sizes estimated_pks_at_laung

DiscreteGroundToGroundEnga

e MobileGroundPlaye

none

MobileGroundPla

er damage |

state launch_time, time_of_flight,

estimated_pk_at_launch

aim_pt_lat, aim_pt_Ing, weapon_type,

R

TroopsHitBeach

Player

none

num_boat_sorties, num_helo_sor
lat_of_beach_location.
Ing_of_beach_location

e

141

TABLE 19: Object Interaction Table for JTFp

Interaction

Sender Class

Sender
Attributes

Receiver

Receiver
Attributes

Interaction Parameters

IgR Ty,

pe

GetLOSVisibility

Player

none

Environment

none

observation_time, sensor_lat,
sensor_Ing, sensor_alt, target_lat,
target_Ing, target_alt

ReturnLOSVisbility

Environment

none

Player

none

LOS_visibility, relative_humidity,
reason, return_id

GetAtmosphericCondition

Player

none

Environment

none

time, observation_lat, observatig

n_In IR

ReturnAtmosphericCondition

Environment

none

Player

none

ceiling, surface_temperature,
surface_pressure, visibility,
relative_humidity, total_cloud_cover,
cloudl_type, cloud1_height,
cloud1_amount, cloud2_type,
cloud2_height, cloud2_amount,
cloud3_type, cloud3_height,

cloud3_amount, surface_wind_speefl,

surface_wind_direction,
precipitation_amount,
artificial_obscurants,
natural_obscurants

R 1

GetSeaState

Player

none

Environment

none

lat, Ing

ReturnSeaState

Environment

none

Player

none

state_of_sea, sea_surface_tem|

p |

ChangeCourse

Player

last_cse_chd

nge Player

last_cse_

hange new_lat, new_Ing, new_alt, n|

euR hspa,

new_vspd

We determine the interactions that our Platoon-Tanks MRE can send and receive. In
Table 20, we list the interactions that Platoon, Taakd Tank can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along with a
suffix that indicates whether Platoon, Tank Tank, sends or receives that interaction.
For example, the interaction GetLOSVisibility can be sent by an entity of class Player.
Since Player is a base class of Platoon, Taakd Tank, we distinguish the interaction
GetLOSVisibility sent by these three entities as GetLOSVisibility-P, GetLOSVisibility-T
and GetLOSVisibility-T, respectively. In the second column, we indicate whether the
Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the third column, we list
the attributes affected by the interaction directly, i.e., we list the adfetcts for the
interaction. These attributes are determined from the OIT. In the fourth column, we list the
attributes affected by the interaction indirectly, i.e., we list the afé¢cts for the
interaction. These attributes can be determined from the ADG in Figure 67. Finally, we
indicate the type of the interaction.

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects Type
TBMWarning-P S 1
TBMWarning-T; S 1
TBMWarning-T, S 1
TBMLaunchAlert-P S 1
TBMLaunchAlert-T; S 1
TBMLaunchAlert-T, S 1
InitiateStrikeCommand-P S 3

142

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affectg Type
InitiateStrikeCommand- S 3
InitiateStrikeCommand-J S 3
DetectionReport-P S 1
DetectionReport-T S 1
DetectionReport-J S 1
RequestAirSupport-P S 3
RequestAirSupport-T S
RequestAirSupport-J S
SituationReport-P S 1
SituationReport-T S 1
SituationReport-§ S 1
AggregateGroundToAirEngage-P Y
DiscreteGroundToAirEngage; T S 0
DiscreteGroundToAirEngage, T S 0
DiscreteGroundToGroundEngage-T S 0
DiscreteGroundToGroundEngage-T S 0
TroopsHitBeach-P S 0
TroopsHitBeach-T S 0
TroopsHitBeach-§ S 0
GetLOSVisibility-P S 2
GetLOSVisibility-T; S 2
GetLOSVisibility-T, S 2
GetAtmosphericCondition-P S 2
GetAtmosphericCondition-T 2
GetAtmosphericCondition-I S 2
GetSeaState-P S 2
GetSeaStateqI S 2
GetSeaState,l S 2

143

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affectd Type
ChangeCourse-P § last_cse_change last_cse_ghande
last_cse_changge
last_cse_change
ChangeCourseT S |last_cse_changelast_cse_change, 3
last_cse_changge
last_cse_change
ChangeCourseol S |last_cse_changelast_cse_change, 3
last_cse_changge
last_cse_change
TBMWarning-P R 1
TBMWarning-T; R 1
TBMWarning-T, R 1
TBMLaunchAlert-P R 1
TBMLaunchAlert-T; R 1
TBMLaunchAlert-T, R 1
Initiate StrikeCommand-P R 3
InitiateStrikeCommand-{ R
InitiateStrikeCommand-J R
DetectionReport-P R 1
DetectionReport-T R 1
DetectionReport-J R 1
RequestAirSupport-P R 3
RequestAirSupport-T R
RequestAirSupport-J R 3
SituationReport-P R 1
SituationReport-T R 1
SituationReport-§ R 1
AirToAggregateGroundEngage-P R composition damage j;stat¢ 0O
damage_staje
depth, front,
orientation,
composition

144

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affectd Type

AirToDiscreteGroundEngage; T R |damage_staje |composition, 0
damage_staje
depth, front,
orientation,
damage_staje

AirToDiscreteGroundEngage,T R |damage_staje |composition, 0
damage_staje
depth, front,

orientation,

damage_staje
ReturnLOSVisibility-P R 1
ReturnLOSVisibility-Ty R 1
ReturnLOSVisibility-T, R 1
ReturnAtmosphericCondition-P R 1
ReturnAtmosphericConditionqT R 1
ReturnAtmosphericCondition,T R 1
ReturnSeaState-P R]
ReturnSeaStateqT R 1
ReturnSeaState,T R 1
ChangeCourse-P R last_cse_charge last_cse_ghgnd

last_cse_changge
last_cse_change

ChangeCourseT R |last_cse_changelast_cse_change| 3
last_cse_changge
last_cse_change

ChangeCourseol R |last_cse_changeglast_cse_change| 3
last_cse_change
last_cse_change

Any subset of the interactions in Table 20 may occur concurrently. Next, we show how
to resolve the effects of concurrent interactions.

145

B.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices from
the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is
unavailable in OMT, we construct an example CIT, shown in Table 21.

A designer specifies policies in the CIT for resolving the effects of concurrent
interactions. The CIT consists of sets of concurrent interactions with dependent effects,
policies for resolving them and conditions under which the policies are applicable.
Concurrent interactions that are independent of one another can be resolved by
serialization and are not specified in the CIT. Some interactions may be independent
because they affect disjoint sets of attributes. Other interactions may be independent
because their effects are applied in different time-steps, for example, interactions sent and
received by an entity. Yet other interactions are independent because they are request-
response pairs. Policies must be specified in the CIT for only the remaining interactions.
Policies may be specified for classes of interactions (e.g., the last two rows in Table 21) or
for instances of interactions (e.g., all the other rows in Table 21). In JTFp, many
interactions do not affect any attributes. Although such interactions can be assumed
independent, we do not make such an assumption. It is likely that the interactions affect
internal attributes in the models. Since OMT is meant to be an interface specification,
internal attributes are not listed in the APT. For consistency maintenance, a designer must
list internal attributes as well in the APT. Since internal attributes are not listed, we will
not assume that interactions that affect disjoint sets of attributes are independent. For
example, although InitiateStrikeCommand-P, InitiateStrikeCommand-and
InitiateStrikeCommand-J affect no attributes, hence affecting disjoint sets of attributes,
we specify policies for resolving these interactions. An Interaction Resolver for the
Platoon-Tanks MRE applies the policies in the CIT only if the effects of concurrent
interactions conflict. If concurrent interactions do not conflict, they may be serialized.

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions Condition Policy

AggregateGroundToAirEngage-P, apll sent | Do not send all except
combination of AggregateGroundToAirEngage-P
(DiscreteGroundToAirEngager T
DiscreteGroundToAirEngage,T
DiscreteGroundToGroundEngage; T
DiscreteGroundToGroundEngage) T

DiscreteGroundToAirEngage; T All sent | Do not send
DiscreteGroundToGroundEngage-T DiscreteGroundToAirEngager T
InitiateStrikeCommand-P, any All Delay all except

combination of received |InitiateStrikeCommand-P by one
(Initiate StrikeCommand-{} time-step
InitiateStrikeCommand-J)

146

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions

Conditid

n Policy

DetectionReport-P, any combination|all Ignore DetectionReport-P
(DetectionReport-{, received

DetectionReport-J)

RequestAirSupport-P, any combinatipAll Delay all except

of (RequestAirSupport- received |RequestAirSupport-P by one timg
RequestAirSupport-J) step

SituationReport-P, any combination

oAl

Ignore SituationReport-P

(SituationReport-7, SituationReport-| received
To)
AirToAggregateGroundEngage-P, |All Damage to TanKkess than sum of

AirToDiscreteGroundEngage- T

received

damages but greater than minimu
of damages; add compensatory
interaction to reduce damage

ReturnLOSVisibility-P, any All Ignore ReturnLOSVisibility-P
combination of (ReturnLOSVisibility4{ received

T4, ReturnLOSVisibility-T)

ReturnAtmosphericCondition-P, any| All Ignore

combination of received |ReturnAtmosphericCondition-P

(ReturnAtmosphericCondition,T
ReturnAtmosphericCondition-J

ReturnSeaState-P, any combination
(ReturnSeaState;T ReturnSeaState-

To)

ol
received

Ignore ReturnSeaState-P

ChangeCourse-P, any combination ¢

DA

Ignore all except ChangeCourse-

(ChangeCourse-l ChangeCourse-J | received
Type O, Type 1 All Ignore Type 1
received
Type 2, Type 3 All Ignore Type 3
received
Any Interaction Ignored orignored or Delayed entirely, i.e., 1

Delayed

partial effects permitted

B.8
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain
consistency and resolve concurrent interactions respectively. A CE consists of an ADG

Construct a Consistency Enforcer and an Interaction

147

and mapping functions, whereas an IR consists of policies for resolving concurrent
interactions. Figure 68 shows a JTFp Platoon-Tanks MRE. The MRE can interact at
multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,
the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the
Platoon-Tanks MRE, we presented an ADG in Figure 67 and mapping functions in
Table 18. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.
In 86.3, we discussed how to traverse an ADG and apply mapping functions in order to
keep an MRE internally consistent.

Platoon-Tanks MRE
Platoon
Interactions \
\
Interaction Consistency
Resolver Enforcer
/
Tank /
Interactions

FIGURE 68: JTFp Platoon-Tanks MRE

An IR consists of application-specific policies for resolving the effects of concurrent
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent
interactions in Table 21. In Figure 47 (see Chapter 7), we presented an algorithm for
implementing an IR. In 87.5, we presented a taxonomy for classifying interactions. Using
this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent
interactions occur. During a time-step, a number of concurrent interactions may occur. The
IR determines the type of each interaction. Next, the IR applies the effect of each
interaction as if the interaction occurred in isolation. In order to do so, the IR permits the
interactions to take effect one at a time. When an interaction changes an attribute, the CE
traverses an ADG and translates changes to dependent attributes by invoking the
appropriate mapping functions. The CE maintains a list of changes for each attribute as a
result of computing the effects of each interaction. Subsequently, the CE applies the
effects of all the interactions on each attribute. The CE queries the IR about policies to
resolve the effects of dependent concurrent interactions whenever the CE detects conflicts
in the list of changes for an entity. If the IR contains a policy for resolving conflicting
changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes
are independent and applies them in an arbitrary order. When the changes to all attributes
have been applied, the MRE is internally consistent.

148

“My dear Watson, try a little analysis yourself;
said he, with a touch of impatience.
“You know my methods. Apply them,
and it will be instructive to compare results.”
— Arthur Conan DoyleThe Sign of the Four

Appendix C

Joint Precision Strike Demonstration

We demonstrate how designers can empldfdIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate
UNIFY in Joint Precision Strike Demonstration (JPSD) [JPSD97], a military model that is
part of the Department of Defence’s High Level Architecture (HLA). JPSD is specified
using OMT [OMT98]. From the JPSD specifications, we construct an MRE and show how
to maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the JPSD
specifications. We assume that the jointly-executing models in JPSD are a Platoon model
and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as
shown in Figure 69. From the OMT tables in the JPSD specification, we determine the
attributes in the representations of the Platoon and Tank models. Next, we capture the
relationships among attributes using an Attribute Dependency Graph (ADG) and select
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select
policies for resolving the effects of concurrent interactions.

In 8C.1, we present the tables in OMT. In 8C.2, we list steps for incorporbkiigY
in JPSD. We demonstrate each step in subsequent sections. In 8C.3, we construct an MRE.
In 8C.4 and 8C.5, we construct an ADG and select mapping functions for attribute
dependencies in the MRE. In 8C.6 and 8C.7, we determine and resolve the effects of
concurrent interactions. In 8C.8, we construct a CE and IR for the MRE.

C1l OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with
publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction
parameters along their data type, cardinality, units, resolution, accuracy,
accuracy condition, update type and update condition.

149

Platoon-Tanks MRE
Platoon
Representatio
Tank; Tank,
Representatio Representatio

L FIGURE 69: Platoon-Tanks MRE _
3. Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.
Enumerated Data Table (EDT): Lists the values of all enumerations.
Complex Data Table (CDT): Lists the definitions of all structured data types.
Object Class Definitions (OCD): Describes the role of each entity.
Object Interaction Definitions (OID): Describes each interaction.
Attribute/Parameter Definitions (APD): Describes each object attribute and
interaction parameter.
We augment the OIT with the class of each interaction. Also, we add two tables to
OMT to capture attribute relationships and specify policies for concurrent interactions.
9. Attribute Relationships Table (ART): Lists each attribute dependency, its type,
its mapping function and requirements and properties of the mapping function.
10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and
instances of concurrent interactions.

©o~NoOA

C.2 Steps

The steps for incorporatingNIFY in JPSD are:

Construct an MRE from the OCST and the APT

Construct an ADG from the APT and the ART

Select Mapping Functions for Dependencies in the ART
Determine the Effects of Interactions from the OIT

Resolve the Effects of Concurrent Interactions from the CIT
Construct a Consistency Enforcer and an Interaction Resolver

ok whE

C.3 Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model
jointly. We modify the OCST for JPSD to make Aggregate a derived class of Entity so that
an Aggregate entity can send and receive other interactions in addition to requests to
aggregate and disaggregate. Also, we do not show specific instances of derived classes,
such as Tank or Aggregate. From the modified OCST for JPSD (shown in Table 22), we
derive a Platoon from Aggregate. Our Platoon-Tanks MRE consists of the representations
of a Platoon and two Tanks, Tgré&nd Tank.

150

TABLE 22: Object Class Structure Table for JPSD

Base Class 1st Subclass 2nd Subclass 3rd Subclass
Entity Aggregate
Land Tank
ArmoredFightingVehicle
SelfPropelledArtillery
Platform SmallWheeledUtilityVehicle
Air AttackHelicopter
ElectronicWarfare
UAV
Munition AntiArmor Guided
BattlefieldSupport
System TacticalSystem
Strike

BattalionCommander

ModSafCommander

From the APT, we determine the attributes that are part of the concurrent
representations within our Platoon-Tanks MREs. For brevity, Table 23 shows only part of
the APT for JPSD. The table lists attributes only for classes or base classes of Platoon and
Tank. For each attribute, the designer may specify information such as its data type, units,
resolution, accuracy, condition under which the specified accuracy is required and update
type. The T/A and U/R information is not usedJNIFY.

From the OCST (Table 22) and APT (Table 23), we derive the attributes of a Tank and
a Platoon. Table 24 lists the attributes of Platoon, Taakd Tank. For brevity, we
combine a number of attributes derived from the OCST and APT (second column) into
one attribute (fourth column). We combine attributes that are logically similar and that
have identical accuracy condition, update type and update condition. For example, we
combine the attributes Location_X, Location_Y, and Location_Z into an attribute called
Location. Likewise, we combine Entity ID_site, Entity ID_application, Entity ID_entity,
Entity_Type_Kind, Entity_Type_Domain, Entity Type_ Country, Entity Type_ Category,
Entity _Type_Subcategory, Entity Type_Specific and marking_text into an attribute called
Initial_Parameters. We combine such attributes so that we can present a simple MRE, for
which an ADG will be presentable and specifying mapping functions will be manageable.
Combining similar attributes is consistent with our discussion about assigning nodes of an
ADG (86.1.1). A node can be assigned to any subset of a representation for which a
designer can specify how the effects of interactions must be applied. In practice, we expect
designers to assign nodes to individual attributes rather than combined attributes.

151

TABLE 23: Attribute/Parameter Table for JIPSD

In%brfcctggn Attribute/Parameter Datatype Cardinalily Units Resolutipn Accur 1@2%::3 Update Typg Update Conditiof T/A UR
Entity_ID_site short enumeratign discrete perfegt always stati UR
Entity_ID_application short enumeratign discretg perfeft alwgys static UR
Entity_ID_entity short enumeratiopn discrete perfeqt always stati UR
Force_ID short enumeratign discretd perfegt always stati UR
Entity_Type_Kind short enumeratign discretq perfegt alwalys statip UR
Entity_Type_Domain short enumeratipn discretg perfeft alwgys statlc UR
Entity_Type_Country short enumeratipn discretg perfeft alwgys statlc UR
Entity_Type_Category short enumeratipn discretp perfgct always stafic UR
Entity_Type_Subcategory short enumeratjon discrefe perfect always staftic UR

> Entity_Type_Specific short enumeratipn discretg perfect always statjc UR
0 Location_X double meters 1 10% DR | conditional time-outt TA | UR
Location_Y double meters 1 10% DR conditionpl time-out TA R
Location_Z double meters 1 10% DR conditional time-out A UR
Velocity_X double meters/se 10% DR conditional time-out TA UR
Velocity_Y double meters/se 10% DR conditional time-out TA UR
Velocity_Z double meters/se 10% DR conditiorfal time-out ITA UR
Orientation_Psi double radians 3 degrees DR conditignal time-out TA | UR
Orientation_Theta double] radians 3 degrges DR conditipnal time-out TA | UR
Orientation_Phi double radians 3 degrees DR conditignal time-out TA |UR
marking_text string perfect alwayd static yr
Aggregate_ID_site short enumeratipn discretp perfgct always static UR
Aggregate_ID_application short enumeratfon discrete perfect alwpys stafic UR
Aggregate_|D_entity short enumeratipn discrete perfect always statjc UR
Entity_Type_Kind short enumeratign discretg perfegt always statig UR
Entity_Type_Domain short enumeratipn discretg perfeft alwgys statlc UR
Entity_Type_Country short enumeratipn discretg perfeft alwgys stat|c UR
Entity_Type_Category short enumeratipn discretp perfgct always stafic UR
Entity_Type_Subcategory short enumeratjon discrefe perfect always stafic UR
Entity_Type_Specific short enumeratipn discrete perfect alwgys statjc UR
Location_X double meters 1 10% DR periodid 0.033333333] TA UR
Location_Y double meters 1 10% DR periodid 0.033333333] TA UR
i Location_Z double meters 1 10% DR periodic 0.033333333 TA [UR
% Velocity_X double meters/se 10% DR periodid 0.033333333 TA [UR
< Velocity_Y double meters/se 10% DR periodid 0.033333333 TA [UR
Velocity_Z double meters/se! 10% DR periodi 0.033333333 TA |UR
Orientation_Psi double radians 3 degrees DR periodic 0.033333333 TA| UR
Orientation_Theta double] radians 3 degrges DH periodic 0.033333333 TA| UR
Orientation_Phi double radians 3 degrees DR periodic 0.033333333 TA| UR
marking_text string perfect alwayg static yr
Shape short enumeratign discretq perfegt alwgys conditipnal if tasking changes s¢tUR
shape
Num_Entities_in_Aggregate| short enumeratjon discrefe perfect always defta UR
DisaggPermitted boolean discretg perfegt always stati UR
AggregateState short enumeration discrete perfect always delfa UR
SubordinateList sequende discretq perfeft alwgys deltq UR

152

TABLE 23: Attribute/Parameter Table for JIPSD

In%brfcctggn Attribute/Parameter Datatype Cardinalily Units Resolutipn Accur: 1@2%:331 Update Typd Update Conditionn T/A UR
Appearance_Paint_Scheme] shont enumerdgtion discrete perfect alyays delta UR
Appearance_Smoking short enumeratjon discrefe perfect always delta UR
Appearance_Flaming short enumeratjon discrefe perfect alwpys delta UR

c Appearance_Trailing short enumeratipn discretp perfgct always delfa UR

% Appearance_Lights short enumeration discrete perfgct always delfa UR

& Appearance_Hatch short enumeratjon discrefe perfect alwpys delta UR
Damage_State_Appearancg shoft enumeration discrete peffect alvays delta UR
Damage_State_Mobility short enumeration discrete perfect always delfa UR
Damage_State_Fire_Power shor enumeration discregte perfect alyays delta UR

= GunElevation double radians 0.1 DR delta A UR

<

*

DR refers to a dead-reckoning algorithm, listed in the JPSD APT as DR(F, P, W).
T time-out refers to the JPSD APT condition: if (faccurate) or (value has changed and 5 second
update interval passed)

C4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for
JPSD. Since OMT does not support specifying relationships, we construct an example
ART for our MRE (Table 25). In practice, we expect a designer to construct an ART
specific to the models executed jointly. The specification of the relationship may be
accomplished formally; in Table 25, we present informal specifications in the last column.

We construct an ADG for the Platoon-Tanks MRE. From Table 24, which was derived
from the APT, we determine the nodes in the ADG. From the ART in Table 25, we
determine the arcs in the ADG. The ADG is shown in Figure 70. The interaction
dependencies to each attribute exist because interactions with other entities or internal
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weighting
dependencies. Dependency classes capture static semantics, whereas weights capture
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each
cumulative dependency, and equal weights to distributive dependencies that have the same
independent attribute. We select these weights in order to keep our subsequent discussion
of mapping functions simple. Other weights for these dependencies are possible.

C.5 Select Mapping Functions for Dependencies in the
ART

We select mapping functions to translate attributes among concurrent representations
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must
translate values or changes in values of attributes from one to another. Additionally, it is
desirable that mapping functions complete their translations in a time-bound manner, and
that they be composable and reversible.

We show mapping functions for some dependencies in Table 26. The mapping
functions are presented as pseudo-code. Error-checking has been omitted for brevity.

153

121

Orientation 3 < InitiaI_Parameter9

Composition)

A

Location

(Orientation >

Appearance

Velocity 3

{ Velocity, >

)/(/%nage_Stage > < Locationy ><—

Y

Y Y
< Orientation > < Appearancg > <Damage_8ta§e> < Location,

Y
><—< Velocity, >

<InitiaI_Parameterls> < GunElevation >

<InitiaI_ParameterLs> < GunElevation >

—> Distributive Dependency Cumulative Dependency Interaction Dependency

FIGURE 70: ADG for the JPSD Platoon-Tanks MRE

—> Modelling Dependency

TABLE 24: Attributes of Platoon, Tankand Tank (JPSD)

Entity

Original Attributes

Derived From

New Attributes

Platoon

Aggregate_ID_site

Aggregate_ID_application

Aggregate_ID_entity

Entity Type Kind

Entity Type Domain

Entity Type_ Country

Entity Type_Category

Entity Type_Subcategory

Entity_Type_Specific

marking_text

Location_X

Location_Y

Location_Z

Velocity_X

Velocity Y

Velocity Z

Orientation_Psi

Orientation_Theta

Orientation_Phi

Shape

Num_Entities_in_Aggrega

DisaggPermitted

AggregateState

SubordinateList

e

Aggregate

Initial_Parameter

12)

Location

Velocity

Orientation

Composition

155

TABLE 24: Attributes of Platoon, Tankand Tank (JPSD)

Entity

Original Attributes

Derived From

New Attributes

Tank

Entity_ID_site

Entity

Entity_ID_application

Entity_ID_entity

Force ID

Entity Type_ Kind

Entity Type Domain

Entity_Type_ Country

Entity_Type_Category

Entity Type Subcategory

Entity Type_ Specific

marking_text

Location_X

Location_Y

Location_Z

Velocity X

Velocity Y

Velocity Z

Orientation_Psi

Orientation_Theta

Orientation_Phi

Initial_Parameters

Location

Velocity;

Orientatign

Appearance_Paint_Schen

&latform

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch

Damage_State_Appearan

Damage_State_Mobility

Damage_State Fire_Powe

18

Appearange

Damage_State

GunElevation

Tank

GunElevatiop

156

TABLE 24: Attributes of Platoon, Tankand Tank (JPSD)

Entity Original Attributes Derived From New Attributes

Tank Entity ID_site Entity Initial_Parametess
Entity_ID_application
Entity_ID_entity

Force ID

Entity Type_ Kind
Entity Type Domain
Entity_Type_ Country
Entity_Type_Category
Entity Type Subcategory
Entity Type_ Specific
marking_text

Location_X Location
Location_Y
Location_Z
Velocity X Velocity,
Velocity Y
Velocity Z
Orientation_Psi Orientatign
Orientation_Theta
Orientation_Phi

Appearance_Paint_Schemélatform Appearance

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch
Damage_State_Appearance Damage_State

Damage_State_Mobility

Damage_State Fire_Power

GunElevation Tank GunElevatiog

Pseudo-code in the second column of Table 26 implements specifications in the last
column of Table 25. The location, velocity and orientation of Platoon are averages of the
location, velocity and orientation of Tapland Tank. Similarly, mapping functions for

157

TABLE 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD

Dependency Type Specification
Location, — Location Cumulativg The location of the platogn
Location, Location Cumulative i the centroid of the
Location — Location Distributive | 0cation of its tanks.
Location - Location, Distributive
Velocity; — Velocity Cumulative| The velocity of the platoon
Velocity, — Velocity Cumulative] IS the average of the velocity
Velocity — Velocity, Distributive of its tanks.
Velocity — Velocity, Distributive

Orientation — Orientation

Cumulative The orientation of the

Orientation, —» Orientation

Cumulative pPlatoon is the average of the

Orientation— Orientation

Distributive

Orientation— Orientation

Distributive

orientations of its tanks.

D
o

Cumulative If a tank is fatally damags
Cumulative Composition reduces by
one, andvice versa

Damage_State— Composition
Damage_State—~ Composition
Composition- Damage_State
Composition— Damage_Staje
Appearance - Composition
Appearancg - Composition
Composition- Appearance

Distributive
Distributive

Cumulative The appearance of each tank
Cumulativedetermines the appearanc
of the platoon.

112

Distributive

Composition— Appearancg Distributive
Velocity - Location Modelling | The location of a platoon pr
Velocity; — Location Modelling |@ tank depends on its

Velocity, - Location,

Modelling

velocity.

other dependencies can be constructed. Mapping functions such as those shown in
Table 26 translate values or changes in values of attributes.

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function

Location, — Location
Location, — Location

Location- f4(Location, Locatior)

fi: Location_X — (Location_X + Location, X) /2
Location_Y — (Location_Y + Location,_Y) /2
Location_Z — (Location_Z + Location, Z)/ 2

(Location;, Location) — gq(Location)

g: dLocationy_X ~ dLocation, X ~ dLocation_X
dLocation_Y ~ dLocation, Y ~ dLocation_Y
dLocation;_Z — dlLocatiorn, Z — dLocation_Z

Location - Locationy
Location - Location,

158

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function
Velocity; — Velocity Velocity — fy(Velocity,, Velocity,)
Velocity, — Velocity f,: Velocity_X « (Velocity; X + Velocity, X)/2

Velocity_Y ~ (Velocity; Y + Velocity, Y)/2
Velocity_Z ~ (Velocity, Z + Velocity, Z)/2

Velocity — Velocity; (Velocity,, Velocity,) — gq4(Velocity)

Velocity — Velocity, 0,: OVelocity; X ~ dVelocity, X ~ dVelocity X
dVelocity; Y — dVelocity, Y ~ dVelocity Y
dVelocity, Z — d&Velocity, Z — dVelocity _Z
Orientation - Orientation | Orientation- fy(Orientation, Orientation)
Orientation, — Orientation |fo: Orientation_Psi-

(Orientation_Psi+ Orientation_Psi)/ 2
Orientation_Theta-

(Orientation_Theta+ Orientation_Theta)/ 2
Orientation_Phi—

(Orientation_Phi+ Orientatiop_Phi)/ 2
Orientation— Orientation |(Orientation, Orientation) — g4(Orientation)
Orientation - Orientatio& Jo- 60rientati0I]_PSi — EOrientatiOQ_PSi —

dOrientation_Psi
dOrientation_Theta~ dOrientatio_Theta

dOrientation_Theta
dOrientation_Phi — dOrientatior;_Phi —
oOrientation_Phi

The mapping functions shown in Table 26 are composable and reversible. Moreover,
since they are simple in construction, we expect that they will complete in a time-bound
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.
When an interaction changes the value of any attribute, mapping functions propagate the
change in the attribute to dependent attributes. For example, if an interaction changes the
Tank-level attribute, Orientatignthe mapping functiofy, changes the dependent Platoon-
level attribute, Orientation. Subsequently, the mapping fungipchanges the Tank-level
attribute, Orientation Since f, and g, are composable, the change to Orientation
eventually propagates to Orientatio®incef, andg, are reversible, Orientatigrioes not
change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 70 and applying the
mapping functions in Table 26 ensures that the Platoon-Tanks MRE is consistent at all
observation times. Next, we determine and resolve the effects of concurrent interactions.

C.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We
show an augmented OIT in Table 27. The first column lists the name of the interaction.

159

The next four columns list the class and affected attributes for the sender and receiver of
the interaction. We augment each interaction in the OIT with its type (see Chapter 7):
Type O (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and
the parameters of an interactiondhIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For
example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE
changing its course, because such an interaction is internal to the MRELFRY, internal
actions are interactions. We add an internal action called ChangeCourse to the interactions
in the OIT (see last row in Table 27) to show thiNIIFY addresses internal actions as well
as interactions with other entities. This interaction initiates a change in the course of an
entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity
is Entity. The interaction affects the attributes Location, Velocity and Orientation.

The last column in Table 27 lists the type of an interaction. Assigning a type requires
information about the semantics of an interaction. For example, the semantics of Collision
are that it is generated in response to a modelling event in which two entities collide. Since
the collision has occurred already and its effects on the sender and receiver are certain,
Collision is a Type 0 interaction. ArtyRadioMessage is a request by a commanding officer
to perform a task. Since an entity may discard the request, ArtyRadioMessage is a Type 3
interaction. For the ChangeCourse interaction, we assumed that a change in the course of
an entity is a request whose outcome is uncertain.

TABLE 27: Object Interaction Table for JPSD

Sender Receiver

)) . q
Interaction Sender Class Attributes Receiver Attributes Interaction Parameters IR Type
Collision Entity Location, Entity Location, Issuing_ID, Colliding_ID, Mass, ISR| O
Velocity, Velocity, Relative_Location, Event_ID, Velocit
Orientation, Orientation,
Appearance, Appearance,
Damage_State Damage_State
Detonation Munition Appearance, |Entity Velocity, Munition_ID, Location, Velocity, ISR| O
Damage_State Appearance, |Firing_ID, Target_ID ,Event_ID,
Damage_State| Detonation_Result, Burst_Descriptor
Weapon_Launch Platform none Munition none Launch_Platform_ID, Weapon_|I[ISR| 3
DisaggregateRequest Aggregate none Aggregate Aggregatg®tatiey_1D, aggregate_ID, ISR| 3
Subordinates | detection_range, aggregate_state
ArtyRadioMessage ModSafCommander none Land Location, | message_type, command, gun_ID, [ISR| 3
Orientation, full_message
Velocity
ChangeCourse Entity Location, Entity Location, New_Location, New_Velocity, IR| 3
Velocity, Velocity, New_Orientation
Orientation Orientation

We determine the interactions that our Platoon-Tanks MRE can send and receive. In
Table 28, we list the interactions that Platoon, Taakd Tank can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along with a
suffix that indicates whether Platoon, Tank Tank, sends or receives that interaction.
For example, the interaction Collision can be sent by an entity of class Entity. Since Entity
is a base class of Platoon, Tardnd Tank, we distinguish the interaction Collision sent
by these three entities as Collision-P, Collisiopndnd Collision-T, respectively. In the
second column, we indicate whether the Platoon-Tanks MRE sends (S) or receives (R) the
interaction. In the third column, we list the attributes affected by the interaction directly,

160

i.e., we list the seaffectsfor the interaction. These attributes are determined from the OIT.

In the fourth column, we list the attributes affected by the interaction indirectly, i.e., we

list the setaffects for the interaction. These attributes can be determined from the ADG in
Figure 70. Finally, we indicate the type of the interaction. Sinc&JMIFY we do not
aggregate or disaggregate, we do not expect the DisaggregateRequest interaction to occur.

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects Type
Collision-P S | Location, Location;, Location, 0
Velocity, Velocity,, Velocitys,
Orientation, Orientation, Orientation,

Composition Appearancg Appearancg
Damage_Staie
Damage_Staje Location,
Velocity, Orientation,

Composition
Collision-T; S | Location, Location, Velocity, 0
Velocity;, Orientation, Composition,

Orientation, Location, Velocitys,
Appearancg Orientation, Appearancg
Damage_State |Damage_Staje Location,
Velocity,, OrientatioR,
Appearancg Damage_Staje

Collision-T, S | Location, Location, Velocity, 0
Velocity,, Orientation, Composition,
Orientation, Location, Velocity,
Appearancg Orientation, Appearancg
Damage_State |Damage_State Location,
Velocity,, Orientation,
Appearancg Damage_Staje

Weapon_Launch-T S
Weapon_Launch-J S
DisaggregateRequest-H) ¢
ChangeCourse-P S Location, Location;, Location, 3
Velocity, Velocity,, Velocitys,
Orientation Orientation, Orientation,
Location, Velocity,
Orientation

161

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE
Interaction S/R affects affectd Type
ChangeCourseT S | Location, Location, Velocity, 3
Velocityy, Orientation, Locatiog
Orientation Velocity,, Orientation,
Location, Velocity,,
Orientation
ChangeCourse-l S | Location, Location, Velocity, 3
Velocity,, Orientation, Locatiof
Orientation Velocity,, Orientation,
Location, Velocity,,
Orientation
Collision-P R | Location, Location;, Location, 0
Velocity, Velocity,, Velocitys,
Orientation, Orientation, Orientation,
Composition Appearancg Appearancg
Damage_State
Damage_State Location,
Velocity, Orientation,
Composition
Collision-T; R |Location, Location, Velocity, 0
Velocity;, Orientation, Composition,
Orientation, Location, Velocitys,
Appearance Orientatio, Appearancg
Damage_State |Damage_State Location,
Velocity,, Orientation,
Appearancg Damage_State
Collision-T, R |Location, Location, Velocity, 0
Velocity,, Orientation, Composition,
Orientation, Location, Velocity;,
Appearancg Orientation, Appearancg
Damage_State |Damage_State Location,
Velocity,, Orientation,
Appearancg Damage_Staje
Detonation-P R| Velocity, Velocity,, Velocitys, 0
Composition Appearancg Appearancg

Damage_State
Damage_State Location,
Velocity, Composition,
Location, Location,

162

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affectd Type
Detonation-§ R | Velocityy, Velocity, Composition, 0
Appearanceg Location, Velocitys,
Damage_State |Velocity;, Appearancg
AppearancgDamage_Staje
Damage_Stage Location,
Location,
Detonation-} R | Velocitys,, Velocity, Composition, 0
Appearancg Location, Velocity,
Damage_State |Velocity,, Appearancg
Appearancg Damage_State
Damage_State Location,
Locatiory
DisaggregateRequest-H R
ArtyRadioMessage-P R Location, Location;, Location, 3
Velocity, Velocity,, Velocitys,
Orientation Orientation, Orientation,
Location, Velocity,
Orientation, Composition
ArtyRadioMessage-T R |Location, Location, Velocity, 3
Velocity;, Orientation, Locatiog
Orientation Velocity,, Orientation,
Location, Velocity;,
Orientation
ArtyRadioMessage-J R |Location, Location, Velocity, 3
Velocitys, Orientation, Locatiof
Orientation Velocity;, Orientation,
Location, Velocitys,
Orientation
ChangeCourse-P R Location, Location;, Location, 3
Velocity, Velocity,, Velocitys,
Orientation Orientation, Orientation,
Location, Velocity,
Orientation
ChangeCourseT R |Location, Location, Velocity, 3
Velocity;, Orientation, Locatio)
Orientation Velocity,, Orientation,
Location, Velocity;,
Orientation

163

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affectd Type
ChangeCourseol R | Location, Location, Velocity, 3
Velocitys, Orientation, Locatiof

Orientation Velocity,, Orientation,
Location, Velocitys,
Orientation

Any subset of the interactions in Table 28 may occur concurrently. Next, we show how
to resolve the effects of concurrent interactions.

C.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices from
the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is
unavailable in OMT, we construct an example CIT, shown in Table 29.

A designer specifies policies in the CIT for resolving the effects of concurrent
interactions. The CIT consists of sets of concurrent interactions with dependent effects,
policies for resolving them and conditions under which the policies are applicable.
Concurrent interactions that are independent of one another can be resolved by
serialization and are not specified in the CIT. Some interactions may be independent
because they affect disjoint sets of attributes. Other interactions may be independent
because their effects are applied in different time-steps, for example, interactions sent and
received by an entity. Yet other interactions are independent because they are request-
response pairs. Policies must be specified in the CIT for only the remaining interactions.
Policies may be specified for classes of interactions (e.g., the last two rows in Table 29) or
for instances of interactions (e.g., all the other rows in Table 29). An Interaction Resolver
for the Platoon-Tanks MRE applies the policies in the CIT only if the effects of concurrent
interactions conflict. If concurrent interactions do not conflict, they may be serialized.

TABLE 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

Concurrent Interactions Conditign Policy
Any combination of (Detonation-P, |Always Damage to Tanks less than sum|of
Detonation-T, Detonation-F), any damages but greater than minimym
combination of (Collision-P, of damages; add compensatory
Collision-Ty, Collision-Ty) interaction to reduce damage
DisaggregateRequest-P Always Ignore
ArtyRadioMessage-P, any combinatigReceived, |Ignore all except
of (ArtyRadioMessage- commandg Initiate StrikeCommand-P
ArtyRadioMessage-]) conflicting

164

TABLE 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

Concurrent Interactions Conditign Policy

ArtyRadioMessage-P, any combinatigReceived, |Delay all except
of (ArtyRadioMessage-[commands InitiateStrikeCommand-P by one
ArtyRadioMessage-]) non- time-step

conflicting
Any combination of All Ignore ChangeCourse-P,
(ArtyRadioMessage-P, received |ChangeCourseql
ArtyRadioMessage- ChangeCourse-l Resolve
ArtyRadioMessage-J), any ArtyRadioMessage-P,
combination of (ChangeCourse-P, ArtyRadioMessage-{
ChangeCourse4[ChangeCourse»J ArtyRadioMessage-J) as above
ChangeCourse-P, any combination oAll Ignore all except ChangeCoursetP
(ChangeCourse+[ChangeCourse-J | received
Type O, Type 1 All Ignore Type 1

received
Type 2, Type 3 All Ignore Type 3

received
Any Interaction Ignored orlgnored or Delayed entirely, i.e., no

Delayed |partial effects permitted

C.8 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain
consistency and resolve concurrent interactions respectively. A CE consists of an ADG
and mapping functions, whereas an IR consists of policies for resolving concurrent
interactions. Figure 71 shows a JPSD Platoon-Tanks MRE. The MRE can interact at
multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,
the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the
Platoon-Tanks MRE, we presented an ADG in Figure 70 and mapping functions in
Table 26. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.
In 86.3, we discussed how to traverse an ADG and apply mapping functions in order to
keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurrent
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent
interactions in Table 29. In Figure 47 (see Chapter 7), we presented an algorithm for
implementing an IR. In 87.5, we presented a taxonomy for classifying interactions. Using
this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent
interactions occur. During a time-step, a number of concurrent interactions may occur. The

165

Platoon-Tanks MRE
Platoon
Representatig

Interaction

Platoon

Interactions \

Consistency
Resolver Enforcer

/ |
/ Y
_____ T a_nk_ __ _ Tanlq Tan
Interactions Representatig Representati

FIGURE 71: JPSD Platoon-Tanks MRE
IR determines the type of each interaction. Next, the IR applies the effect of each

interaction as if the interaction occurred in isolation. In order to do so, the IR permits the
interactions to take effect one at a time. When an interaction changes an attribute, the CE
traverses an ADG and translates changes to dependent attributes by invoking the
appropriate mapping functions. The CE maintains a list of changes for each attribute as a
result of computing the effects of each interaction. Subsequently, the CE applies the
effects of all the interactions on each attribute. The CE queries the IR about policies to
resolve the effects of dependent concurrent interactions whenever the CE detects conflicts
in the list of changes for an entity. If the IR contains a policy for resolving conflicting
changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes
are independent and applies them in an arbitrary order. When the changes to all attributes
have been applied, the MRE is internally consistent.

~

166

Knowing is not enough; we must apply. Willing is not enough; we must do.
— Goethe

Appendix D

Real-time Platform Reference

We demonstrate how designers can empldfdIFY and Object Model Template
(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate
UNIFY in Real-time Platform Reference (RPR) [RPR97], a military model that is part of
the Department of Defence’s High Level Architecture (HLA). RPR is specified using
OMT [OMT98]. From the RPR specifications, we construct an MRE and show how to
maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the RPR
specifications. We assume that the jointly-executing models in RPR are a Platoon model
and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as
shown in Figure 72. From the OMT tables in the RPR specification, we determine the
attributes in the representations of the Platoon and Tank models. Next, we capture the
relationships among attributes using an Attribute Dependency Graph (ADG) and select
mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select
policies for resolving the effects of concurrent interactions.

In 8D.1, we present the tables in OMT. In 8D.2, we list steps for incorporaiMi-Y
in RPR. We demonstrate each step in subsequent sections. In 8D.3, we construct an MRE.
In 8D.4 and 8D.5, we construct an ADG and select mapping functions for attribute
dependencies in the MRE. In 8D.6 and 8D.7, we determine and resolve the effects of
concurrent interactions. In 8D.8, we construct a CE and IR for the MRE.

D.1 OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with
publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction
parameters along their data type, cardinality, units, resolution, accuracy,
accuracy condition, update type and update condition.

167

©o~NoOA

Platoon-Tanks MRE
Platoon
Representatio
Tank; Tank,
Representatio Representatio

L FIGURE 72: Platoon-Tanks MRE _
Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.
Enumerated Data Table (EDT): Lists the values of all enumerations.

Complex Data Table (CDT): Lists the definitions of all structured data types.
Object Class Definitions (OCD): Describes the role of each entity.

Object Interaction Definitions (OID): Describes each interaction.
Attribute/Parameter Definitions (APD): Describes each object attribute and
interaction parameter.

We augment the OIT with the class of each interaction. Also, we add two tables to
OMT to capture attribute relationships and specify policies for concurrent interactions.

9.

Attribute Relationships Table (ART): Lists each attribute dependency, its type,
its mapping function and requirements and properties of the mapping function.

10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and

D.2

instances of concurrent interactions.

Steps

The steps for incorporatindNIFY in RPR are:

ok whE

D.3

Construct an MRE from the OCST and the APT

Construct an ADG from the APT and the ART

Select Mapping Functions for Dependencies in the ART
Determine the Effects of Interactions from the OIT

Resolve the Effects of Concurrent Interactions from the CIT
Construct a Consistency Enforcer and an Interaction Resolver

Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model
jointly. Using the OCST for RPR (shown in Table 30), we derive a Platoon from
AggregateEntity, and a Tank from MilitaryLandPlatform. Our Platoon-Tanks MRE
consists of the representations of a Platoon and two Tanks, dadkank.

From the APT, we determine the attributes that are part of the concurrent
representations within our Platoon-Tanks MREs. For brevity, Table 31 shows only part of
the APT for RPR. The table lists attributes only for base classes of Platoon and Tank. For

168

TABLE 30: Object Class Structure Table for RPR

Base Class 1st Subclass 2nd Subg¢lass 3rd Subclass 4th Subclass

BaseEntity AggregateEntity

EnvironmentEntity
PhysicalEntity MilitaryEntity MilitaryPlatformEntity MilitaryAirLandPlatform
MilitaryAmphibiousPlatform

MilitaryLandPlatform

MilitarySpacePlatform

MilitarySeaSurfacePlatform

MilitarySubmersiblePlatform

MilitaryMultiDomainPlatform

MunitionEntity
Soldier

CivilPlatform CivilAirLandPlatform

CivilAmphibiousPlatform

CivilLandPlatform

CivilSpacePlatform

CivilSeaSurfacePlatform

CivilSubmersiblePlatform

CivilMultiDomainPlatform

Civilian

EmbeddedSystem Designator

EmitterSystem

RadioReceiver

RadioTransmitter

EmitterBeam TrackJamBeam

SimulationManager

each attribute, the designer may specify information such as its data type, units, resolution,
accuracy, condition under which the specified accuracy is required and update type.

From the OCST (Table 30) and APT (Table 31), we derive the attributes of a Tank and
a Platoon. Table 32 lists the attributes of Platoon, Taakd Tank. For brevity, we
combine a number of logically-similar attributes derived from the OCST and APT (second
column) into one attribute (fourth column). For example, we combine the attributes
IsFrozen, IsConcealed, FlamesPresent and LifeformState into an attribute called Status.
We combine such attributes so that we can present a simple MRE, for which an ADG will
be presentable and specifying mapping functions will be manageable. Combining similar
attributes is consistent with our discussion about assigning nodes of an ADG (86.1.1). A
node can be assigned to any subset of a representation for which a designer can specify
how the effects of interactions must be applied. In practice, we expect designers to assign
nodes to individual attributes rather than combined attributes.

169

TABLE 31: Attribute/Parameter Table for RPR

In%brfcctggn Attribute/Parameter Datatype Cardinalily Units Resolution Accurad] (A:g%::gx Update Typg Update Conditiol

AggregateMarking structure 1 static
AggregateState enumeratio 1 conditiorjal on change
Dimensions structure 1 conditional AggSizeChange
EntitylDs unsigned long 0+ perfect alway: conditiorjal on change
ForcelD enumeration 1 static
Formation enumeration 1 conditional on change

g NumberOfEntities unsigned shoft 1 1 perfect always conditignal on changg

?;;, NumberOfSilentAggregates unsigned short 1 1 perfectf always conditfonal on change

§ NumberOfSilentEntities unsigned shoft 1 1 perfect always conditignal on changg
NumberOfSubAggregates unsigned short 1 1 perfect always conditjonal on change
NumberOfVariableDatums unsigned shqrt 1 1 perfect alwgys conditiLnaI on change
SilentAggregates structure 0+ conditiongl on change
SilentEntities structure 0+ conditiongl on change
SubAggregatelDs unsigned lon 0+ perfect always conditignal on change¢
VariableDatums structure 0+ conditiongl on change
AccelerationVector structure 1 conditiongal AccelerationChahge
AngularVelocityVector structure 1 conditiongl AngVelocityChange
DRAIgorithm enumeration 1 conditiong|l on change

g EntityType structure 1 static

g FederatelD structure 1 static

) IsFrozen boolean 1 TRUE, FALSE perfect always conditiopal on changel
Orientation structure 1 conditiongl OrientationChange
Position structure 1 conditiongl PositionChang
VelocityVector structure 1 conditiong VelocityChange
AlternateEntityType structure 1 static

g‘ CamouflageType boolean 1 TRUE, FALSE perfect always conditignal on changg

% FirePowerDisabled boolean 1 TRUE, FALSE perfect always conditignal on changg

g ForcelD enumeration 1 perfect alway: static
IsConcealed boolean 1 TRUE, FALSE perfect always conditignal on changg

g AfterburnerOn boolean 1 TRUE, FALSE perfect always conditiopal on changel

ugl HasAmmunitionSupplyCap boolean 1 TRUE, FAL$E perfect always static on change

;5 LauncherRaised boolean 1 TRUE, FAL$E perfect alwalys conditipnal on changge

g

170

TABLE 31: Attribute/Parameter Table for RPR

Ing:fcct%n Attribute/Parameter Datatype Cardinalily Units Resolution Accurad] égﬁg:ggx Update Typg Update Conditiol
AvrticulatedParametersArray structure 0+ conditional on change
ArticulatedParametersCount unsigned shprt 1 1 perfect alwhys stafic
DamageState enumeratio 1 conditiorjal on change
EngineSmokeOn boolean 1 TRUE, FALSE perfect always conditignal on changg
FlamesPresent boolean 1 TRUE, FALSE perfect alwgys conditipnal on chang|
HasFuelSupplyCap boolean 1 TRUE, FAL$E perfect always static on change
HasRecoveryCap boolean 1 TRUE, FAL$E perfect always static on change

> HasRepairCap boolean 1 TRUE, FALSE perfect always stati on changg
% HatchState enumeration 1 conditionpl on change
é Immobilized boolean 1 TRUE, FALSE perfect alwayp conditional on change
e LifeformState enumeration 1 conditional on change
LightsState enumeration 1 conditiongl on change
Marking structure 1 static on change
PowerPlantOn boolean 1 TRUE, FALYE perfect always conditignal on changg
RampDeployed boolean 1 TRUE, FALYE perfect always conditignal on changg
SmokePlumePresent boolean 1 TRUE, FALSE perfect| always conditfonal on chang
TentDeployed boolean 1 TRUE, FALSE perfect always conditional on changg
TrailState enumeration 1 conditional on change
D.4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for
RPR. Since OMT does not support specifying relationships, we construct an example
ART for our MRE (Table 33). In practice, we expect a designer to construct an ART
specific to the models executed jointly. The specification of the relationship may be
accomplished formally; in Table 33, we present informal specifications in the last column.

We construct an ADG for the Platoon-Tanks MRE. From Table 32, which was derived
from the APT, we determine the nodes in the ADG. From the ART in Table 33, we
determine the arcs in the ADG. The ADG is shown in Figure 73. The interaction
dependencies to each attribute exist because interactions with other entities or internal
actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weighting
dependencies. Dependency classes capture static semantics, whereas weights capture
dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each
cumulative dependency, and equal weights to distributive dependencies that have the same
independent attribute. We select these weights in order to keep our subsequent discussion
of mapping functions simple. Other weights for these dependencies are possible.

D.5 Select Mapping Functions for Dependencies in the

ART

We select mapping functions to translate attributes among concurrent representations
within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must
translate values or changes in values of attributes from one to another. Additionally, it is

171

(AN

InitialParameters (DRAlgorithm) (Formation)

\

)

AngularVelocity

AngularVelocity Orientation

4

Orientationw

Position

Dimensions

Velocity

(Position ><

{ Velocity;

Y Y
(AngularVelocity, > Orientatiori> < Position,

InitialParameters DRAlgorithmy

—

Acceleration

Acceleration

Y

J«<— Velocity, J<—{ Acceleratiop)

<Articu|ated Parameteg

QnitialParamete@ <DRAIgorithmz>

@rticulated Paramete%

Statusg

—> Distributive Dependency

Cumulative Dependency

Interaction Dependency

FiGure 73: ADG for the RPR Platoon-Tanks MRE

—> Modelling Dependency

TABLE 32: Attributes of Platoon, Tankand Tank (RPR)

Entity Original Attributes Derived From New Attributes

Platoon AccelerationVector BaseEntity Acceleration
Angular\VelocityVector AngularVelocity
DRAlgorithm DRAlgorithm
EntityType InitialParameters
FederatelD
IsFrozen Status
Orientation Orientation
Position Position
VelocityVector Velocity
AggregateMarking AggregateEntity InitialParameters
ForcelD
Dimensions Dimensions
Formation Formation
EntitylDs Composition
AggregateState
NumberOfEntities

NumberOfSilentAggregates

NumberOfSilentEntities

NumberOfSubAggregates

NumberOfVariableDatums

SilentAggregates

SilentEntities

SubAggregatelDs

VariableDatums

173

TABLE 32: Attributes of Platoon, Tankand Tank (RPR)

Entity Original Attributes Derived From New Attributes

Tank AccelerationVector BaseEntity Acceleration
AngularVelocityVector AngularVelocity
DRAlgorithm DRAlgorithmy
EntityType InitialParameters
FederatelD
IsFrozen Statug
Orientation Orientation
Position Positiony
VelocityVector Velocity,
ArticulatedParametersArray PhysicalEntity ArticulatedParameters

ArticulatedParametersCount

DamageState

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

Statug

TentDeployed

TrailState

AlternateEntity Type MilitaryEntity InitialParameters
ForcelD

CamouflageType Statug

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity
HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

174

TABLE 32: Attributes of Platoon, Tankand Tank (RPR)

Entity Original Attributes Derived From New Attributes

Tanky AccelerationVector BaseEntity Acceleratign
AngularVelocityVector AngularVelocity,
DRAlgorithm DRAlgorithmy,
EntityType InitialParameters
FederatelD
IsFrozen Statug
Orientation Orientation
Position Position,
VelocityVector Velocity,
ArticulatedParametersArray PhysicalEntity ArticulatedParameters

ArticulatedParametersCount

DamageState

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

Statug

TentDeployed

TrailState

AlternateEntity Type MilitaryEntity InitialParameters
ForcelD

CamouflageType Status

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity
HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

175

TABLE 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR

n

-—

Yy

e

e

Dependency Type Specification
Position — Position Cumulative The position of the platog
Position, - Position Cumulative is the centroid of the
Position - Position Distributive | POSItion of its tanks.
Position - Position Distributive
Velocity; — Velocity Cumulative| The velocity of the platoot
Velocity, — Velocity Cumulative] IS the average of the velocit
Velocity — Velocity, Distributive of its tanks.
Velocity — Velocity, Distributive
Orientation — Orientation Cumulative The orientation of the
Orientation, — Orientation Cumulative Platoon is the average of th
Orientation—- Orientation Distributive | O"'entations of its tanks.
Orientation— Orientation Distributive
Statug — Composition Cumulative The composition of the
Status — Composition CumulativéPlatoon changes if tanks a
Composition— Statug Distributive | [atally damaged.
Composition- Status Distributive
Velocity - Position Modelling | The position of a platoon
Velocity; — Position Modelling |a tank depends on its
Velocity, — Position Modelling velocity.
Acceleration— Velocity Modelling | The velocity of a platoon @
Acceleration — Velocity; Modelling |@ tank depends on its
Acceleration — Velocity, Modelling acceleration.

-

desirable that mapping functions complete their translations in a time-bound manner, and
that they be composable and reversible. We show mapping functions for some
dependencies in Table 34. The mapping functions are presented as pseudo-code. Error-
checking has been omitted for brevity. Pseudo-code in the second column of Table 34
implements specifications in the last column of Table 33. Mapping functions such as those

shown in Table 34 translate values or changes in values of attributes.

TABLE 34: Mapping Functions for RPR Platoon-Tanks MRE

Dependency

Mapping Function

Position — Position

Position, — Position

Position- fy(Position, Position)

fi: Position.X — (Position.X + Position.X) / 2
Position.Y — (Position.Y + Position.Y) / 2
Position.Z — (Position.Z + Position.Z) / 2

176

TABLE 34: Mapping Functions for RPR Platoon-Tanks MRE

Dependency Mapping Function
Position — Position (Position, Positio) — g4(Position)
Position . Position, g: OPosition.X ~ dPosition.X ~ dPosition.X

OPosition.Y ~ dPosition.Y ~ dPosition.Y
dPosition.Z — dPosition.Z — dPosition.Z

Velocity; — Velocity Velocity — fy(Velocity,, Velocity,)

Velocity, — Velocity fy: Velocity.X — (Velocity;.X + Velocity,.X) / 2
Velocity.Y ~ (Velocity,.Y + Velocity,.Y) / 2
Velocity.Z — (Velocity,.Z + Velocity,.Z) / 2

Velocity — Velocity; (Velocity,, Velocity,) — gq4(Velocity)
Ve|0city R Ve|ocity2 Ov- 5Ve|OCity1.X - 6V€|0City2.x - 6V€|OC|tyX
dVelocity,.Y — dVelocity,.Y — dVelocity.Y
dVelocity,.Z — dVelocity,.Z — dVelocity.Z
Orientation - Orientation | Orientation- fy(Orientation, Orientation)
Orientation, — Orientation |fo: Orientation.Psi-

(Orientation.Psi+ Orientation.Psi)/ 2
Orientation.Theta-

(Orientation.Theta+ Orientation.Theta)/ 2
Orientation.Phi—

(Orientation.Phi+ Orientation.Phi)/ 2

Orientation— Orientation |(Orientation, Orientatio) — gqy(Orientation)

Orientation— Orientation |9 d0rientation.Psi — dO0rientation.Psi —
dOrientation.Psi

dOrientation.Theta~ dOrientation.Theta
oOrientation.Theta

dOrientation.Phi — dOrientation.Phi —
dOrientation.Phi

The mapping functions shown in Table 34 are composable and reversible. Moreover,
since they are simple in construction, we expect that they will complete in a time-bound
manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.
When an interaction changes the value of any attribute, mapping functions propagate the
change in the attribute to dependent attributes. For example, if an interaction changes the
Tank-level attribute, Orientatignthe mapping functiofy, changes the dependent Platoon-
level attribute, Orientation. Subsequently, the mapping fungjpchanges the Tank-level
attribute, Orientation Since f, and g, are composable, the change to Orientation
eventually propagates to Orientatjo®incef, andg, are reversible, Orientatiqroes not
change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 73 and applying the
mapping functions in Table 34 ensures that the Platoon-Tanks MRE is consistent at all
observation times. Next, we determine and resolve the effects of concurrent interactions.

177

D.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We
show an augmented OIT in Table 35. The first column lists the name of the interaction.
The next four columns list the class and affected attributes for the sender and receiver of
the interaction. We augment each interaction in the OIT with its type (see Chapter 7):
Type O (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and
Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and
the parameters of an interactiondhIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For
example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE
changing its course, because such an interaction is internal to the MRELFRY, internal
actions are interactions. We add an internal action called ChangeCourse to the interactions
in the OIT (see last row in Table 35) to show thiNIIFY addresses internal actions as well
as interactions with other entities. This interaction initiates a change in the course of an
entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity
is Player. The interaction affects the attributes Position, Velocity and Orientation.

The last column in Table 35 lists the type of an interaction. Assigning a type requires
information about the semantics of an interaction. For example, the semantics of
CreateObjectRequest could be that the SimulationManager requests an AggregateEntity to
create a new entity as its constituent. If such a request must always be satisfied by an
AggregateEntity, CreateObjectRequest is a Type 2 interaction. CreateObjectResult is the
response to a CreateObjectRequest. CreateObjectResult could be Type 0 or Type 1, but we
assigned it to Type 1 because the SimulationManager may discard an update about the
created object. For the ChangeCourse interaction, we assumed that a change in the course
of an entity is a request whose outcome is uncertain.

TABLE 35: Object Interaction Table for RPR

Interaction Sender Class Sender Attribtes Receiver Repelver Interaction Parameters I9R Type
Attributes
ActionRequest SimulationManager none AggregateEntity] none ObjectCount, ObjectIDs, Action IRl 2
ActionResult AggregateEntity none SimulationManager none ActionResult R |1
AttributeChangeRequegt SimulationManager| none AggregateEntit none ObjectCount, ObjectIDs, AttributeValueSgt R 2
AttributeChangeResult | AggregateEntity none SimulationMangger none ObjectID, AttributeChangeResult, IR 1
AttributeValueSet
Collision PhysicalEntity Acceleration, | PhysicalEntity Acceleration, | CollidingObjectID, CollidingObjectMass, IR|] O
AngularVelocity, AngularVelocity, | CollidingObjectVelocity, CollisionType,
Status, Status, CollisionLocation, EventID, IssuingObjectID
Orientation, Orientation,
Position, Velocit Position, Velocit:
CreateObjectRequest SimulationManager| none AggregateEnti none ObjectClass, AttributeValueSet IR 2
CreateObjectResult AggregateEntity none SimulationManager none CreateObjectResult IR 1
MunitionDetonation MilitaryPlatformEntity] none PhysicalEntity Acceleration, | ArticulatedPartsArray, ArticulatedPartsCount, | IR | 0
AngularVelocity, [DetonationLocation, DetonationResult, EventlD|
Status, FiringObjectID, FinalVelocityVector, FuseType,
Orientation, MunitionObjectID, MunitionType, QuantityFired,
Position, Velocity RateOfFire, RelativeDetonationLocation,
TargetObjectlD
RemoveObjectRequest| SimulationManager none AggregateEntiy none ObjectCount, ObjectIDs IH 2
RemoveObjectResult AggregateEntity none SimulationMangger none RemoveObjectResult IR 1

178

TABLE 35: Object Interaction Table for RPR

Interaction Sender Class Sender Attribytes Receiver Repelver Interaction Parameters IR Type
Attributes
WeaponFire MilitaryEntity none none EventID, FireControlSolutionRange, IR| O
FireMissionIndex, FiringLocation, FiringObjectlD,
FuseType, InitialVelocityVector,
MunitionObjectID, MunitionType, QuantityFired,
RateOfFire, TargetObjectID, WarheadType
ChangeCourse BaseEntity Position, BaseEntity Position, New_Location, New_Velocity, New_Orientation IR
Velocity, Velocity,
Orientation Orientation

We determine the interactions that our Platoon-Tanks MRE can send and receive. In
Table 36, we list the interactions that Platoon, Taakd Tank can send and receive. In
the first column, we list the name of an interaction as the name in the OIT along with a
suffix that indicates whether Platoon, Tard Tank, sends or receives that interaction.
For example, the interaction ChangeCourse can be sent by an entity of class BaseEntity.
Since BaseEntity is a base class of Platoon, Taakd Tank, we distinguish the
interaction ChangeCourse sent by these three entities as ChangeCourse-P,
ChangeCourse-Tand ChangeCourse; Tespectively. In the second column, we indicate
whether the Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the third
column, we list the attributes affected by the interaction directly, i.e., we list theffeets
for the interaction. These attributes are determined from the OIT. In the fourth column, we
list the attributes affected by the interaction indirectly, i.e., we list theaffetts for the
interaction. These attributes can be determined from the ADG in Figure 73. Finally, we
indicate the type of the interaction.

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affectd Type
ActionResult-P S 1
AttributeChangeResult-P S 1
CreateObjectResult-P S 1
RemoveObjectResult-P $ 1
Collision-T; S | Acceleration, Acceleration, Status, 0

AngularVelocity,, | AngularVelocity, Velocity,
Status, Orientation, Position,
Velocity;, Composition, Acceleration
Orientation, Statusg, AngularVelocity,
Position Velocity,, Orientation,

Positiorp, Acceleration,
Statug, AngularVelocity,
Velocity,, Orientation,
Position,

179

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affectd Type
Collision-T, S | Acceleratios, Acceleration, Status, 0
AngularVelocity, | AngularVelocity, Velocity,
Status, Orientation, Position,
Velocitys, Composition, Acceleration
Orientation, Statug, AngularVelocity,
Position, Velocity,, Orientation,
Position, Acceleratios,
Statusg, AngularVelocity,
Velocity,, Orientation,
Position,
WeaponFire-T S
WeaponFire-} S
ChangeCourse-P S Position, Veloc|tiposition, Velocity,, 3
Orientation Orientation, Position,
Velocity;, Orientation,
Position, Velocity,
Orientation
ChangeCourseT S | Position, Position, Velocity, 3
Velocity;, Orientation, Positio)
Orientation Velocity,, Orientation,
Position, Velocity;,
Orientation
ChangeCourseol S | Position, Position, Velocity, 3
Velocity,, Orientation, Positiop
Orientation Velocity,, OrientatioR,
Position, Velocitys,
Orientation
ActionRequest-P R 2
AttributeChangeRequestiP R 2
CreateObjectRequest-P R p4
RemoveObjectRequest-H R 2

180

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affectd Type
Collision-T; R |Acceleratiop, Acceleration, Status, 0
AngularVelocity,, | AngularVelocity, Velocity,
Status, Orientation, Position,
Velocity;, Composition, Acceleration
Orientation, Statusg, AngularVelocity,
Position Velocity,, Orientation,
Positiorp, Acceleration,
Statug, AngularVelocity,
Velocity,, Orientation,
Position
Collision-T, R | Acceleratios, Acceleration, Status, 0
AngularVelocity, | Angular\Velocity, Velocity,
Status, Orientation, Position,
Velocity,, Composition, Acceleration
Orientation, Statug, AngularVelocity,
Position Velocity;, Orientation,
Position, Acceleratios,
Status, AngularVelocity,
Velocity,, Orientation,
Position,
MunitionDetonation-§ R |Acceleratiop, Acceleration, Status, 0
AngularVelocity, | AngularVelocity, Velocity,
Status, Orientation, Position,
Velocityy, Composition, Acceleration
Orientation, Statusg, AngularVelocity,
Position Velocity,, Orientation,
Positiorp, Acceleration,
Statug, AngularVelocity,
Velocity,, Orientation,
Position,
MunitionDetonation-} R |Acceleratios, Acceleration, Status, 0
AngularVelocity, | Angular\Velocity, Velocity,
Status, Orientation, Position,
Velocity,, Composition, Acceleration
Orientation, Statug, AngularVelocity,
Position Velocity;, Orientation,
Position, Acceleratios,
Status, AngularVelocity,
Velocity,, Orientation,
Position,

181

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affectd Type
ChangeCourse-P R Position, Velocitiosition, Velocity;, 3
Orientation Orientation, Position,
Velocity,, Orientation,
Position, Velocity,
Orientation
ChangeCourseqT R | Position, Position, Velocity, 3
Velocity;, Orientation, Positio)
Orientation Velocity,, Orientation,
Position, Velocity;,
Orientation
ChangeCourse-l R | Position, Position, Velocity, 3
Velocitys, Orientation, Positiop
Orientation Velocity,, Orientation,
Position, Velocitys,
Orientation

Any subset of the interactions in Table 36 may occur concurrently. Next, we show how
to resolve the effects of concurrent interactions.

D.7 Resolve the Effects of Concurrent Interactions from
the CIT

The effects of concurrent interactions can be resolved by implementing polices from
the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is
unavailable in OMT, we construct an example CIT, shown in Table 37.

A designer specifies policies in the CIT for resolving the effects of concurrent
interactions. The CIT consists of sets of concurrent interactions with dependent effects,
policies for resolving them and conditions under which the policies are applicable.
Concurrent interactions that are independent of one another can be resolved by
serialization and are not specified in the CIT. Some interactions may be independent
because they affect disjoint sets of attributes. Other interactions may be independent
because their effects are applied in different time-steps, for example, interactions sent and
received by an entity. Yet other interactions are independent because they are request-
response pairs. Policies must be specified in the CIT for only the remaining interactions.
Policies may be specified for classes of interactions (e.g., the last two rows in Table 37) or
for instances of interactions (e.g., all the other rows in Table 37). In RPR, many
interactions do not affect any attributes. Although such interactions can be assumed
independent, we do not make such an assumption. It is likely that the interactions affect
internal attributes in the models. Since OMT is meant to be an interface specification,
internal attributes are not listed in the APT. For consistency maintenance, a designer must
list internal attributes as well in the APT. Since internal attributes are not listed, we will

182

not assume that interactions that affect disjoint sets of attributes are independent. For
example, although ActionRequest-P and RemoveObjectRequest-P affect no attributes,
hence affecting disjoint sets of attributes, we specify policies for resolving these
interactions. An Interaction Resolver for the Platoon-Tanks MRE applies the policies in
the CIT only if the effects of concurrent interactions conflict. If concurrent interactions do
not conflict, they may be serialized.

TABLE 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE

Concurrent Interactions Condition Policy

MunitionDetonation-7, Collision-T; |Always | Damage to Tankess than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

RemoveObjectRequest-P, any Same Order all before
combination of (ActionRequest-P, |object RemoveObjectRequest-P
AttributeChangeRequest-P,
CreateObjectRequest-P)

CreateObjectRequest-P, any Same Order all after
combination of (ActionRequest-P, |object CreateObjectRequest-P
AttributeChangeRequest-P,
RemoveObjectRequest-P)

ChangeCourse-P, any combination oAll Ignore all except ChangeCourse-P
(ChangeCourse+] ChangeCourse,J | received
Type 0, Type 1 All Ignore Type 1
received
Type 2, Type 3 All Ignore Type 3
received
Any Interaction Ignored orignored or Delayed entirely, i.e., no

Delayed |partial effects permitted

D.8 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain
consistency and resolve concurrent interactions respectively. A CE consists of an ADG
and mapping functions, whereas an IR consists of policies for resolving concurrent
interactions. Figure 74 shows an RPR Platoon-Tanks MRE. The MRE can interact at
multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,
the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the
Platoon-Tanks MRE, we presented an ADG in Figure 73 and mapping functions in
Table 34. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.

183

Platoon-Tanks MRE
Platoon
Representatig

Interaction

Platoon

Interactions \

Consistency
Resolver Enforcer

/ |
/ Y
_____ T a_nk_ __ _ Tanlq Tan
Interactions Representatig Representati

FIGURE 74: RPR Platoon-Tanks MRE
In 86.3, we discussed how to traverse an ADG and apply mapping functions in order to

keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurrent
interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent
interactions in Table 37. In Figure 47 (see Chapter 7), we presented an algorithm for
implementing an IR. In 87.5, we presented a taxonomy for classifying interactions. Using
this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent
interactions occur. During a time-step, a number of concurrent interactions may occur. The
IR determines the type of each interaction. Next, the IR applies the effect of each
interaction as if the interaction occurred in isolation. In order to do so, the IR permits the
interactions to take effect one at a time. When an interaction changes an attribute, the CE
traverses an ADG and translates changes to dependent attributes by invoking the
appropriate mapping functions. The CE maintains a list of changes for each attribute as a
result of computing the effects of each interaction. Subsequently, the CE applies the
effects of all the interactions on each attribute. The CE queries the IR about policies to
resolve the effects of dependent concurrent interactions whenever the CE detects conflicts
in the list of changes for an entity. If the IR contains a policy for resolving conflicting
changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes
are independent and applies them in an arbitrary order. When the changes to all attributes
have been applied, the MRE is internally consistent.

~

184

One is always a long way from solving a problem
until one actually has the answer.
— Stephen Hawking

Appendix E

Hierarchical Autonomous Agents

We demonstrate how designers can appliNIFY to achieve effective Multi-
Representation Modelling (MRM) in hierarchical autonomous agents (HAAYSY88].
Hierarchical autonomous agents employ multiple models to achieve a goal. Examples of
the models are a planning model that selects actions that an agent can perform, and a
perception-action model that senses and changes an agent’s surroundings. A HAA may
execute multiple models jointly.

The HAA model we considered is part of a research project undertaken by the Vision
group at the University of Virginia. The agent, Marcus, has been programmed to construct
complex arrangements such as archways from basic building blocks. Marcus is a
hierarchical autonomous agent that has two models — a planner model and a perception-
action (PA) model. Typically, the planner maintains long-term or abstract representation,
whereas the PA system maintains immediate and detailed representation. Each model may
have its own representation of the world in which Marcus operates. Accordingly, each
model may represent building blocks, partially-completed arrangements, obstacles, doors
and pathways by a number of relevant attributes such as position, orientation and colour.
Marcus considers relationships among blocks that are stacked or placed next to each other
as an arrangement. We construct an MRE for Marcus and show how to maintain
consistency within this MRE when concurrent interactions occur.

185

The jointly-executing models in Marcus
are a planner model and a PA model. W
determine the attributes in the planner an
PA representations and construct a Multipl
Representation Entity (MRE) for Marcus, as

Glanner Represent@m
shown in Figure 75. Next, we capture th¢
relationships among attributes using a

Attribute Dependency Graph (ADG) and (PA RepresentanoD
select mapping functions to maintain

consistency in the Marcus MRE. Finally, we
select policies for resolving the effects ~* FIGURE 75: Marcus MRE
concurrent interactions.

In 8E.1, we list steps for incorporatingNIFY in Marcus. We demonstrate each step in
subsequent sections. In 8E.2, we construct an MRE. In 8E.3 and 8E.4, we construct an
ADG and select mapping functions for attribute dependencies in the MRE. In S8E.5 and
8E.6, we determine and resolve the effects of concurrent interactions. In 8E.7, we
construct a CE and IR for the MRE.

Marcus MRE

E.1l Steps

The steps for incorporatingNIFY in Marcus are:

Construct an MRE from Planner and PA Representations
Construct an ADG for the MRE

Select Mapping Functions for Dependencies in the ADG
Determine the Effects of Interactions

Resolve the Effects of Concurrent Interactions

Construct a Consistency Enforcer and an Interaction Resolver

ok wnhE

E.2 Construct an MRE from Planner and PA
Representations

In order to construct an MRE for Marcus, we must determine what constitutes the
representations of the planner and PA models. In HAAS, the representation of a planner or
PA consists of attributes that capture properties of objects that are that are important for
the current goal. In order to achieve a goal, an agent decomposes the goal into tasks and
sub-tasks. Different models in a hierarchical agent architecture view an agent’s tasks at
different levels of abstraction. Deciding what tasks an agent must execute will be based on
the agent’s goals and capabilities. Marcus’s goal is to build an archway out of coloured
blocks scattered throughout a room. This goal can be refined to the planner tasks of
build-tower and span-towers-with-blockThe PA model accomplishes these tasks by
executing tasks such @m®to-block pick-up-block put-down-block stack-block-on-block
andspan-blocks-with-block

After the tasks and sub-tasks have been identified, the representation for each model
can be constructed by identifying the objects relevant to the agent’s tasks. These objects
are parts of the environment that are affected by a task. For example, nuitdeower
task,toweris a relevant object. Likewise, in thetack-block-on-block taskwo blocks are

186

the relevant objects. A model represents objects relevant to its current tasks. Attributes are
properties of these objects described using traditional data structures. During the
execution of a task, the representation for a model may consist of many attributes for each
object in the task. Given Marcus goal of constructing an archway from blocks, we list the
attributes of objects represented by the PA and planner (Table 38).

TABLE 38: Attributes of planner and PA (Marcus)

Entity Object Attributes

Planner | Tower | Ty.position, T.orientation, T.height, T.width, T;.stacked, ...

Tower, | T,.position, .orientation, §.height, B.width, T,.stacked, ...

Arch A.position, A.orientation, A.height, A.width, A.connected, .|.

PA Block, B1.position, B.orientation, B.height, B.width, B;.colour, ...

Block, B,.position, B,.orientation, B.height, B.width, B,.colour, ...

Blocks Bs.position, B.orientation, B.height, B.width, Bs.colour, ...

Block, B4.position, By.orientation, B.height, B,.width, By.colour, ...

Blocks Bs.position, B.orientation, B.height, B;.width, Bs.colour, ...

Wasson addresses how tasks can be decomposed and representation identified for
jointly-executing models in HAAs [\W599].

E.3 Construct an ADG for the MRE

We construct an Attribute Relationship Table (ART) for the attributes in the planner
and PA representations. We construct an example ART for our MRE (Table 39); in
practice designers provide ARTs for their applications. The specification of the
relationship may be accomplished formally; in Table 39, we present informal
specifications in the last column.

TABLE 39: Attribute Relationship Table for Marcus MRE

Dependency Type Specification
B;.position — T;.position Cumulativeg The positions of blocks determine|the
B,.position — T;.position Cumulative POsition of a tower andice versa
T1.position - B4.position Distributive
T1.position - Bo.position Distributive
B,.orientation— T;.orientation Cumulative The orientations of blocks determine
B,.orientation— Tj.orientation Cumulative the orientation of a tower arvice
T,.orientation— Bj.orientation Distributiveg V€2
T,.orientation— B,.orientation Distributive

187

TABLE 39: Attribute Relationship Table for Marcus MRE

Dependency Type Specification
B,.height - T;.height Cumulative The heights of blocks determine the
B,.height— T,.height Cumulative orientation of a tower andgce versa
T1.height - By.height Distributive
T,.height - B,.height Distributive
T,.height - T,.stacked Modelling | A tower with indeterminate height or
T,.orientation— T,.stacked Modelling | Orientation is not stacked.
T;.position — A.position Cumulative The positions of towers determine|the
T,.position — A.position Cumulative Position of an arch andce versa
A.position - T;.position Distributive
A.position - T,.position Distributive
A.width - A.stacked Modelling | A tower with indeterminate width pr
A.orientation— A.stacked Modelling | Orientation is not connected.

We construct an ADG for the Marcus MRE. From Table 38, we determine the nodes in
the ADG. From the ART in Table 39, we determine the arcs in the ADG. The ADG is
shown in Figure 76. The interaction dependencies to some attributes exist because
interactions with the environment may change those attributes.

The ADG in Figure 76 is constructed by Marcus as it progresses towards its goal.
Initially, the ADG in Marcus consists of only nodes corresponding to the attributes at all
representation levels. As Marcus stacks blocks to construct a tower or spans towers to
construct an arch, it adds arcs to its ADG. If a previously-stacked tower falls apart, a CE in
Marcus can detect that a relationship among the constituent blocks of the tower no longer
holds. Subsequently, the CE changes the values of attributes in the ADG to denote that the
tower is no longer stacked. At a future time, the planner model in Marcus can attempt to
reconstruct the tower by stacking blocks.

E.4 Select Mapping Functions for Dependencies in the
ADG

We select mapping functions to translate attributes among concurrent representations
within the Marcus MRE. Recall from Chapter 6 that mapping functions must translate
values or changes in values of attributes from one to another. Additionally, it is desirable
that mapping functions complete their translations in a time-bound manner, and that they
be composable and reversible.

We show mapping functions for some dependencies in Table 40. The mapping
functions are presented as pseudo-code. Error-checking has been omitted for brevity.
Pseudo-code in the second column of Table 40 implements specifications in the last
column of Table 39. The position of a tower is identical to the position of its lowermost
block. Conversely, the position of the lowermost block in a tower is identical to the

188

Inojoorg
Inojoo€g

(wbieyra) (omewsuorg) (ypmrg)
(uomsod®g) | |(wbeytg) | (onewsuoty) | [yipmeg)

uonisodg

uomisod-¢} wbrey<y uolneusno-C] ppIM< |

A.position
A.connected

A.orientation

Bs.colour
Bs.position
Bs.width

T,.position T,.height T,.orientation T,.width

mweuom:_o:v m me:m_@:ﬁv Awp.o:m:ﬁmzo@ m B,.width v
m mm.:m_osﬁv me.o:m:ﬁm:o@ m B,.width v

B.colour
B,.colour

B,.position

Interaction Dependency —» Modelling Dependency

Cumulative Dependency

—> Distributive Dependency

FIGURE 76: ADG for the Marcus MRE

189

position of the tower. If the positions of other blocks are desired, then appropriate
dependencies must be specified, for example, dependencies between the height of the
lowermost block and the position of the block immediately above it. If either the height or
the orientation of a tower is invalid, the tower is not stacked. The orientation of a tower
can become invalid if its constituent blocks are oriented differently. A similar condition
may be specified for the height of a tower. Similar mapping functions for other
dependencies can be constructed. Mapping functions such as those shown in Table 40
translate values or changes in values of attributes.

TABLE 40: Mapping Functions for Marcus MRE

Dependency Mapping Function
B.position - T,.position 'I'l.positio_n_<_ fp(Bl.posi_ti_on, B.position)
B,.position - Ty.position fp: T1.position — By.position
T,.position — B4.position (By.position, B.position) — g,(T1.position)
T,.position - B,.position Op- By.position — Tj.position

B.orientation— Tj.orientation| T.orientation— fy(Bj.orientation, B.orientation)
B,.orientation— Tj.orientation|fo: T1.0rientation— By.orientation

T,.orientation— Bj.orientation| (B.orientation, B.orientation)— g,(T;.orientation)
T,.orientation— B,.orientation|9o: By.orientation— By.orientation— T;.orientation

T,.orientation— T,.stacked T.stacked— p;(T4.orientation)
py: if (T 4.0rientatior= invalid) T;.stacked- false

T,.height—» T;.stacked T.stacked— py(T4.height)
p,: if (T41.height=invalid) T;.stacked false

The mapping functions shown in Table 40 are composable and reversible. Moreover,
since they are simple in construction, we expect that they will complete in a time-bound
manner, thus ensuring that the Marcus MRE is consistent at all observation times. When
an interaction changes the value of any attribute, mapping functions propagate the change
in the attribute to dependent attributes. For example, if an interaction changes the PA-level
attribute, B.orientation, the mapping functiofy changes the dependent planner-level
attribute, T .orientation. Subsequently, the mapping functggpchanges the PA-level
attribute, B.orientation. Sincd, and g, are composable, the change tg.@ientation
eventually propagates to,®rientation. Sincé, andg, are reversible, Borientation does
not change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 76 and applying the
mapping functions in Table 40 ensures that the Marcus MRE is consistent at all
observation times. Next, we determine and resolve the effects of concurrent interactions.

E.5 Determine the Effects of Interactions

We determine the effects of interactions that Marcus can send and receive. Marcus can
interact with its environment only at the PA level. The planner model in Marcus does not

190

interact with the environment apart from initially receiving a goal and finally reporting on
the success or failure in achieving the goal. However, the planner interacts with the PA
level in order to specify sub-tasks. In Table 41, we list the interactions that the planner and
PA levels can send and receive. In the first column, we list the name of an interaction. In
the second and third columns, we indicate the sender and receiver of an interaction. A
sender or receiver that is not “planner” or “PA”, is external to Marcus and is part of
Marcus’ environment. In the fourth column, we list the attributes affected by the
interaction directly, i.e., we list the saffectsfor the interaction. We do not list the set
affectd for the interaction because this set changes as Marcus adds arcs to its ADG while
progressing towards its goal. Finally, we indicate the type of the interaction.

We augment each interaction with its type (see Chapter 7): Type 0 (certain responses),
Type 1 (uncertain responses), Type 2 (certain requests), and Type 3 (uncertain requests).
Assigning a type requires information about the semantics of an interaction. In Marcus,
PA-level interactions are assumed to be certain. For example, the PA model in Marcus is
assumed to be able to sense the position of an object correctly. Likewise, if the PA model
requests the underlying hardware to move Marcus, the hardware will not fail to do so.
Hence, interactions between the PA model and the processor are Type 0 or Type 2. In
contrast, planner-level interactions are assumed to be uncertain. For example, Marcus may
not be able to pick up a block as per the planner’s request. Hence, interactions between the
planner model and the PA model are Type 1 or Type 3. Classifying the interactions in this
manner reflects the design philosophy of “trusting sensors more than memory”.

TABLE 41: Interactions sent and received by the Marcus MRE

Interaction Sender Receiver affects Type
SenseObjecK) PA processor 2
UpdateObjec) processor PA X.position,X.orientation,| 0

X.height,X.width, ...

Move PA processor 2
Swivel PA processor 2
Turn PA processor 2
MoveStatus processor| PA

SwivelStatus processor PA

TurnStatus processor| PA

PickObjectK) planner PA X.position,X.orientation 3
PutDownObjecfX) planner PA X.position,X.orientation 3
StackObject, Y) planner PA Y.position,Y.orientation 3
SpanObjeci, Y, 2) planner PA Z.position,Z.orientation 3
GoThroughDoor planner PA 3

191

TABLE 41: Interactions sent and received by the Marcus MRE

Interaction Sender Receiver affects Type
Travel planner PA 3
ActionStatus PA planner 1

Any subset of the interactions in Table 41 may occur concurrently. Next, we show how
to resolve the effects of concurrent interactions.

E.6 Resolve the Effects of Concurrent Interactions

The effects of concurrent interactions can be resolved by implementing application-
specific polices. In practice, a designer selects policies specific to the application. We
select example policies, shown in Table 42. A designer specifies policies in a Concurrent
Interactions Table (CIT) for resolving the effects of concurrent interactions. The CIT
consists of sets of concurrent interactions with dependent effects, policies for resolving
them and conditions under which the policies are applicable. Concurrent interactions that
are independent of one another can be resolved by serialization and are not specified in the
CIT. Some interactions may be independent because they affect disjoint sets of attributes.
Other interactions may be independent because their effects are applied in different time-
steps, for example, interactions sent and received by an entity. Yet other interactions are
independent because they are request-response pairs. Policies must be specified in the CIT
for only the remaining interactions. An Interaction Resolver for the Marcus MRE applies
the policies in the CIT only if the effects of concurrent interactions conflict. If concurrent
interactions do not conflict, they may be serialized.

TABLE 42: Concurrent Interactions Table for Marcus MRE

Concurrent Interactions Condition Policy

Type O, Type 1 Ignore Type 1

Type 2, Type 3 Delay Type 3

Any Interaction Ignored or Delayed Ignored or Delayed entirely, i.e}, no
partial effects permitted

E.7 Construct a Consistency Enforcer and an Interaction
Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain
consistency and resolve concurrent interactions respectively. A CE consists of an ADG
and mapping functions, whereas an IR consists of policies for resolving concurrent
interactions. Figure 77 shows an MRE for Marcus. The MRE can interact at multiple
representation levels — the planner and PA levels — concurrently. Moreover, the
concurrent representations within the MRE are consistent at all observation times.

192

Marcus MRE

Planner
—————————— <Planner Representat@u

Interactions \
Consistency
Enforcer

PA /
"7 T nteractions | < PA Representation>

Interaction

Resolver

FIGURE 77: Marcus MRE
A CE consists of an ADG and application-specific mapping functions. We presented

an ADG for Marcus in Figure 76 and mapping functions in Table 40. In Figure 34 (see
Chapter 6), we presented an algorithm for implementing a CE. In 86.3, we discussed how
to traverse an ADG and apply mapping functions to keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurrent
interactions. For the Marcus MRE, we presented policies for resolving concurrent
interactions in Table 42. In Figure 47 (see Chapter 7), we presented an algorithm for
implementing an IR. In 87.5, we presented a taxonomy for classifying interactions. Using
this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent
interactions occur. During a time-step, a number of concurrent interactions may occur. The
IR determines the type of each interaction. Next, the IR applies the effect of each
interaction as if the interaction occurred in isolation. In order to do so, the IR permits the
interactions to take effect one at a time. When an interaction changes an attribute, the CE
traverses an ADG and translates changes to dependent attributes by invoking the
appropriate mapping functions. The CE maintains a list of changes for each attribute as a
result of computing the effects of each interaction. Subsequently, the CE applies the
effects of all the interactions on each attribute. The CE queries the IR about policies to
resolve the effects of dependent concurrent interactions whenever the CE detects conflicts
in the list of changes for an entity. If the IR contains a policy for resolving conflicting
changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes
are independent and applies them in an arbitrary order. When the changes to all attributes
have been applied, the MRE is internally consistent.

193

They do certainly give very strange and new-fangled names to diseases.
— Plato,The Republic

Indexed Glossary

Aggregate Model 24
A model at low resolution or high abstraction.

Aggregation 13,24
Composition of a collection of HREs into a single LRE.

Aggregation-disaggregation 5,11, 32, 44, 49, 57, 104
An MRM approach in which representation levels are transitioned.

Attribute 19
A property of an entity, which can be used to refer to the entity and manipulate
its behavior.

Attribute Dependency Graph 4,16,57, 104
A graph with attributes as nodes and dependencies among attributes as arcs.

Behavior of an Entity 22
The sequence of states for a particular entity.

Behavior of a Model 22
The sequence of states of a model.

Certain Interaction 84, 89
An interaction whose outcome is predictable.

Chain Disaggregation 13,32, 50, 119
Forcible disaggregation of many entities because of LRE-HRE interactions.

" Inthe spirit ofUNIFY, this chapter is a glossary as well as an index. The numbers to the right of
each term denote pages in which the term is discussed. The bold number refers to the page in
which we define the term. Below every index entry is an informal definition for the term.

194

Compatible Time-steps 25, 29, 40, 159, 117
If multiple entities never violate any assumptions made by one other during any
time-step, they execute @mpatible time-steps

Concurrent Interactions 4,22, 29,47, 81
Interactions that occur at overlapping times in the simulation.

Concurrent Representations 1,24, 41
Representations of different simulation entities of the same object or process that
execute jointly and allow interaction at all representation levels.

Consistency Cost 5, 16, 44105, 107
Cost of maintaining consistency among jointly-executing models.

Consistency Enforcer 4, 16,45, 56, 70, 104
Consists of an Attribute Dependency Graph and appropriate mapping functions
for maintaining internal consistency in a Multiple Representation Entity.

Consistency Maintenance 1,25
Correlating the multiple entity states for the same object or process so that
relationships among attributes hold.

Cost-effectiveness (R3) 5, 28, 105
Simulation and consistency costs should be low.

Cross-level Interactions 34,43, 51
Interactions whose sender and receiver are at different representation levels.

Cumulative Dependencies 56,60, 63
Attribute dependencies wherein the value of a single attribute depends jointly on
the value of many other attributes.

Dependency 22
A static relationship between two attributes.

Dependent Interactions 4,23, 38,41, 81
Interactions whose effects are dependent on one another.

Disaggregate Model 24
A model at high resolution or low abstraction.

Disaggregation 13,24
Decomposition of an LRE into its constituent HREs.

Distributive Dependencies 56,60, 64
Attribute dependencies wherein the value of a single attribute influences the
value of many other attributes jointly.

195

Effective Joint Execution 1, 16,27, 41, 103
The joint execution of multiple models that satisfies the requirements of multi-
representation interaction, multi-representation consistency and cost-
effectiveness.

Effects of an Interaction 20
The changes caused in the representations of the sender and receivers because of
the interaction.

Entity 2,19
A description of an object or process in a simulation.

Entity Representation 19
A collection of the attributes of one entity described using the notation of data
structures.

Environment of a Model 19
Objects and processes external to a model.

Executing a Model 21
Simulating the objects and processes that are part of a phenomenon.

Execution of a Multi-model 2
The joint execution of multiple models.

Fundamental Observations 3,31
Observations that relate the causes of problems in jointly-executing models to a
failure in maintaining consistency among the model representations.

Ghosting 41
With multiple models, executingnly one modehnd reflecting changes from
that model to other models.

Guidelines for Designers of Multi-models 5, 96
With multiple models, executingnly one modehnd reflecting changes from
that model to other models.

Hierarchical Models 60
Models that bear a relationship of being the composition-decomposition or
abstraction-refinement of one another.

High Resolution Entity (HRE) 12,24, 32, 50
An entity at a low level of abstraction, or high decomposition.

Independent Interactions 23, 86
Interactions whose effects are the same whether they occur in isolation or
concurrently.

Interaction 3, 20,22, 76
The means by which entities exchange information or influence one another.

196

Interaction Dependencies 56,61
Attribute dependencies that denote the effects of interactions.

Interaction Resolver 4, 16,45, 89
Resolves the effects of concurrent interactions on a Multiple Representation
Entity by means of policies based on semantic characteristics of interactions.

Internal Consistency with an MRE 41
Attribute dependencies that denote the effects of interactions.

Joint Execution of Multiple Models 2,24
Execution of multiple models at overlapping times, possibly with the exchange
of information among the models.

Low Resolution Entity (LRE) 12,24, 32, 50
An entity at a high level of abstraction, or high composition.

Mapping Consistency 5, 47
When entity properties common to different models are translated such that
repeated translations in a given period do not cause abnormal behavior in the
entity during that period, the models exhibit mapping consistency.

Mapping Inconsistency 32,44, 49, 119
When repeated translations among attributes cause intolerable discontinuities in
the behavior of different models, the models exhibit mapping inconsistency.

Mapping Functions 4, 16,25, 29, 41, 65, 159, 104
Methods used to correlate the multiple representations of the same object or
process.

Model 2,21
An abstraction of some phenomenon that incorporates the behavior of objects
and processes participating in that phenomenon.

Modeling 2,19
A method to study real-life phenomena.

Modeling Dependencies 56, 60,61
Attribute dependencies inherent in the nature of the object or process being
modeled.

Multi-model 2, 24,24
For some phenomenon, the union of multiple models that may differ in execution
and representation.

Multiple Representation Entity (MRE) 3, 16,41, 54, 56
A conceptual entity that can interact at multiple representation levels
concurrently by maintaining attributes at different representation levels.

197

Multi-representation Consistency (R2) 5, 28, 104
Jointly-executing models must be related and consistent with one another.

Multi-representation Interaction (R1) 5,27, 44, 104
Entities in each model may initiate and receive interactions that may be
concurrent and dependent.

Multi-representation Modeling (MRM) 2, 19,24, 159
The joint execution of multiple models.

Network Flooding 33,51, 119
High consumption of network resources because of a large number of messages.

Receiver of an Interaction 20
The entity that receives an interaction.

Relationship between Attributes 19
Indicates that if the value of one attribute changes, the value of the other is likely
to change.

Representation 2,19 116
A collection of the objects and processes participating in a phenomenon
described using some rigorous notation.

Representation Level 24
The conceptual context in which a model executes.

Request Interaction 84, 86, 88
An interaction concerned with actions that may take place in the future.

Resolving Concurrent Interactions 23, 36, 47, 54, 85, 88, 159, 117
Computing the effects of concurrent, possibly dependent, interactions.

Resolution 24
A representation level in a hierarchical model.

Resolution Level 24
Resolution.
Response Interaction 84, 86, 88

An interaction concerned with actions that have taken place in the past.

Reversible Mapping Functions 25, 47, 48, 68
Mapping functions that return the original attribute when composed.

Selective Viewing 5,11, 44, 49, 57, 104
An MRM approach in which the most detailed model is simulated at all times.

Sender of an Interaction 20
The entity that initiates an interaction.

198

Simulation 2,21
A method to execute a model, usually on a computer with some combination of
executing code, control/display interface hardware and interfaces to real-world
equipment.

Simulation Cost 5, 16, 44105 108
Cost of simulating jointly-executing models.

Taxonomy of Interactions 4,16,83
A classification of interactions according to semantic characteristics of
interactions.

Temporal Consistency 5, 45

When multiple entities have consistent views of another entity at overlapping
simulation times, the entities exhibit temporal consistency.

Temporal Inconsistency 53, 119
When multiple entities have differing views of an entity at overlapping
simulation times, they exhibit temporal inconsistency.

Thrashing 33,50, 119
Repeated transitions by an entity because it transitions representation levels
frequently.

Time-step 21, 38
The duration of time between two consecutive observation times of a model.

Transition Latency 33,50, 119
Delay encountered when performing an aggregation or disaggregation.

Uncertain Interaction 84, 89
An interaction whose outcome is unpredictable.

UNIFY 4, 3,27, 31,41, 159, 116
A framework for effective MRM.

199

QUOTATION n.

The act of repeating erroneously the words of another. The words erroneously repeated.

ABADI95

ACK82

AGRES7

ALBUS97

ALHIR98

ALLEN92

ALLEN96

ALLEN98

— Ambrose Bierc& he Devil’s Dictionary

References

Abadi, M., Lamport, L.Conjoining SpecificationsACM Transactions on
Programming Languages and Systems, Vol. 17, No. 3, May 1995.

Ackerman, W. B.Pata Flow LanguagedEEE Computer, Vol. 15, No. 2,
February 1982.

Agre, P. E., Chapman, DRengi: An Implementation of a Theory of
Activity, American Association for Artifical Intelligence Conference, 1987.

Albus, J. S..The NIST Real-time Control System (RCS): an approach to
intelligent systems researchlournal of Experimental and Theoretical
Artificial Intelligence, Vol. 9, 1997.

Alhir, S. S.,UML in a Nutshel] O’'Reilly & Associates Inc., ISBN 1-
56592-448-7, 1998.

Allen, P. D.,Combining Deterministic and Stochastic Elements in Variable
Resolution Models Conference on Variable-Resolution Modeling,
Washington, DC, May 1992.

Allen, P. M., Valle, A. N.,An approach to managing dissimilar unit
interactions in constructive/virtual simulation Iinka,gla4th DIS Workshop

on Standards for the Interoperability of Distributed Simulations, Orlando,
Florida, September 1996.

Allen, R. J., Garlan, D., Ivers, Jprmal Modeling and Analysis of the
HLA Component Integration StandardACM SIGSOFT, Florida,
November 1998.

200

AMG95

AM094

ARCH86

ASTRA76

BADRI92

BALZER85

BANS81

BARGI1

BARNESB0

BERM94

BERN81

BERN87

BEsH35

BIRT73

Architecture Management Grougreliminary Definition High Level
Architecture Briefings, Defense Modeling and Simulation Office (DMSO),
Alexandria, Virginia, March 1995.

Amoroso, E. D.Fundamentals of Computer Security Technoldjgntice
Hall PTR, ISBN 0-13-108929-3, 1994.

Archibald, J., Baer, J. LCache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation ModelACM Transactions on Computer
Systems, Vol. 4, No. 4, November 1986.

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P,
Gray, J. N., Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl,
J. W, Putzolu, G. R., Traiger, I. L., Wade, B. W., Watson, $§stem R:
Relational Approach to Database ManagemeACM Transactions on
Database Systems, Vol. 1, No. 2, June 1976.

Badrinath, B. R., Ramamritham, KSemantics-Based Concurrency
Control: Beyond CommutativitACM Transactions on Database Systems,
\ol. 17, No. 1, March 1992.

Balzer, R., Automated Enhancement of Knowledge Representations
International Joint Conference on Atrtifical Intelligence, 1985.

Bancilhon, F., Spyratos, NUpdate Semantics of Relational ViewsCM
Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Barghouti, N. S., Kaiser, G. EConcurrency Control in Advanced
Database Applications ACM Computing Surveys, Vol. 23, No. 3,
September 1991.

Barnes, J. G. PAn Overview of ADASoftware Practice and Experience,
\Vol. 10, 1980.

Berman, D. F., Bartell, J. T., Salesin, D. Multiresolution Painting and
Compositing ACM Computer Graphics Proceedings Annual Conference
Series, 1994.

Bernstein, P. A., Goodman, NConcurrency Control in Distributed
Database System8CM Computing Surveys, Vol. 13, No. 2, June 1981.

Bernstein, P. A., Hadzilacos, V., Goodman, 8gncurrency Control and
Recovery in Database Systemsidison Wesley Publishing Company Inc.,
ISBN 0-201-10715-5, 1987.

Beshers, G., Campbell, Rdaintained and Constructor Attribute\CM
SIGPLAN 85 Symposium on Language Issues in Programming
Environments, June 1985.

Birtwistle, G. M., Dahl, O-J, Myhrhaug, B. Nygaard, KSimulaBegin,
Studentlitteratur and Auerbach Publishers, ISBN 91-44-06211-7, 1973.

201

BoN97

BORN82

BRINCH78

BRAHMA90

BRILL96

BRILL98

BROOKS36

BURD95

BURNS98

CALD95A

CALD95B

CARD85

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., Slack,
M. G., Experiences with an Architecture for Intelligent Reactive Agents

Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, No.

2, 1997.

Borning, A. H., Ingalls, D. H. H.Multiple Inheritance in Smalltalk-8§0
American Association for Artifical Intelligence Conference, August 1982.

Brinch Hansen, P.Distributed Processes: A Concurrent Programming
Concept Communications of the ACM, Vol. 21, No. 11, November 1978.

Brahmadathan, K., Ramarao, K. V. On the Management of Long-Living
TransactionsJournal of Systems Software, Vol. 11, 1990.

Brill, F., Representation of Local Space in Perception/Action Systems:
Behaving Appropriately in Difficult SituationsPh.D. Dissertation,
Department of Computer Science, University of Virginia, 1996.

Brill, F., Wasson, G., Ferrer, G., Martin WThe Effective Field of View
Paradigm: Adding Representation to a Reactive SystEBmgineering
Applications of Artificial Intelligence issue on Machine Vision for
Intelligent Vehicles and Autonomous Robots, Vol. 11, 1998.

Brooks, R. A.,A Robust Layered Control System For A Mobile Robot
IEEE Journal of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

Burdick, C. D.,Interoperability of Simulations with Different Levels of
Resolution Defense Modeling and Simulation Office (DMSQO) Workshop,
Alexandria, Virginia, November 1995.

Burns, A., Prasad, D., Bondavalli, A., Di Giandomenico, F., Ramamritham,
K., Stankovic, J., Strigini, L.The Meaning and Role of Value in Scheduling
Flexible Real-Time System$echnical Report CS-98-29, Department of
Computer Science, University of Virginia, 1998.

Calder, R. B., Peacock, J. C., Panagos, J., Johnson, Thtégration of
Constructive, Virtual, Live, and Engineering Simulations in the JPSD
CLCGFE 5" Conference on Computer Generated Forces & Behavioral
Representation, Orlando, Florida, May 1995.

Calder, R. B., Peacock, J. C., Wise, B. P. Jr., Stanzione, T., Chamberlain, F.,
Panagos, J.Jmplementation of a Dynamic Aggregation/Deaggregation
Process in the JPSD CLCGKE" Conference on Computer Generated
Forces & Behavioral Representation, Orlando, Florida, May 1995.

Cardelli, L., Wegner, POn Undertanding Types, Data Abstractions, and
PolymorphismACM Computing Surveys, Vol. 17, No. 4, December 1985.

202

CHAM75 Chamberlin, D. D., Gray, J. N., Traiger, I. l\Mjews, Authorization, and
Locking in a Relational Database SysterAmerican Federation of
Information Processing Societies Conference, 1975.

CHEN76 Chen, P. P.The Entity-Relationship Model — Toward a Unified View of
Data, ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976.

CLARK 76 Clark, J. H., Hierarchical Geometric Models for Visible Surface
Algorithms Communications of the ACM, Vol. 19, No. 10, October 1976.

CLARK94 Clark, K. J., Brewer, D.Bridging the Gap Between Aggregate Level and
Object Level Exercised" Conference on Computer Generated Forces &
Behavioral Representation, Orlando, Florida, May 1994.

CobD70 Codd, E. F.A Relational Model of Data for Large Shared Data Banks
Communications of the ACM, Vol. 13, No. 6, June 1970.

CorRMEN89 Cormen, T. H., Leiserson, C. E., Rivest, R. Introduction to Algorithms
MIT Press, ISBN 0-262-03141-8, 19809.

Cox95 Cox, A., Maybury, J., Weeden, NAggregation Disaggregation Research
— A UK Approach 13" DIS Workshop on Standards for the
Interoperability of Distributed Simulations, Orlando, Florida, September
1995.

DAH95 Dahmann, J., Wood, D. Ceditors Special Issue of IEEE Distributed
Interactive Simulation, Vol. 83, No. 8, August 1995.

DAHL66 Dahl, O-J., Nygaard, KSimula — An Algol-Based Simulation Language
Communications of the ACM, Vol. 9, No. 9, September 1966.

DATE95 Date, C. J.An Introduction to Database Systems (Sixth Editigxgdison
Wesley Publishing Company Inc., ISBN 0-201-54329-X, 1995.

DAvIS82 Davis, A. L., Keller, R. M.Data Flow Program GraphslEEE Computer,
Vol. 15, No. 2, February 1982.

DAvIS92 Davis, P. K. An Introduction to Variable-Resolution Modeling and Cross-
Resolution Model ConnectipnConference on Variable-Resolution
Modeling, Washington, DC, May 1992.

DavIs93 Davis, P. K., Hillestad, R. JFamilies of Models that Cross Levels of
Resolution: Issues for Design, Calibration and ManagemaAfinter
Simulation Conference, 1993.

DAvIS98 Davis, P. K., Bigelow, J. H.Experiments in Multiresolution Modeling
(MRM), Prepared for the Defense Advanced Research Projects Agency by
RAND'’s National Defense Research Institute, ISBN 0-8330-2653-4, 1998.

203

DEMERS35

DENNIS80

DIS93

DoD9%4

EPS185

ERMANSO

Eswa76

FIrRBY87

FowLER97

FRANCE93

FREEQO

FRUH92A

FRUH9ZB

FuJI90

Demers, A., Rogers, A., Zadeck, F. Kttribute Propagation by Message
Passing ACM SIGPLAN 85 Symposium on Language Issues in
Programming Environments, June 1985.

Dennis, J. B.Data Flow SupercomputertEEE Computer, Vol. 13, No. 1,
November 1980.

DIS Steering CommitteeThe DIS Vision, A Map to the Future of
Distributed SimulationComment Draft, October 1993.

Under Secretary of Defense (Acquisition and Technologhddeling and
Simulation (M&S) Master PlgrDept. of Defense, September 1994.

Epstein, J. M.,The Calculus of Conventional War: Dynamic Analysis
Without Lanchester Theqryhe Brookings Institute, 1985.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, DTRe Hearsay-ll
Speech-Understanding System: Integrating Knowledge to Resolve
Uncertainty ACM Computing Surveys, Vol. 12, No. 2, June 1980.

Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, |I. The Notions of
Consistency and Predicate Locks in a Database Systarmmunications
of the ACM, Vol. 19, No. 11, November 1976.

Firby, R. J. An Investigation into Reactive Planning in Complex Domains
American Association for Artifical Intelligence Conference, 1987.

Fowler, M., Scott, K.,UML Distilled, Addison Wesley Longman Inc.,
ISBN 0-201-32563-2, 1997.

Franceschini, R. W.|ntelligent Placement of Disaggregated Entities
Institute for Simulation and Training, 1993.

Freeman-Benson, B. N., Maloney, J., Borning, An Incremental
Constraint SolverCommunications of the ACM, Vol. 33, No. 1, January
1990.

Frahwirth, T., Herold, A., Kichenhoff, V., Le Provost, T., Lim, P,
Monfroy, E., Wallace, M.Constraint Logic Programming — An Informal
Introduction Logic Programming in Action, LNCS 636, Springer-Verlag,
1992, Technical Report ECRC-92-6i, European Computer-Industry
Research Centre, July 1992.

Frahwirth, T., Constraint Simplification RulesTechnical Report ECRC-
92-18, European Computer-Industry Research Centre, July 1992.

Fujimoto, R. M.,Parallel Discrete Event Simulatigr€ommunications of
the ACM, Vol. 33, No. 10, October 1990.

204

GAJSKI82

GAR87

GAR95

GARCIA83

GARCIA93

GAT92

GIORGI90

GIORGI91

GoLb80

GooD75

GRIM93

HAERS83

HANKS90

HARDY94

Gajski, D. D., Padua, D. A., Kuck, D. J., Kuhn, R. H.Second Opinion on
Data Flow Machines and LanguagelEEE Computer, Vol. 15, No. 2,
February 1982.

Garlan, D.Views for Tools in Integrated Environmenh.D. Dissertation,
Technical Report CMU-CS-87-147, School of Computer Science, Carnegie
Mellon University, 1987.

Garland, M., Heckbert. P. Srast Polygonal Approximations of Terrains
and Height Fields Technical Report CMU-CS-95-181, School of
Computer Science, Carnegie Mellon University, September 1995.

Garcia-Molina, H.lUsing Semantic Knowledge for Transaction Processing
in a Distributed DatabaseACM Transactions on Database Systems, Vol.
8, No. 2, June 1983.

Garcia de la Banda, M., Hermenegildo, M., Marriott, Ikdependence in
Constraint Logic Programs International Logic Programming
Symposium, MIT Press, 1993.

Gat, E., Integrating Planning and Execution in a Heterogeneous
Asychronous Architecture for Controlling Real-World Mobile Robots
American Association for Artifical Intelligence Conference, 1992.

Giorgi, F.,Simulation of Regional Climate Using a Limited Area Model
Nested in a General Circulation ModelDournal of Climate, Vol. 3,
September 1990.

Giorgi, F., Mearns, L. O.Approaches to the Simulation of Regional
Climate: A ReviepReviews of Geophysics, Vol. 29, No. 2, May 1991.

Goldstein, 1. P., Bobrow, D. G.Descriptions for a Programming
Environment First Annual Conference of the National Association for
Artificial Intelligence, August 1980, Xerox Technical Report CSL-81-3.

Goodenough, J. BException Handling: Issues and a Proposed Notation
Communications of the ACM, Vol. 18, No. 12, December 1975.

Grimshaw, A. S., Strayer, W. T., Narayan Bynamic, Object-Oriented
Parallel ProcessinglEEE Parallel and Distributed Technology, May 1993.

Haerder, T., Reuter, APrinciples of Transaction-Oriented Database
RecoveryACM Computing Surveys, Vol. 15, No. 4, December 1983.

Hanks, S., Firby, R. J.Issues and Architectures for Planning and
Execution DARPA Workshop on Innovative Approaches to Planning,
Scheduling and Control, San Mateo, CA, November 1990.

Hardy, D., Healy, M.Constructive & Virtual Interoperation: A Technical
Challenge 4" Conference on Computer Generated Forces & Behavioral
Representation, Orlando, Florida, May 1994.

205

HARSHI2

HECK94

HECK97

HENN96

HiLL92a

HiLL928

HOFEROS

Hor/9

HOR86

HORRO2

How97

HUMBEL96

Harshberger, E. R., Bennett, B. E., Frelinger, D. Rn, Approach to
Hierarchies of Models: Process IndependenCGmnference on Variable-
Resolution Modeling, Washington, DC, May 1992.

Heckbert, P. S., Garland, Mdultiresolution Modeling for Fast Rendering
Graphics Interface, Banff, Canada, May 1994.

Heckbert, P. S., Garland, MSurvey of Polygonal Surface Simplification
Algorithms Multiresolution Surface Modeling Course, ACM Computer
Graphics Proceedings Annual Conference Series, May 1997.

Hennessey, J. L., Patterson, D. @gmputer Architecture: A Quantitative
Approach (Second EditionMorgan Kaufmann Publishers, ISBN 1-55860-
329-8, 1996.

Hillestad, R. J., Juncosa, M. LGutting Some Trees to See the Forest: On
Aggregation and Disaggregation in Combat ModelSonference on
Variable-Resolution Modeling, Washington, DC, May 1992, Naval
Research Logistics, Vol. 42, 1995.

Hillestad, R. J., Owen, J., Blumenthal, DExperiments in Variable
Resolution Combat Modeling Conference on Variable-Resolution
Modeling, Washington, DC, May 1992, Naval Research Logistics, Vol. 42,
1995.

Hofer, R. C., Loper, M. L.DIS Today Proceedings of the IEEE, Vol. 83,
No. 8, August 1995.

Hopcroft, J. E., Ullman, J. D.Introduction to Automata Theory,
Languages, and ComputatiopAddison Wesley Publishing Company Inc.,
ISBN 0-201-02988-X, 1979.

Horwitz, S., Teitelbaum, TGenerating Editing Environments Based on
Relations and AttributesACM Transactions on Programming Languages
and Systems, Vol. 8, No. 4, October 1986.

Horrigan, T. J.,The “Configuration Problem” and Challenges for
Aggregation Conference on Variable-Resolution Modeling, Washington,
DC, May 1992.

Howard, J. D.An Analysis of Security Incidents on the Internet 1989-1995
Ph.D. Dissertation, Engineering and Public Policy, Carnegie Mellon
University, 1997.

Humbel, S., Sieber, S., Morokuma, Khe IMOMO method: Integration of
different levels of molecular orbital approximations for geometry
optimization of large systems: Test farbutane confirmation andy2
reaction: RC#CI~, Journal of Chemical Physics, Vol. 105, No. 5, August
1996.

206

JAFFAR92

JAFFAR94

JEFF85

JPSD97

JTH97

KARR83

KARR94

KERNS8S8

KNUTH68

KNUTH71

KORTH88

LAIRDI1

LAM78

LAM94

LEES8

Jaffar, J., Michaylov, S., Stuckey, P., Yap, R. H.The CLP{) Language
and SystemACM Transactions on Programming Languages and Systems,
\Vol. 14, No. 3, July 1992.

Jaffar, J., Maher, M. JConstraint Logic Programming: A Survejournal
of Logic Programming, Vol. 19, May 1994.

Jefferson, D. R.\Virtual Time ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, July 1985.

—Federate Object Model for Joint Precision Strike DemonstrgtMT
v1.3, 1997.

—, Federate Object Model for Joint Task Force Prototy@@MVT v1.3,
1997.

Karr, A. F., Lanchester Attrition Processes and Theater-Level Combat
Models Mathematics of Conflict, Elsevier Science Publishers B.V. (North-
Holland), ISBN: 0 444 86678 7, 1983.

Karr, C. R., Root, Elntegrating Aggregate and Vehicle Level Simulations
4" Conference on Computer Generated Forces & Behavioral
Representation, Orlando, Florida, 1994.

Kernighan, B. W., Ritchie, D. MThe C Programming Language (Second
Edition), Prentice Hall Inc., ISBN 0-13-110370-9, 1988.

Knuth, D. E. Semantics of Context-free Languagésthematical Systems
Theory, Vol. 2, No. 2, June 1968.

Knuth, D. E., Semantics of Context-free Languages: Correction
Mathematical Systems Theory, Vol. 5, No. 1, March 1971.

Korth, H. F., Speegle, G. DFormal Model of Correctness without
Serializability ACM SIGMOD Record, Vol. 17, No. 3, September 1988.

Laird, J., Yager, E., Hucka, M., Tuck, (QRobo-Soar: An Integration of
External Interaction, Planning, and Learning using SoRobotics and
Autonomous Systems, Vol. 8, 1991.

Lamport, L.,Time, Clocks, and the Ordering of Events in a Distributed
SystemCommunications of the ACM, Vol. 21, No. 7, July 1978.

Lamport, L., The Temporal Logic of ActionsACM Transactions on
Programming Languages and Systems, Vol. 16, No. 3, May 1994.

Lee, A. W. F.,, Sweldens, W., Schréder, P., Cowsar, L., DobkinMBAPRS:
Multiresolution Adaptive Parameterization of Surface€omputer
Graphics Proceedings Annual Conference Series, 1998.

207

LINTON84

Liskov79

LUEBKE97

LYNCH83

MAD74

MARR93

MATSU96

MATT89

MILLER95

MUNSONI6

NAT95

NAT96

Linton, M. A., Implementing Relational Views of Program&CM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, April 1984.

Liskov, B. H., Snyder, A.Exception Handling in CLUIEEE Transactions
on Software Engineering, Vol. SE-5, No. 6, November 1979.

Luebke, D.,Survey of Polygonal Simplification Algorithm$echnical
Report TR97-045, Department of Computer Science, University of North
Carolina, 1997.

Lynch, N. A., Multilevel atomicity: a new correctness criterion for
database concurrency contfohCM Transactions on Database Systems,
\ol. 8, No. 4, December 1983.

Madnick, S. E., Donovan, J. @perating SystemaMcGraw-Hill Inc.,
ISBN 0-07-039455-5, 1974.

Marriott, K., Stuckey, P. JThe 3 R’s of Optimizing Constraint Logic
Programs: Refinement, Removal and Reorderiﬁ@th Annual ACM
Symposium on Principles of Programming Languages, 1993.

Matsubara, T., Maseras, F., Koga, N., Morokuma, Afplication of the
New “Integrated MO+ MM” (IMOMM) Method to the Organometallic
Reaction Pt(PR), + H, (R = H, Me, t-Bu, and Ph) Journal of Physical
Chemistry, Vol. 100, No. 7, 1996.

Mattern, F.Virtual Time and Global States of Distributed SysteRerallel
and Distributed Algorithms, Elsevier Science Publishers B.V. (North-
Holland), 1989.

Miller, D. C., Thorpe, J. A.,SIMNET: The Advent of Simulator
Networking Proceedings of the IEEE, Vol. 83, No. 8, August 1995.

Munson, J., Dewan, P.A Concurrency Control Framework for
Collaborative Systems ACM Conference on Computer Supported
Cooperative Work, 1996.

Natrajan, A., Nguyen-Tuong, ATo disaggregate or not to disaggregate,
that is not the questiQrELECSIM, Internet, April-June, 1995, Technical
Report CS-95-18, Department of Computer Science, University of
Virginia, 1995.

Natrajan, A., Reynolds Jr., P. F., Srinivasan,Gnsistency Maintenance
using UNIFY, Technical Report CS-95-28, Department of Computer
Science, University of Virginia, 1996, Part of Grant Proposal to DMSO,
1995-1996.

208

NAT97

NAT99

NRC97

OMT98

PAPA86

PETER/7

PETRIGZ

PeETTY94

PETTY95

PrRATTO5

PULLEN95

PuPP®7

REDDY95

Natrajan, A., Reynolds Jr., P. F., Srinivasan, /S Flexible Approach to
Multi-Resolution Modeling Parallel and Distributed Simulation, June
1997.

Natrajan, A., Reynolds Jr., P. Resolving Concurrent Interactiong™
International Workshop on Distributed Interactive Simulation and Real
Time Applications, October 1999.

Committee on Modeling and Simulation: Opportunities for Collaboration
between the Defense and Entertainment Research Commukltes]ing

and Simulation: Linking Entertainment and Defensiational Research
Council, October 1993.

U.S. Department of Defenséjigh Level Architecture Object Model
Template Specification Version 1LIEEE P1516.2, Standard for Modeling
and Simulation, April 1998.

Papadimitriou, C. H.,The Theory of Database Concurrency Control
Computer Science Press, ISBN 0-88175-027-1, 1986.

Peterson, J. L.Petri Nets ACM Computing Surveys, Vol. 9, No. 3,
September 1977.

Petri, C. A. Kommunikation mit Automatei®h.D. dissertation, Schriften
des Rheinisch-Westfalischen Institutes fir Instrumentelle Mathematik an
der Universitat Bonn, 1962.

Petty, M. D.,The Turing Test as an Evaluation Criterion for Computer
Generated Forces4™ Conference on Computer Generated Forces &
Behavioral Representation, Orlando, Florida, May 1994.

Petty, M. D., Franceschini, R. WDjsaggregation Overload and Spreading
Disaggregation in Constructive+Virtual Linkag,e§th Conference on
Computer Generated Forces & Behavioral Representation, Orlando,
Florida, May 1995.

Pratt, D. R., Johnson, M. AConstructive and Virtual Model Linkage
Winter Simulation Conference, 1995.

Pullen, J. M., Wood, D. CNetworking Technology and DI®roceedings
of the IEEE, Vol. 83, No. 8, August 1995.

Puppo, E., Scopigno, R.Simplification. LOD and Multiresolution
Principles and Application€urographics, Vol. 16, No. 3, 1997.

Reddy, R., Garrett, R.Future Technology Challenges in Distributed
Interactive SimulationProceedings of the IEEE, Vol. 83, No. 8, August
1995.

209

ReEPs34

REPSB6

REYN94

REYNO7

RISBEY96

ROBKIN92

ROSSER82

RPR97

Rum91

SACER74

SARASI1

SEIDEL95

SHER92

SHLAER92

Reps, T., Teitelobaum, TThe Synthesizer GeneratoACM SIGSOFT/
SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, Software Engineering Notes, Vol. 9, No. 3,
SIGPLAN Notices, Vol. 19, No. 5, May 1984.

Reps, T., Marceau, C., Teitelbaum, Remote attribute updating for
language-based editara 3" Annual ACM Symposium on Principles of
Programming Languages, 1986.

Reynolds Jr., P. FDISorientation ELECSIM 94, Internet, April-June,
1994,

Reynolds Jr., P. F., Natrajan, A., Srinivasan,Cinsistency Maintenance
in Multi-Resolution SimulationsACM Transactions on Modeling and
Computer Simulation, Vol. 7, No. 3, July 1997.

Risbey, J. S., Stone, P. HA Case Study of the Adequacy of GCM
Simulations for Input to Regional Climate Change Assessmaamitsnal of
Climate, Vol. 9, July 1996.

Robkin, M.,A proposal to Modify the Distributed Interactive Simulation
Aggregate PDUHughes Training Inc., February 1992.

Rosser, J. BHighlights of the history of the lambda-calcujuSonference
Record of 1982 ACM Symposium on Lisp and Functional Programming,
1992.

—,Federate Object Model for Real-time Platform Referer@MmT v1.3,
September 1997.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., LorensenQWect-
Oriented Modeling and DesigrPrentice Hall PTR, ISBN 0-13-629841-9,
1991.

Sacerdoti, E. DRlanning in a Hierarchy of Abstraction Spagéestificial
Intelligence, Vol. 5, 1974.

Saraswat, V. A., Rinard, M., Panangaden, 3&mantic Foundations of
concurrent constraint programmingl8” Annual ACM Symposium on
Principles of Programming Languages, 1991.

Seidel, D. W., King, B. C., Burke, C. DAIM Approach to Simulation
Interoperability, The MITRE Corporation, Preliminary Draft, July 1995.

Sherman, R., Butler, BSegmenting the Battlefield.oral WDL, June
1992.

Shlaer, S., Mellor, S. JOQbject Lifecycles: Modeling the World in States
Prentice Hall PTR, ISBN 0-13-629940-7, 1992.

210

SLB91

SIM94

SMITH94

SMITH95

STEFIK86

STEIN94

STOBER9S

STONE76

STrROUWI1

SuLL94

SVEN96A

SVEN9GB

TANEN92

Silberschatz, A., Peterson, J. L., Galvin, ®perating System Concepts
(Third Edition), Addison Wesley Publishing Company Inc., ISBN 0-201-
51379-X, 1991.

Simmons, R., Structured Control for Autonomous Robot$EEE
Transactions on Robotics and Automation, Vol. 10, No. 1, February 1994.

Smith, R. D.Jnvited speakemDepartment of Computer Science, University
of Virginia, December 1994.

Smith, R. D., The Conflict Between Heterogeneous Simulation and
Interoperability 17 Inter-Service/Industry Training, Simulation, and
Education Conference (I/ITSEC) Proceedings, November 1995.

Stefik, M., Bobrow, D. G.Object-Oriented Programming: Themes and
Variations Al Magazine, Vol. 6, No. 4, 1986.

Steinman, J. S., Wieland, FRarallel Proximity Detection and the
Distribution List Algorithm 1994.

Stober, D. R., Kraus, M. K., Foss, W. F.,, Franceschini, R. W., Petty, M. D.,
Survey of Constructive+Virtual Linkag,e§th Conference on Computer
Generated Forces & Behavioral Representation, Orlando, Florida, May
1995.

Stonebraker, M. R., Wong, E., Kreps, P., Held, Ghe Design and
Implementation of IngreACM Transactions on Database Systems, Vol. 1,
No. 3, September 1976.

Stroustrup, B.,The C++ Programming Language (Second Edition)
Addison Wesley Publishing Company Inc., ISBN 0-201-53992-6, 1991.

Sullivan, K. J. Mediators: Easing the Design and Evolution of Integrated
SystemsPh.D. Dissertation, Technical Report 94-08-01, Department of
Computer Science and Engineering, University of Washington, 1984.

Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S.,
Morokuma, K.,ONIOM: A Multilayered Integrated MG MM Method for
Geometry Optimizations and Single Point Energy Predictions. A Test for
Diels-Alder Reactions and Pt(PBu)s), + H, Oxidative Addition Journal

of Physical Chemistry, Vol. 100, No. 50, 1996.

Svensson, M., Humbel, S., Morokuma, Kepergetics using the single
point IMOMO (integrated molecular orbital+ molecular orbital)
calculations: Choices of computational levels and model systearnal of
Chemical Physics, Vol. 105, No. 9, September 1996.

Tanenbaum, A. SModern Operating SystemBrentice Hall Inc., ISBN 0-
13-595752-4, 1992.

211

TEXEL97

THOM98

TURING50

VAN96

WAS98A

WAS98B

WAs99

WEAT93

WEIHL88

WILL 93

Wim 86

Y EMINI85

ZORIN97

Texel, P. P., Williams, C. BlUse Cases combined with Booch/OMT/UML:
Process and Product®rentice Hall PTR, ISBN 0-13-727405-X, 1997.

Thomasin, A.Concurrency Control: Methods, Performances and Analysis
ACM Computing Surveys, Vol. 30, No. 1, March 1998.

Turing, A. M., Computing Machinery and Intelligencéind, Vol. 59,
October 1950.

Van Hentenryck, P., Saraswat, V. Aet al, Strategic Directions in
Constraint Programming ACM Computing Surveys, Vol. 28, No. 4,
December 1996.

Wasson, G., Martin, W.Multi-tiered Representation for Autonomous
Robots SPIE Conference on Mobile Robots and Autonomous Systems,
November 1998.

Wasson, G. S., Natrajan, A., Gunderson, J. P., Ferrer, G. J., Martin, W. N.,
Reynolds Jr., P. F.Consistency Maintenance in Autonomous Agent
RepresentationsTechnical Report CS-98-06, Department of Computer
Science, University of Virginia, 1998.

Wasson, G. SDesign of Representation Systems for Autonomous Agents
Ph.D. Dissertation, Department of Computer Science, University of
Virginia, 1999.

Weatherly, R. M., Wilson, A. L., Griffin, S. PALSP — Theory, Experience
and Future DirectionsWinter Simulation Conference, 1993.

Weihl, W. E., Commutativity-Based Concurrency Control for Abstract
Data Types|EEE Transactions on Computers, Vol. 37, No. 12, December
1988.

Williams, C. C.,Concurrency Control in Asynchronous Computations
Ph.D. Dissertation, Department of Computer Science, University of
Virginia, 1998.

Wimsatt, W. C.Heuristics and the Study of Human BehavyiarFiske, D.,
Shweder, R., eds., Meta-Theory in the Social Sciences: Pluralisms and
Subjectives, University of Chicago Press, 1986.

Yemini, S., Berry, D. M.,A Modular Verifiable Exception-Handling
MechanismACM Transactions on Programming Languages and Systems,
\ol. 7, No. 2, April 1985.

Zorin, D., Schroder, P., Sweldens, Whjeractive Multiresolution Mesh
Editing, ACM Computer Graphics Proceedings Annual Conference Series,
May 1997.

212

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	1.1 Background
	1.2 UNIFY — An Overview
	Figure 1: Our Approach to MRM

	1.3 Requirements for Effective MRM
	R1: Multi-representation Interaction: Entities in each model may initiate and receive interaction...
	R2: Multi-representation Consistency: The representations of jointly-executing models must be con...
	R3: Cost-effectiveness: The costs of simulating multiple models and maintaining consistency among...

	1.4 Claims and Contributions
	1.5 Evaluation
	1.6 Outline

	Related Work
	2.1 MRM Applications
	2.1.1 Multi-Resolution Graphical Modelling
	2.1.2 Hierarchical Autonomous Agents
	2.1.3 Blackboard Systems
	2.1.4 Cache Coherence
	2.1.5 Abstract Data Types and Object Inheritance
	2.1.6 Views in Databases and Integrated Environments
	2.1.7 Nested Climate Modelling
	2.1.8 Integrated Molecular Modelling
	2.1.9 Multi-Level Computer Games
	2.1.10 Battleﬁeld Simulations
	2.1.11 MRM Applications Summary
	Table 1: Evaluation of Domains employing MRM

	2.2 Multi-Model Execution
	2.2.1 Selective Viewing
	2.2.2 Aggregation-Disaggregation
	2.2.2.1 Full Disaggregation
	Figure 2: Full Disaggregation

	2.2.2.2 Partial Disaggregation
	Figure 3: Partial Disaggregation

	2.2.2.3 Playboxes
	Figure 4: Playbox

	2.2.2.4 Pseudo-Disaggregation
	Figure 5: Pseudo-disaggregation

	2.2.3 Variable Resolution Modelling

	2.3 Maintaining Consistency among Concurrent Representations
	2.4 Chapter Summary

	Foundation
	3.1 Model
	3.2 Interactions
	3.3 Multi-models
	3.3.1 Cross-model Relationships
	3.3.2 Mapping Functions
	3.3.3 Time-Steps
	Figure 6: Possible compatible time-steps

	3.4 Evaluation
	3.5 Assumptions and Rationale
	Existence of representations: A representation exists for an entity and can inﬂuence the behaviou...
	Existence of satisfactory models: Individual models meet their users’ requirements.
	Existence of mapping functions: There exist mapping functions to translate the representation of ...
	Existence of policies for concurrent interactions: There exist policies for resolving the effects...
	Existence of compatible time-steps: The time-steps at which the models execute are compatible.

	3.6 Chapter Summary

	Fundamental Observations
	4.1 Problems with Aggregation-Disaggregation
	4.1.1 Mapping Inconsistency
	Figure 7: Mapping Inconsistency

	4.1.2 Chain Disaggregation
	Figure 8: Chain Disaggregation

	4.1.3 Transition Latency
	4.1.4 Thrashing
	4.1.5 Network Flooding
	4.1.6 Cross-Level Interactions
	4.1.7 Summary of Problems with Aggregation-Disaggregation

	4.2 Fundamental Observations
	4.2.1 Fundamental Observation 1
	FO-1: For effective joint execution, objects or processes should be modelled at representation le...
	Figure 9: Fundamental Observation 1

	4.2.2 Fundamental Observation 2
	FO-2: The effects of concurrent interactions at multiple representation levels must be combined c...
	Figure 10: Reducing transition overheads by limiting propagation of transitions
	Figure 11: Concurrent multi-level interactions

	4.2.3 Fundamental Observation 3
	Figure 12: Dependency considerations
	FO-3: Concurrent interactions may be dependent.

	4.2.4 Fundamental Observation 4
	FO-4: Time differentials may cause inconsistencies.
	Figure 13: Time-steps — Equal and In-phase
	Figure 14: Time-steps — Equal but not In-phase
	Figure 15: Time-steps — Unequal and not In-phase
	Figure 16: Compatible Time-steps
	Figure 17: Eliminating time-step differentials

	4.3 Chapter Summary

	Multiple Representation Entities
	5.1 Description of an MRE
	Figure 18: An MRE
	Figure 19: Multi-representation Interaction

	5.2 Challenges
	5.3 Rationale
	Table 2: Summary of Assumptions made by MRM approaches

	5.4 Execution of an MRE
	Figure 20: Execution of an MRE
	5.4.1 Maintaining Consistency
	5.4.1.1 Temporal Consistency
	Figure 21: T�joint entity

	5.4.1.2 Mapping Consistency

	5.4.2 Resolving Concurrent Interactions
	5.4.3 Storing Attributes in a Core
	Figure 22: Core attributes

	5.4.4 Comparing against Alternative Approaches
	5.4.4.1 Comparing against aggregation-disaggregation
	5.4.4.2 Comparing against selective viewing
	Table 3: Comparison among MRM approaches

	5.5 Beneﬁts of MREs
	Figure 23: Eliminating Chain Disaggregation
	Figure 24: Reducing Network Flooding
	Table 4: Summary of Beneﬁts of MREs

	5.6 Limitations of MREs
	Table 5: Summary of Limitations of MREs

	5.7 Chapter Summary
	Table 6: Comparison among MRM approaches

	Consistency Enforcers
	6.1 Constructing an Attribute Dependency Graph
	Figure 25: Simple ADG
	Figure 26: Platoon-Tanks MRE
	6.1.1 Assigning Nodes to Attributes
	Figure 27: Nodes in the ADG for the Platoon-Tanks MRE

	6.1.2 Assigning Arcs to Dependencies
	Figure 28: Dependencies in the ADG for the Platoon-Tanks MRE

	6.1.3 Assigning Semantics to Dependencies
	6.1.3.1 Cumulative and Distributive Dependencies
	6.1.3.2 Interaction and Modelling Dependencies
	6.1.3.3 Selecting Dependencies
	Table 7: Assigning Cumulative and Distributive Dependencies

	6.1.3.4 Properties of Dependency Classes
	6.1.3.5 Examples of Dependency Classes
	Figure 29: Dependency Classes in the ADG for the Platoon-Tanks MRE

	6.1.3.6 Dependency Weights
	Figure 30: Cumulative Weights
	Figure 31: Distributive Weights

	6.1.3.7 Interaction Semantics

	6.1.4 Summary of Attribute Dependency Graphs

	6.2 Selecting Mapping Functions
	Figure 32: Mapping Value Spaces
	Figure 33: Mapping Changes in Values

	6.3 Traversing an ADG
	6.3.1 Algorithm for Traversing an ADG
	Figure 34: Algorithm for ADG Traversal
	Figure 35: Applying the Effects of an Interaction

	6.3.2 Cyclic Dependencies
	Figure 36: Propagation of Interaction Effects

	6.3.3 Unplanned Dependencies
	6.3.4 Traversal Path
	Table 8: Effects of an Interaction

	6.4 Possible Implementations of a Consistency Enforcer
	6.4.1 As-Is
	6.4.2 Spreadsheets
	6.4.3 Attribute Grammars
	6.4.4 Mediators
	6.4.5 Constraint Solvers

	6.5 Chapter Summary

	Interaction Resolvers
	7.1 Interactions
	7.2 Serialization
	Figure 37: Clients and Server

	7.3 Abandoning Isolation
	7.4 Switches — A Simple System
	7.4.1 Unconstrained System
	Figure 38: Switches
	Figure 39: State Transition Diagram

	7.4.2 Constrained System
	Figure 40: Constrained Switches
	Figure 41: New States
	Figure 42: Constrained State Transition Diagram

	7.4.3 Dependent Concurrent Interactions
	Figure 43: Transitions on Concurrent Interactions

	7.4.4 Complexity

	7.5 A Taxonomy of Interactions
	7.5.1 Properties of a Taxonomy of Interactions
	7.5.2 Interaction Characteristics and Classes
	7.5.2.1 Request and Response
	7.5.2.2 Certain and Uncertain
	7.5.2.3 Combining Characteristics
	Figure 44: Classes of Interactions
	Type�0: Response Ÿ Certain e.g., physical events
	Type�1: Response Ÿ Uncertain e.g., updates
	Type�2: Request Ÿ Certain e.g., reads
	Type�3: Request Ÿ Uncertain e.g., orders

	7.5.3 Evaluating the Taxonomy
	7.5.4 Resolving Effects of Concurrent Interactions
	Property 1: If the concurrent occurrence of interactions is indistinguishable from a sequential o...
	Property 2: If concurrent interactions affect disjoint sets of attributes, they are independent.
	Figure 45: Concurrent Interactions Affecting Sets of Attributes

	Property 3: Concurrent response and request interactions are independent.
	Figure 46: Independent Concurrent Response and Request Interactions

	7.5.5 Policies for Resolving Effects of Interactions

	7.6 Constructing an Interaction Resolver
	7.6.1 Operation of an IR
	Figure 47: Algorithm for Resolving Interactions

	7.6.2 An Example IR
	Table 9: Example Concurrent Interactions
	L1: If Move_Platoon occurs concurrently with Move_Tank1 or Move_Tank2, then Move_Platoon takes ef...
	L2: If Detonation occurs concurrently with Collide_Tank1 or Collide_Tank2, the interactions have ...
	L3: If a change caused by an interaction is discarded, the interaction is discarded entirely, i.e...
	Table 10: Effects of Concurrent Interactions

	7.7 Chapter Summary

	Applying UNIFY: A Process
	8.1 Guidelines for MRM Designers
	G1: Represent entities at levels at which they can interact. This guideline arises from FO�1 in §...
	G2: Maintain concurrent representations for jointly-executing models. Maintaining concurrent repr...
	G3: Make the time-steps of the multiple models compatible. If jointly-executing models have compa...
	G4: Capture cross-model relationships. Capturing relationships among representations involves det...
	G5: Propagate the effects of an interaction to all representation levels. An interaction affects ...
	G6: Select mapping functions for each relationship between representations. These functions trans...
	G7: Identify semantics characteristics of interactions. In §7.5, we presented a taxonomy of inter...
	G8: Select policies for resolving the effects of dependent concurrent interactions. The effects o...

	8.2 Using UNIFY with a Speciﬁcation Methodology
	Table 11: Example Attribute Relationship Table
	Table 12: Example Concurrent Interactions Table

	8.3 Process for Effective MRM
	Figure 48: Process for Effective MRM

	Evaluation
	9.1 Evaluating UNIFY in terms of MRM Requirements
	9.1.1 Multi-Representation Interaction
	9.1.2 Multi-Representation Consistency
	9.1.3 Cost-Effectiveness
	9.1.3.1 Assumptions
	Figure 49: Entity in Synthetic Application

	9.1.3.2 Consistency Cost
	Figure 50: AD — Consistency Cost
	Figure 51: SV — Consistency Cost
	Figure 52: UNIFY — Consistency Cost

	9.1.3.3 Simulation cost
	Figure 53: (Left to Right) AD, SV and UNIFY — Simulation Cost

	9.1.3.4 Expected Costs
	Table 13: Cost Comparison among MRM approaches
	Figure 54: Expected Costs

	9.1.3.5 Experimental Costs
	Figure 55: Simulation Cost varying with Number of Interactions
	Figure 56: Consistency Cost varying with Number of Interactions
	Figure 57: Simulation Cost varying with Rate of Simulation
	Figure 58: Consistency Cost varying with Rate of Simulation
	Figure 59: Simulation Cost varying with Number of Sub-entities
	Figure 60: Consistency Cost varying with Number of Sub-entities
	Figure 61: Simulation Cost varying with Number of Levels
	Figure 62: Consistency Cost varying with Number of Levels
	Figure 63: AD, SV and UNIFY — Cost Comparison

	9.1.3.6 Summary of Cost-Effectiveness

	9.1.4 Summary of Evaluation in Terms of MRM Requirements

	9.2 Applying UNIFY to Existing Models
	9.2.1 Military Models
	9.2.2 Autonomous Agent Model
	Figure 64: Marcus and Archway
	Figure 65: MRE for planner and PA system representations

	9.3 Limitations
	9.4 Chapter Summary

	Conclusions
	10.1 Contributions
	10.2 Future Work

	Examples of Multiple Representations
	A.1 Multi-Resolution Graphical Modelling
	A.2 Hierarchical Autonomous Agents
	A.3 Blackboard Systems
	A.4 Cache Coherence
	A.5 Abstract Data Types and Object Inheritance
	A.6 Views in Databases and Integrated Environments
	A.7 Nested Climate Modelling
	A.8 Integrated Molecular Modelling
	A.9 Multi-Level Computer Games
	A.10 Battleﬁeld Simulations

	Joint Task Force Prototype
	Figure 66: Platoon-Tanks MRE
	B.1 OMT Tables
	B.2 Steps
	B.3 Construct an MRE from the OCST and the APT
	Table 14: Object Class Structure Table for JTFp
	Table 15: Attribute/Parameter Table for JTFp
	Table 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

	B.4 Construct an ADG from the APT and the ART
	Table 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp
	Figure 67: ADG for the JTFp Platoon-Tanks MRE

	B.5 Select Mapping Functions for Dependencies in the ART
	Table 18: Mapping Functions for JTFp Platoon-Tanks MRE

	B.6 Determine the Effects of Interactions from the OIT
	Table 19: Object Interaction Table for JTFp
	Table 20: Effects of Interactions for JTFp Platoon-Tanks MRE

	B.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

	B.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 68: JTFp Platoon-Tanks MRE

	Joint Precision Strike Demonstration
	Figure 69: Platoon-Tanks MRE
	C.1 OMT Tables
	C.2 Steps
	C.3 Construct an MRE from the OCST and the APT
	Table 22: Object Class Structure Table for JPSD
	Table 23: Attribute/Parameter Table for JPSD
	Table 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

	C.4 Construct an ADG from the APT and the ART
	Table 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD
	Figure 70: ADG for the JPSD Platoon-Tanks MRE

	C.5 Select Mapping Functions for Dependencies in the ART
	Table 26: Mapping Functions for JPSD Platoon-Tanks MRE

	C.6 Determine the Effects of Interactions from the OIT
	Table 27: Object Interaction Table for JPSD
	Table 28: Effects of Interactions for JPSD Platoon-Tanks MRE

	C.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

	C.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 71: JPSD Platoon-Tanks MRE

	Real-time Platform Reference
	Figure 72: Platoon-Tanks MRE
	D.1 OMT Tables
	D.2 Steps
	D.3 Construct an MRE from the OCST and the APT
	Table 30: Object Class Structure Table for RPR
	Table 31: Attribute/Parameter Table for RPR
	Table 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

	D.4 Construct an ADG from the APT and the ART
	Table 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR
	Figure 73: ADG for the RPR Platoon-Tanks MRE

	D.5 Select Mapping Functions for Dependencies in the ART
	Table 34: Mapping Functions for RPR Platoon-Tanks MRE

	D.6 Determine the Effects of Interactions from the OIT
	Table 35: Object Interaction Table for RPR
	Table 36: Effects of Interactions for RPR Platoon-Tanks MRE

	D.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE

	D.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 74: RPR Platoon-Tanks MRE

	Hierarchical Autonomous Agents
	Figure 75: Marcus MRE
	E.1 Steps
	E.2 Construct an MRE from Planner and PA Representations
	Table 38: Attributes of planner and PA (Marcus)

	E.3 Construct an ADG for the MRE
	Table 39: Attribute Relationship Table for Marcus MRE
	Figure 76: ADG for the Marcus MRE

	E.4 Select Mapping Functions for Dependencies in the ADG
	Table 40: Mapping Functions for Marcus MRE

	E.5 Determine the Effects of Interactions
	Table 41: Interactions sent and received by the Marcus MRE

	E.6 Resolve the Effects of Concurrent Interactions
	Table 42: Concurrent Interactions Table for Marcus MRE

	E.7 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 77: Marcus MRE

	Indexed Glossary
	Aggregate Model 24 A model at low resolution or high abstraction.
	Aggregation 13, 24 Composition of a collection of HREs into a single LRE.
	Aggregation-disaggregation 5, 11, 32, 44, 49, 57, 104 An MRM approach in which representation lev...
	Attribute 19 A property of an entity, which can be used to refer to the entity and manipulate its...
	Attribute Dependency Graph 4, 16, 57, 104 A graph with attributes as nodes and dependencies among...
	Behavior of an Entity 22 The sequence of states for a particular entity.
	Behavior of a Model 22 The sequence of states of a model.
	Certain Interaction 84, 89 An interaction whose outcome is predictable.
	Chain Disaggregation 13, 32, 50, 119 Forcible disaggregation of many entities because of LRE-HRE ...
	Compatible Time-steps 25, 29, 40, 159, 117 If multiple entities never violate any assumptions mad...
	Concurrent Interactions 4, 22, 29, 47, 81 Interactions that occur at overlapping times in the sim...
	Concurrent Representations 1, 24, 41 Representations of different simulation entities of the same...
	Consistency Cost 5, 16, 44, 105, 107 Cost of maintaining consistency among jointly-executing models.
	Consistency Enforcer 4, 16, 45, 56, 70, 104 Consists of an Attribute Dependency Graph and appropr...
	Consistency Maintenance 1, 25 Correlating the multiple entity states for the same object or proce...
	Cost-effectiveness (R3) 5, 28, 105 Simulation and consistency costs should be low.
	Cross-level Interactions 34, 43, 51 Interactions whose sender and receiver are at different repre...
	Cumulative Dependencies 56, 60, 63 Attribute dependencies wherein the value of a single attribute...
	Dependency 22 A static relationship between two attributes.
	Dependent Interactions 4, 23, 38, 41, 81 Interactions whose effects are dependent on one another.
	Disaggregate Model 24 A model at high resolution or low abstraction.
	Disaggregation 13, 24 Decomposition of an LRE into its constituent HREs.
	Distributive Dependencies 56, 60, 64 Attribute dependencies wherein the value of a single attribu...
	Effective Joint Execution 1, 16, 27, 41, 103 The joint execution of multiple models that satisﬁes...
	Effects of an Interaction 20 The changes caused in the representations of the sender and receiver...
	Entity 2, 19 A description of an object or process in a simulation.
	Entity Representation 19 A collection of the attributes of one entity described using the notatio...
	Environment of a Model 19 Objects and processes external to a model.
	Executing a Model 21 Simulating the objects and processes that are part of a phenomenon.
	Execution of a Multi-model 2 The joint execution of multiple models.
	Fundamental Observations 3, 31 Observations that relate the causes of problems in jointly-executi...
	Ghosting 41 With multiple models, executing only one model and reﬂecting changes from that model ...
	Guidelines for Designers of Multi-models 5, 96 With multiple models, executing only one model and...
	Hierarchical Models 60 Models that bear a relationship of being the composition-decomposition or ...
	High Resolution Entity (HRE) 12, 24, 32, 50 An entity at a low level of abstraction, or high deco...
	Independent Interactions 23, 86 Interactions whose effects are the same whether they occur in iso...
	Interaction 3, 20, 22, 76 The means by which entities exchange information or inﬂuence one another.
	Interaction Dependencies 56, 61 Attribute dependencies that denote the effects of interactions.
	Interaction Resolver 4, 16, 45, 89 Resolves the effects of concurrent interactions on a Multiple ...
	Internal Consistency with an MRE 41 Attribute dependencies that denote the effects of interactions.
	Joint Execution of Multiple Models 2, 24 Execution of multiple models at overlapping times, possi...
	Low Resolution Entity (LRE) 12, 24, 32, 50 An entity at a high level of abstraction, or high comp...
	Mapping Consistency 5, 47 When entity properties common to different models are translated such t...
	Mapping Inconsistency 32, 44, 49, 119 When repeated translations among attributes cause intolerab...
	Mapping Functions 4, 16, 25, 29, 41, 65, 159, 104 Methods used to correlate the multiple represen...
	Model 2, 21 An abstraction of some phenomenon that incorporates the behavior of objects and proce...
	Modeling 2, 19 A method to study real-life phenomena.
	Modeling Dependencies 56, 60, 61 Attribute dependencies inherent in the nature of the object or p...
	Multi-model 2, 24, 24 For some phenomenon, the union of multiple models that may differ in execut...
	Multiple Representation Entity (MRE) 3, 16, 41, 54, 56 A conceptual entity that can interact at m...
	Multi-representation Consistency (R2) 5, 28, 104 Jointly-executing models must be related and con...
	Multi-representation Interaction (R1) 5, 27, 44, 104 Entities in each model may initiate and rece...
	Multi-representation Modeling (MRM) 2, 19, 24, 159 The joint execution of multiple models.
	Network Flooding 33, 51, 119 High consumption of network resources because of a large number of m...
	Receiver of an Interaction 20 The entity that receives an interaction.
	Relationship between Attributes 19 Indicates that if the value of one attribute changes, the valu...
	Representation 2, 19, 116 A collection of the objects and processes participating in a phenomenon...
	Representation Level 24 The conceptual context in which a model executes.
	Request Interaction 84, 86, 88 An interaction concerned with actions that may take place in the f...
	Resolving Concurrent Interactions 23, 36, 47, 54, 85, 88, 159, 117 Computing the effects of concu...
	Resolution 24 A representation level in a hierarchical model.
	Resolution Level 24 Resolution.
	Response Interaction 84, 86, 88 An interaction concerned with actions that have taken place in th...
	Reversible Mapping Functions 25, 47, 48, 68 Mapping functions that return the original attribute ...
	Selective Viewing 5, 11, 44, 49, 57, 104 An MRM approach in which the most detailed model is simu...
	Sender of an Interaction 20 The entity that initiates an interaction.
	Simulation 2, 21 A method to execute a model, usually on a computer with some combination of exec...
	Simulation Cost 5, 16, 44, 105, 108 Cost of simulating jointly-executing models.
	Taxonomy of Interactions 4, 16, 83 A classiﬁcation of interactions according to semantic characte...
	Temporal Consistency 5, 45 When multiple entities have consistent views of another entity at over...
	Temporal Inconsistency 53, 119 When multiple entities have differing views of an entity at overla...
	Thrashing 33, 50, 119 Repeated transitions by an entity because it transitions representation lev...
	Time-step 21, 38 The duration of time between two consecutive observation times of a model.
	Transition Latency 33, 50, 119 Delay encountered when performing an aggregation or disaggregation.
	Uncertain Interaction 84, 89 An interaction whose outcome is unpredictable.
	UNIFY 4, 3, 27, 31, 41, 159, 116 A framework for effective MRM.

	References
	Abadi, M., Lamport, L., Conjoining Specifications, ACM Transactions on Programming Languages and ...
	Ackerman, W. B., Data Flow Languages, IEEE Computer, Vol. 15, No. 2, February 1982.
	Agre, P. E., Chapman, D., Pengi: An Implementation of a Theory of Activity, American Association ...
	Albus, J. S., The NIST Real-time Control System (RCS): an approach to intelligent systems researc...
	Alhir, S. S., UML in a Nutshell, O’Reilly & Associates Inc., ISBN 1- 56592-448-7, 1998.
	Allen, P. D., Combining Deterministic and Stochastic Elements in Variable Resolution Models, Conf...
	Allen, P. M., Valle, A. N., An approach to managing dissimilar unit interactions in constructive/...
	Allen, R. J., Garlan, D., Ivers, J., Formal Modeling and Analysis of the HLA Component Integratio...
	Architecture Management Group, Preliminary Definition, High Level Architecture Briefings, Defense...
	Amoroso, E. D., Fundamentals of Computer Security Technology, Prentice Hall PTR, ISBN 0-13-108929...
	Archibald, J., Baer, J. L., Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulati...
	Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N., Griffiths, P. P....
	Badrinath, B. R., Ramamritham, K., Semantics-Based Concurrency Control: Beyond Commutativity, ACM...
	Balzer, R., Automated Enhancement of Knowledge Representations, International Joint Conference on...
	Bancilhon, F., Spyratos, N., Update Semantics of Relational Views, ACM Transactions on Database S...
	Barghouti, N. S., Kaiser, G. E., Concurrency Control in Advanced Database Applications, ACM Compu...
	Barnes, J. G. P., An Overview of ADA, Software Practice and Experience, Vol. 10, 1980.
	Berman, D. F., Bartell, J. T., Salesin, D. H., Multiresolution Painting and Compositing, ACM Comp...
	Bernstein, P. A., Goodman, N., Concurrency Control in Distributed Database Systems, ACM Computing...
	Bernstein, P. A., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in Database Syste...
	Beshers, G., Campbell, R., Maintained and Constructor Attributes, ACM SIGPLAN 85 Symposium on Lan...
	Birtwistle, G. M., Dahl, O-J, Myhrhaug, B. Nygaard, K., Simula Begin, Studentlitteratur and Auerb...
	Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., Slack, M. G., Experiences w...
	Borning, A. H., Ingalls, D. H. H., Multiple Inheritance in Smalltalk-80, American Association for...
	Brinch Hansen, P., Distributed Processes: A Concurrent Programming Concept, Communications of the...
	Brahmadathan, K., Ramarao, K. V. S., On the Management of Long-Living Transactions, Journal of Sy...
	Brill, F., Representation of Local Space in Perception/Action Systems: Behaving Appropriately in ...
	Brill, F., Wasson, G., Ferrer, G., Martin W., The Effective Field of View Paradigm: Adding Repres...
	Brooks, R. A., A Robust Layered Control System For A Mobile Robot, IEEE Journal of Robotics and A...
	Burdick, C. D., Interoperability of Simulations with Different Levels of Resolution, Defense Mode...
	Burns, A., Prasad, D., Bondavalli, A., Di Giandomenico, F., Ramamritham, K., Stankovic, J., Strig...
	Calder, R. B., Peacock, J. C., Panagos, J., Johnson, T. E., Integration of Constructive, Virtual,...
	Calder, R. B., Peacock, J. C., Wise, B. P. Jr., Stanzione, T., Chamberlain, F., Panagos, J., Impl...
	Cardelli, L., Wegner, P., On Undertanding Types, Data Abstractions, and Polymorphism, ACM Computi...
	Chamberlin, D. D., Gray, J. N., Traiger, I. L., Views, Authorization, and Locking in a Relational...
	Chen, P. P., The Entity-Relationship Model — Toward a Unified View of Data, ACM Transactions on D...
	Clark, J. H., Hierarchical Geometric Models for Visible Surface Algorithms, Communications of the...
	Clark, K. J., Brewer, D., Bridging the Gap Between Aggregate Level and Object Level Exercises, 4t...
	Codd, E. F., A Relational Model of Data for Large Shared Data Banks, Communications of the ACM, V...
	Cormen, T. H., Leiserson, C. E., Rivest, R. L., Introduction to Algorithms, MIT Press, ISBN 0-262...
	Cox, A., Maybury, J., Weeden, N., Aggregation Disaggregation Research — A UK Approach, 13th DIS W...
	Dahmann, J., Wood, D. C., editors, Special Issue of IEEE Distributed Interactive Simulation, Vol....
	Dahl, O-J., Nygaard, K., Simula — An Algol-Based Simulation Language, Communications of the ACM, ...
	Date, C. J., An Introduction to Database Systems (Sixth Edition), Addison Wesley Publishing Compa...
	Davis, A. L., Keller, R. M., Data Flow Program Graphs, IEEE Computer, Vol. 15, No. 2, February 1982.
	Davis, P. K., An Introduction to Variable-Resolution Modeling and Cross- Resolution Model Connect...
	Davis, P. K., Hillestad, R. J., Families of Models that Cross Levels of Resolution: Issues for De...
	Davis, P. K., Bigelow, J. H., Experiments in Multiresolution Modeling (MRM), Prepared for the Def...
	Demers, A., Rogers, A., Zadeck, F. K., Attribute Propagation by Message Passing, ACM SIGPLAN 85 S...
	Dennis, J. B., Data Flow Supercomputers, IEEE Computer, Vol. 13, No. 1, November 1980.
	DIS Steering Committee, The DIS Vision, A Map to the Future of Distributed Simulation, Comment Dr...
	Under Secretary of Defense (Acquisition and Technology), Modeling and Simulation (M&S) Master Pla...
	Epstein, J. M., The Calculus of Conventional War: Dynamic Analysis Without Lanchester Theory, The...
	Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D. R., The Hearsay-II Speech-Understanding Sy...
	Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, I. L., The Notions of Consistency and Predica...
	Firby, R. J., An Investigation into Reactive Planning in Complex Domains, American Association fo...
	Fowler, M., Scott, K., UML Distilled, Addison Wesley Longman Inc., ISBN 0-201-32563-2, 1997.
	Franceschini, R. W., Intelligent Placement of Disaggregated Entities, Institute for Simulation an...
	Freeman-Benson, B. N., Maloney, J., Borning, A., An Incremental Constraint Solver, Communications...
	Frühwirth, T., Herold, A., Küchenhoff, V., Le Provost, T., Lim, P., Monfroy, E., Wallace, M., Con...
	Frühwirth, T., Constraint Simplification Rules, Technical Report ECRC- 92-18, European Computer-I...
	Fujimoto, R. M., Parallel Discrete Event Simulation, Communications of the ACM, Vol. 33, No. 10, ...
	Gajski, D. D., Padua, D. A., Kuck, D. J., Kuhn, R. H., A Second Opinion on Data Flow Machines and...
	Garlan, D., Views for Tools in Integrated Environments, Ph.D. Dissertation, Technical Report CMU-...
	Garland, M., Heckbert. P. S., Fast Polygonal Approximations of Terrains and Height Fields, Techni...
	Garcia-Molina, H., Using Semantic Knowledge for Transaction Processing in a Distributed Database,...
	García de la Banda, M., Hermenegildo, M., Marriott, K., Independence in Constraint Logic Programs...
	Gat, E., Integrating Planning and Execution in a Heterogeneous Asychronous Architecture for Contr...
	Giorgi, F., Simulation of Regional Climate Using a Limited Area Model Nested in a General Circula...
	Giorgi, F., Mearns, L. O., Approaches to the Simulation of Regional Climate: A Review, Reviews of...
	Goldstein, I. P., Bobrow, D. G., Descriptions for a Programming Environment, First Annual Confere...
	Goodenough, J. B., Exception Handling: Issues and a Proposed Notation, Communications of the ACM,...
	Grimshaw, A. S., Strayer, W. T., Narayan P., Dynamic, Object-Oriented Parallel Processing, IEEE P...
	Haerder, T., Reuter, A., Principles of Transaction-Oriented Database Recovery, ACM Computing Surv...
	Hanks, S., Firby, R. J., Issues and Architectures for Planning and Execution, DARPA Workshop on I...
	Hardy, D., Healy, M., Constructive & Virtual Interoperation: A Technical Challenge, 4th Conferenc...
	Harshberger, E. R., Bennett, B. E., Frelinger, D. R., An Approach to Hierarchies of Models: Proce...
	Heckbert, P. S., Garland, M., Multiresolution Modeling for Fast Rendering, Graphics Interface, Ba...
	Heckbert, P. S., Garland, M., Survey of Polygonal Surface Simplification Algorithms, Multiresolut...
	Hennessey, J. L., Patterson, D. A., Computer Architecture: A Quantitative Approach (Second Editio...
	Hillestad, R. J., Juncosa, M. L., Cutting Some Trees to See the Forest: On Aggregation and Disagg...
	Hillestad, R. J., Owen, J., Blumenthal, D., Experiments in Variable Resolution Combat Modeling, C...
	Hofer, R. C., Loper, M. L., DIS Today, Proceedings of the IEEE, Vol. 83, No. 8, August 1995.
	Hopcroft, J. E., Ullman, J. D., Introduction to Automata Theory, Languages, and Computation, Addi...
	Horwitz, S., Teitelbaum, T., Generating Editing Environments Based on Relations and Attributes, A...
	Horrigan, T. J., The “Configuration Problem” and Challenges for Aggregation, Conference on Variab...
	Howard, J. D., An Analysis of Security Incidents on the Internet 1989-1995, Ph.D. Dissertation, E...
	Humbel, S., Sieber, S., Morokuma, K., The IMOMO method: Integration of different levels of molecu...
	Jaffar, J., Michaylov, S., Stuckey, P., Yap, R. H. C., The CLP(¬) Language and System, ACM Transa...
	Jaffar, J., Maher, M. J., Constraint Logic Programming: A Survey, Journal of Logic Programming, V...
	Jefferson, D. R., Virtual Time, ACM Transactions on Programming Languages and Systems, Vol. 7, No...
	—, Federate Object Model for Joint Precision Strike Demonstration, OMT v1.3, 1997.
	—, Federate Object Model for Joint Task Force Prototype, OMT v1.3, 1997.
	Karr, A. F., Lanchester Attrition Processes and Theater-Level Combat Models, Mathematics of Confl...
	Karr, C. R., Root, E., Integrating Aggregate and Vehicle Level Simulations, 4th Conference on Com...
	Kernighan, B. W., Ritchie, D. M., The C Programming Language (Second Edition), Prentice Hall Inc....
	Knuth, D. E., Semantics of Context-free Languages, Mathematical Systems Theory, Vol. 2, No. 2, Ju...
	Knuth, D. E., Semantics of Context-free Languages: Correction, Mathematical Systems Theory, Vol. ...
	Korth, H. F., Speegle, G. D., Formal Model of Correctness without Serializability, ACM SIGMOD Rec...
	Laird, J., Yager, E., Hucka, M., Tuck, C., Robo-Soar: An Integration of External Interaction, Pla...
	Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System, Communications of ...
	Lamport, L., The Temporal Logic of Actions, ACM Transactions on Programming Languages and Systems...
	Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D., MAPS: Multiresolution Adaptive...
	Linton, M. A., Implementing Relational Views of Programs, ACM SIGSOFT/SIGPLAN Software Engineerin...
	Liskov, B. H., Snyder, A., Exception Handling in CLU, IEEE Transactions on Software Engineering, ...
	Luebke, D., Survey of Polygonal Simplification Algorithms, Technical Report TR97-045, Department ...
	Lynch, N. A., Multilevel atomicity: a new correctness criterion for database concurrency control,...
	Madnick, S. E., Donovan, J. J, Operating Systems, McGraw-Hill Inc., ISBN 0-07-039455-5, 1974.
	Marriott, K., Stuckey, P. J., The 3 R’s of Optimizing Constraint Logic Programs: Refinement, Remo...
	Matsubara, T., Maseras, F., Koga, N., Morokuma, K., Application of the New “Integrated MO + MM” (...
	Mattern, F., Virtual Time and Global States of Distributed Systems, Parallel and Distributed Algo...
	Miller, D. C., Thorpe, J. A., SIMNET: The Advent of Simulator Networking, Proceedings of the IEEE...
	Munson, J., Dewan, P., A Concurrency Control Framework for Collaborative Systems, ACM Conference ...
	Natrajan, A., Nguyen-Tuong, A., To disaggregate or not to disaggregate, that is not the question,...
	Natrajan, A., Reynolds Jr., P. F., Srinivasan, S., Consistency Maintenance using UNIFY, Technical...
	Natrajan, A., Reynolds Jr., P. F., Srinivasan, S., A Flexible Approach to Multi-Resolution Modeli...
	Natrajan, A., Reynolds Jr., P. F., Resolving Concurrent Interactions, 3rd International Workshop ...
	Committee on Modeling and Simulation: Opportunities for Collaboration between the Defense and Ent...
	U.S. Department of Defense, High Level Architecture Object Model Template Specification Version 1...
	Papadimitriou, C. H., The Theory of Database Concurrency Control, Computer Science Press, ISBN 0-...
	Peterson, J. L., Petri Nets, ACM Computing Surveys, Vol. 9, No. 3, September 1977.
	Petri, C. A., Kommunikation mit Automaten, Ph.D. dissertation, Schriften des Rheinisch-Westfalisc...
	Petty, M. D., The Turing Test as an Evaluation Criterion for Computer Generated Forces, 4th Confe...
	Petty, M. D., Franceschini, R. W., Disaggregation Overload and Spreading Disaggregation in Constr...
	Pratt, D. R., Johnson, M. A., Constructive and Virtual Model Linkage, Winter Simulation Conferenc...
	Pullen, J. M., Wood, D. C., Networking Technology and DIS, Proceedings of the IEEE, Vol. 83, No. ...
	Puppo, E., Scopigno, R., Simplification. LOD and Multiresolution Principles and Applications, Eur...
	Reddy, R., Garrett, R., Future Technology Challenges in Distributed Interactive Simulation, Proce...
	Reps, T., Teitelbaum, T., The Synthesizer Generator, ACM SIGSOFT/ SIGPLAN Software Engineering Sy...
	Reps, T., Marceau, C., Teitelbaum, T., Remote attribute updating for language-based editors, 13th...
	Reynolds Jr., P. F., DISorientation, ELECSIM 94, Internet, April-June, 1994.
	Reynolds Jr., P. F., Natrajan, A., Srinivasan, S., Consistency Maintenance in Multi-Resolution Si...
	Risbey, J. S., Stone, P. H., A Case Study of the Adequacy of GCM Simulations for Input to Regiona...
	Robkin, M., A proposal to Modify the Distributed Interactive Simulation Aggregate PDU, Hughes Tra...
	Rosser, J. B., Highlights of the history of the lambda-calculus, Conference Record of 1982 ACM Sy...
	—, Federate Object Model for Real-time Platform Reference, OMT v1.3, September 1997.
	Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object- Oriented Modeling and De...
	Sacerdoti, E. D., Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence, Vol. 5,...
	Saraswat, V. A., Rinard, M., Panangaden, P., Semantic Foundations of concurrent constraint progra...
	Seidel, D. W., King, B. C., Burke, C. D., AIM Approach to Simulation Interoperability, The MITRE ...
	Sherman, R., Butler, B., Segmenting the Battlefield, Loral WDL, June 1992.
	Shlaer, S., Mellor, S. J., Object Lifecycles: Modeling the World in States, Prentice Hall PTR, IS...
	Silberschatz, A., Peterson, J. L., Galvin, P., Operating System Concepts (Third Edition), Addison...
	Simmons, R., Structured Control for Autonomous Robots, IEEE Transactions on Robotics and Automati...
	Smith, R. D., Invited speaker, Department of Computer Science, University of Virginia, December 1...
	Smith, R. D., The Conflict Between Heterogeneous Simulation and Interoperability, 17th Inter-Serv...
	Stefik, M., Bobrow, D. G., Object-Oriented Programming: Themes and Variations, AI Magazine, Vol. ...
	Steinman, J. S., Wieland, F., Parallel Proximity Detection and the Distribution List Algorithm, 1...
	Stober, D. R., Kraus, M. K., Foss, W. F., Franceschini, R. W., Petty, M. D., Survey of Constructi...
	Stonebraker, M. R., Wong, E., Kreps, P., Held, G., The Design and Implementation of Ingres, ACM T...
	Stroustrup, B., The C++ Programming Language (Second Edition), Addison Wesley Publishing Company ...
	Sullivan, K. J., Mediators: Easing the Design and Evolution of Integrated Systems, Ph.D. Disserta...
	Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., Morokuma, K., ONIOM: A Mul...
	Svensson, M., Humbel, S., Morokuma, K., Energetics using the single point IMOMO (integrated molec...
	Tanenbaum, A. S., Modern Operating Systems, Prentice Hall Inc., ISBN 0- 13-595752-4, 1992.
	Texel, P. P., Williams, C. B., Use Cases combined with Booch/OMT/UML: Process and Products, Prent...
	Thomasin, A., Concurrency Control: Methods, Performances and Analysis, ACM Computing Surveys, Vol...
	Turing, A. M., Computing Machinery and Intelligence, Mind, Vol. 59, October 1950.
	Van Hentenryck, P., Saraswat, V. A., et al, Strategic Directions in Constraint Programming, ACM C...
	Wasson, G., Martin, W., Multi-tiered Representation for Autonomous Robots, SPIE Conference on Mob...
	Wasson, G. S., Natrajan, A., Gunderson, J. P., Ferrer, G. J., Martin, W. N., Reynolds Jr., P. F.,...
	Wasson, G. S., Design of Representation Systems for Autonomous Agents, Ph.D. Dissertation, Depart...
	Weatherly, R. M., Wilson, A. L., Griffin, S. P., ALSP — Theory, Experience and Future Directions,...
	Weihl, W. E., Commutativity-Based Concurrency Control for Abstract Data Types, IEEE Transactions ...
	Williams, C. C., Concurrency Control in Asynchronous Computations, Ph.D. Dissertation, Department...
	Wimsatt, W. C., Heuristics and the Study of Human Behavior, in Fiske, D., Shweder, R., eds., Meta...
	Yemini, S., Berry, D. M., A Modular Verifiable Exception-Handling Mechanism, ACM Transactions on ...
	Zorin, D., Schröder, P., Sweldens, W., Interactive Multiresolution Mesh Editing, ACM Computer Gra...

